

MUSKOX (*Ovibos moschatus*) DISTRIBUTION AND ABUNDANCE, MUSKOX MANAGEMENT UNITS MX-08, BOOTHIA PENINSULA, AUGUST 2017.

Lisa-Marie Leclerc¹

Version: September 2018

For Nunavut Wildlife Research Trust

¹Wildlife Biologist Kitikmeot Region, Department of Environment

Wildlife Research Section, Government of Nunavut Box 377 Kugluktuk NU X0B 0E0

STATUS REPORT XXXX-XX NUNAVUT DEPARTMENT OF ENVIRONMENT WILDLIFE RESEARCH SECTION KUGLUKTUK, NU

Executive Summary

Systematic strips transect surveys of Boothia Peninsula was undertaken in summer 2017 to determine the abundance and distribution of muskox. The survey took place from August 07 to August 12. A total of 8,317.71 km² were flown, representing 20% coverage of the total study area (43,238 km²). During the survey, 702 adult muskoxen were recorded on transect resulting in an estimated number of 3,649 ± 316 (S.E.). Calves represented 14% of the adult muskox seen and the average adult per group was small, 5 ± 4.45 (S.D.) The muskox density was of 0.084 muskox / km² in the management unit. This is an increase of muskox number in MX-08 from what have been estimated previously, and it is consistent with the reported local knowledge. Thus, an increase in the current harvest rate could be supported by this population, as well as continuing the monitoring, harvest reports, and health monitoring program. The next survey of this area should be effectuated within 5 years or when traditional knowledge indicates a change in the population trend, so harvest rate could be review.

Table of Contents

Executive Summaryiii
List of Figuresv
List of Tables
Introduction1
Objectives2
Materials and Methods
Study Area3
Survey Area3
Aircraft configuration5
Analyses6
Results7
Distribution
Distribution
Group Characteristic
Group Characteristic 9 Estimate 11 Predator sighting (wolves, polar bear and grizzly bear) 12 Discussion 13 Distribution 13 Group Characteristic 14 Abundance Estimate 14
Group Characteristic 9 Estimate 11 Predator sighting (wolves, polar bear and grizzly bear) 12 Discussion 13 Distribution 13 Group Characteristic 14 Abundance Estimate 14 Density 15
Group Characteristic9Estimate11Predator sighting (wolves, polar bear and grizzly bear)12Discussion13Distribution13Group Characteristic14Abundance Estimate14Density15Predator sighting (wolves, polar bear)15
Group Characteristic 9 Estimate 11 Predator sighting (wolves, polar bear and grizzly bear) 12 Discussion 13 Distribution 13 Group Characteristic 14 Abundance Estimate 14 Density 15 Predator sighting (wolves, polar bear) 15 Acknowledgements 16

List of Figures

Figure 1: Transect lines representing 20% coverage of the muskox management units MX-08
Figure 2: Schematic diagram of aircraft configuration for strip width sampling North-Griffiths (19878). W is marked out on the tarmac, and the two lines of sight a'-a-A and b'-b-B establish, whereas a'- and b' are the window marks
Figure 3: Daily track effectuated to cover 20% of the muskox management units MX-08 from August 7 th to 12 th
Figure 4: Muskox distribution on and off transect in the management unit MX-08 during the survey where the number of animal per group was grouped as 0-1, 2-7, 8-11, 12-15, and 16-19
Figure 5: Frequency of occurrence (%) of adult muskox number per group size, grouped as follow 0-1, 2-7, 8-11, 12-15, and 16-1910
Figure 6: Proportion of calf per adult muskox in each group observed on transect in the Muskox Management Unit MX-08
Figure 7: Locations where Polar Bear and Wolf were observed in the Muskox Management Unit MX08 in relation of caribou distribution
Figure 8: Muskox population estimate for MX-0815

List of Tables

Table 1 Characteristic of the study area and the transect lines per stratum in the Management Unit MX-
085

Table 2 Muskox estimate in the Muskox management Unit MX-08

Introduction

The mechanism driving muskox population dynamics is not well understood. In the early part of the 1900s, hunting pressure drove muskox numbers close to extinction and reduced it's distribution to few limited pockets in the Canadian Arctic (Spencer 1976; Gunn 1984). To stimulate recovery, the existing muskox populations in Nunavut were managed to foster a continued colonization of historic range (Gunn, 1983). While muskox are currently re-colonizing its habitat in the central and eastern Canadian Arctic, most muskox populations have been increasing in the last decades inhibiting the monitoring of long-term population variation. Therefore, there is limited information available to determine how muskox population naturally cycle.

The Boothia Peninsula is an example of a location where muskox is re-colonizing their historical range. Previous surveys on the Boothia Peninsula were conducted in 1985, 1995, and 2006. In 1985, the Boothia Peninsula was known to be deserted of muskox (Spencer Bay HTO pers. Comm; Gunn and Ashevak 1990). A decade later, 61 muskoxen were seen on transect providing an estimate of 554 \pm 205 (SE) animals (Gunn and Dragon, 1998). According to hunter observations, muskox numbers around Taloyoak have been increasing since 1995. During the lasted population survey, in 2006, muskox abundance for Boothia Peninsula was estimated at 1,100 \pm 253 animals from 562 adult muskoxen seen on transect (Dumond, 2007). Based on the location of sightings between the 1995 and 2006 surveys and local knowledge, muskox appears to colonize the Boothia Peninsula originally from Somerset Island, north of Amittaryouak Lake, moving southward reaching a southern limit at Cape Cambridge (Gunn and Dragon, 1998; Dumond, 2007). In 2006, areas of higher muskox density were found in the vicinity of Murchison Promontory and Pasley Bay. Thus, the environmental conditions on the Boothia Peninsula seems optimal to promote muskox population growth.

Taloyoak Hunters have commented on the higher numbers of muskoxen sighting. They fear that muskox will start impacting negatively the caribou calving ground on the Boothia Peninsula. It is part of Inuit traditional knowledge that muskox displaced caribou from their habitat. Muskox feeding pit or stumbling of the ground might prevent caribou from feeding in the area or the strong muskox musk might chase them away. However, muskox and caribou have been co-habiting the Arctic for thousands of years, where their ranges overlap temporally and spatially. Even today, there is no clear scientific evidence determining the muskox-caribou relationship, as this inter-species relationship is difficult to isolate from confounded variables in the wild. Thus, traditional knowledge might be a more powerful tool to understand in inter-species relationship.

In 1995, the very low number of muskox on the Boothia Peninsula did not allow to set a muskox quota in the previously call harvest zone MX-09. However, a quota of 20 tags for Prince of Wales Island and 12 tags for Somerset Island were assigned to these two harvest zones (Gunn and Dragon 1998). After the 2006 population survey was completed, a Total Allowable Harvest (TAH) of 20 was set and then 66 tags were assigned for the Boothia Peninsula with the creation of the muskox management unit MX-08 in 2015. Assuming that this quota was achieved on a yearly basis, a harvesting rate of 6% would have lead to a slow decline under constant population growth (Tener, 1965). Despite this risky management approach taken with limited knowledge on the population demographics, recent local knowledge mentioned that the muskox number has still continued to increase.

Based on local knowledge, there is a need to re-evaluate the existing TAH relative to the management goal. Taloyoak hunters are requesting an increase in harvesting opportunities to keep the muskox number relatively low so they can preserve the caribou calving ground. This task is impossible without reassessing the muskox population of MX08, revisiting the TAH, and making sure that there is incentive in place to reach the harvesting rate. Thus, this project aims to first provide an update of current muskox surveys, the Nunavut wide monitoring approach will be used. This scientific information will be provided and paired with traditional knowledge to review existing management strategies and promote a sustainable harvest of muskox for future generations of Inuit allowing for the co-habitation of caribou and muskox on the Boothia Peninsula.

Objectives

This project aims to address the concerns and requests of Inuit hunters, as well as to provide up to date scientific information for management purposed. Therefore, the main objectives of this study are:

- 1. Determine the estimated number of muskox;
- 2. Determine muskox distribution and density;
- 3. Determine calf crop and group size.

By doing so, it will be possible to have better information on current muskox abundance and distribution in the muskox management unit MX-08. Information on group structure, calf production, group size and density, is essential to gain insight on the relation between these variables and population dynamic.

Materials and Methods

Study Area

The study area is the muskox management unit MX08, which includes the Boothia Peninsula and a portion of the mainland. The area lies between Mclintosh Channel to the west and the Gulf of Boothia to the east, and is separated from MX-06 to the north by Bellot Straight and the southern boundary is shared with muskox management unit MX-11. The Boothia Peninsula is the northernmost extension of the Canadian mainland and the North American Continent. The area is rich in topography with plains, lowlands, plateaus, and rolling bedrock hills (Dyke, 1984).

This management unit is part of the Northern Arctic Ecozone, which has two Northern Arctic Ecoregions. The southeast and the north part are characterized by Boothia Peninsula Plateau and a small portion of the southwest by the Victoria Island lowlands (Environment Canada, 1995). Due to the spatial heterogeneity of the area, the Arctic tundra vegetation cover is influenced by the soil moisture, nutrient availability, snow cover, wind exposure, and microclimate differences defining dwarf-shrub health or moist to wet sedge meadows (Laidler *et al.*, 2008).

Vegetation covers in the Victoria Island Lowlands are dominated by *Saxifraga oppositifolia*, *Dryas integrifolia*, and *Salix* spp., and the wet areas are characterized by sedges, cottongrass, saxifrage, and moss (Walker, 2000; Environment, 1995). Remaining upland areas are part of the Boothia Peninsula plateau, which have a mid-arctic ecoclimate. In the upland the vegetation is discontinuous, and dominated with tundra species (Environment, 1995). Vascular plants are found in bedrock cracks and depressions where it is well irrigated by runoff and protected from winds (Walker, 2000).

Survey Area

Prior to survey, no reconnaissance survey was undertaken to maximize the coverage area investigated. Instead, anticipated muskox distribution patterns were obtained from past ground surveys, hunter observations, and Inuit Traditional Knowledge/*Inuit Qaujimajatuqangit* (IQ). Upon *Inuit Qaujimajatuqangit* muskox has increased in number and there is now uniformly distributed over the entire Boothia Peninsula with no specific aggregation. Based on this change in distribution, the whole management unit MX-08 was surveyed at 20% coverage with no strata of different effort allocation (Figure 1).

Figure 1: Transect lines representing 20% coverage of the muskox management units MX-08.

To increase the precision of the survey areas, ESRI'S ArcGIS software with an adapted survey design tool was used to randomly plot the transect lines until desired percentage of coverage was achieved. The tool allows the user to determine the precise number of transects and the distance between each transect line required in function of the transect strip width and the total area of the management unit. Orientation of the transect lines within the stratum was determined in function to have the most homogeneous and shorter transect line length under the assumption that muskox are randomly and uniformly distributed on the landscape (Figure 1).

Table 1, below, summarizes the total area, the percentage of cover, the total number of km's of transects of different length, the number of lines, the resulting distance between each transect line and the orientation of the transect lines. In sum, the management unit, MX-08, of 43,238 km² was surveyed with a total of 5,198 km of transect lines, which represented 46 transect lines of different length at a spacing of 8 km (Table 1).

Stratum	Total area	Percentages	Total transect	Number	Distance between	Orientation
	(km²)	(%)	lines (km)	of lines	transect line (km)	
1	43,238	20	5,198	46	8	East-West
MX-08	43,238		5,198	46		

Table 1 Characteristic of the study area and the transect lines per stratum in the Management Unit MX-08.

Aircraft configuration

A systematic transects line survey was flown with a fixed-wing single engine turbine aircraft, a grand caravan. The transect lines were surveyed at a speed of 160 km/hr and the survey altitude of about 152 meters, which was mostly maintained following the relief of the study area using a radar altimeter. The pilot responsibilities were to monitor this air speed and altitude while following the pre-programmed transect on a Geographic positioning system (GPS). The strip transect was 800 meters on each side of the aircraft, for a total transect width of 1.6 kilometers. The pre-determined transect width of 400 meters was set on each wing based on calculation using the formula of Norton-Griffiths (1978) and others (Gunn and Patterson 2000; Howard 2011).

Figure 2: Schematic diagram of aircraft configuration for strip width sampling North-Griffiths (19878). W is marked out on the tarmac, and the two lines of sight a'-a-A and b'-b-B establish, whereas a'- and b' are the window marks.

w= W*h/H

Where, W= the required strip width; h= the height of the observer's eye from the tarmac; and H= the required flying height.

The entire survey was set up with an observer/recorder crew: two recorders, one left side observers and one right side observers. Each left and right observers and a recorder were divided into a team. Observers were responsible to continuously searched for and counted muskox; the number of calves (5-6 months old) were counted when they were conspicuous while on transect. No sex and age classification count were systematically attempted. The data recorded include the number of muskox and GPS location. Only counts of adults were using in the final population estimate. Even if this survey focused on muskox, additional sightings of other species were also recoded, such as caribou, polar bear, and wolf.

Analyses

As this survey focused mainly on obtaining an estimated number, only unambiguous classification criteria were used to determine the number of calves and adults. The group was then broken down into adults (female/male) and calves (Howard 2011). The flying height and speed did not allow for accurately distinguishing male from female muskox from horn size and shape. Therefore, the proportion of calves per female cow was not determined, and no information on the recruitment or productivity was generated. The group structure was however described such as calf : adult ratio, mean group size, and the number of single lone bulls encounter.

To determine the number of muskox in the study area, only the adults muskox sightings recorded on transect were analyzed using Jolly's Method 2 for unequal sample sizes (Jolly 1969) using a coefficient limit of 95%. Such methodology was previously used for the survey of Boothia Peninsula in 2006. The population estimates for fixed-width strip sampling using Jolly's Method 2 for uneven sample sizes (Jolly 1969; summarized in Caughley 1977) are derived from the following equation:

$$\hat{Y} = RZ = Z \frac{\sum_{i} y_{i}}{\sum_{i} z_{i}}$$

Where \hat{Y} is the estimated number of animals in the population, R is the observed density of animals (sum of animals seen on all transects $\sum_i y_i$ divided by the total area surveyed $\sum_i z_i$), and Z is the total study area. The variance is given by:

$$Var(\hat{Y}) = \frac{N(N-n)}{n} \left(s_y^2 - 2Rs_{zy} + R^2 s_z^2\right)$$

Where N is the total number of transects required to completely cover study area Z, and n is the number of transects sampled in the survey. s_y^2 is the variance in counts, s_z^2 is the variance in areas surveyed on transects, and s_{zy} is the covariance. The estimate \hat{Y} and variance $Var(\hat{Y})$ are calculated for each stratum and summed. The Coefficient of Variation (CV = σ/\hat{Y}) was calculated as a measure of precision.

Density, the number of muskox per unit area (muskox/km²), will be determined using the number of adult muskox seen on transect divided by the total area of the study area. Lakes and streams areas will be not subtracted from the total area calculations used in muskox density (Statistical analysis based on Campbell and Setterington (2001)).

The area occupied by muskox and the time of the survey within the study area was determined. Thus, the distribution was illustrated by plotting each muskox sighting on and off transect based on their precise geospatial position captured with GPS. In addition, the number of animals composing each group was highlighted using an increasing size of circles to represent group of 0-1, 2-7, 8-11, 12-15, and 16-19 animals.

Given the importance of predators, Polar bear (*Ursus maritimus*) and Arctic Wolf (*Canis lupus arctos*), we collected standardized information of predator sightings in the management units using the predator index (Heard, 1992). The predator index reports all predator sighting per species against the total number hours flown, in this case, also including the ferry time. It is then possible to have a yearly trend, as the number of predators observed is expressed per 100 hours.

Results

The survey was conducted out of the community of Taloyoak from August 07th to August 12th, 2017. The management unit was surveyed in 40 hours, including on transect and ferry flight from Taloyoak airport to the start of the transect lines. Low ceiling and fog prohibited to survey continuously from the North to the South of the study area. Therefore, some sections were left to be completed at a later time, when the weather was permitting. The sedentary muskox behavior (Adamczewski *et al.*, 1997) reduces the probability that an individual move great distance within the short survey time frame.

Figure 3: Daily track effectuated to cover 20% of the muskox management units MX-08 from August 7th to 12th.

Distribution

The adult muskox distribution in the management units is represented in the Figure 5 below. During the survey, 170 groups of muskox were seen on and off transect. The large groups of muskox, 16-19 adult animals, were distributed from Cape Farrand to Abernethy Bay within 40 km from coast. Additional muskox aggregations were found around the Wrottlesley River valley in the small portion of the southwest by the Victoria Island lowlands. Very few groups were located at high elevation (594 meters) in the central north part of the Peninsula, as muskoxen appeared to avoid the Boothia Peninsula Plateau. It was the first time that muskox observation was recorded south of Cape Cambridge, now reaching close to Acland Point at their southernmost distribution.

Figure 4: Muskox distribution on and off transect in the management unit MX-08 during the survey where the number of animal per group was grouped as 0-1, 2-7, 8-11, 12-15, and 16-19.

Group Characteristic

During the survey, 139 groups of muskox were recorded on transect, where 26 were single lone bulls. The majority of the groups (41%) were very small group of 2 to 7 adults (Figure 5). The average number of adults (+1 year and older) per group was 5 ± 4.45 (S.D.) where calves were not including in the group size. The highest number of adults counted in one group was 19.

Figure 5: Frequency of occurrence (%) of adult muskox number per group size, grouped as follow 0-1, 2-7, 8-11, 12-15, and 16-19.

Nonetheless, the calf to adult ratio was determined for each group of muskox seen on transect. Since the identification was done from a fixed-wing, it was impossible to distinguish the sex of the adult or yearling based on the horn shape and length. Close to half the group seen (45%) did not have any calf. For the group that had calf, most of them had at least one calf, but some larger groups had up to 4. Most of the groups that had a larger proportion of calf were located north of the Boothia Peninsula, south of Murchison Promontory and west of Cape Farrand, and in the Wrottlesley River valley (Figure 6). The overall proportion of calf to adults was 14%.

Figure 6: Proportion of calf per adult muskox in each group observed on transect in the Muskox Management Unit MX-08.

Estimate

The percentage of the overall cover of the management unit surveyed with 8,317 km² represented 20% of the total study area (43,238km²). During the survey, 702 adult muskoxen on transect were recorded. The estimated number of muskox in the management unit 08, totalized 3,649 \pm 316 (S.E.) (p<0.005, t = 1.676, N = 184 and n = 46). For this estimate, the total number of transect at 100% coverage was 184 (N) and 46 (n) transect lines were surveyed (Table 2). Overall, the muskox density of the management unit was 0.084 muskox / km².

Stratum	Area	Total area	Muskox	Estimate	Standard	95% CL	CV
	Survey	(km²)	on		error	(±)	
	(km²)		Transect		(S.E.)		
MX-08	8,317	43,238	702	3,649	316	530	0.09

Table 2 Muskox estimate in the Muskox management Unit MX-08

* p<0.005, t = 1,676, N = 184 and n = 46

Predator sighting (wolves, polar bear and grizzly bear)

In 2017, during the 40 hours of flying within the management units, 2 wolves and 7 polar bears sightings were recorded. The wolves were found on the southern part of the study area; 1 wolf west of Josephine River and south of Netsilik Lake where four wolves constituted the pack. These two locations were overlapping with caribou sighting (Figure7). Being located between two polar bear management units, the M'Clintock Channel and the Gulf of Boothia, it was probable to observe polar bear. Indeed, 1 female and two cubs were observed on the Cape Hobson and a lone adult was seen few kilometers inland off the shore of M'Clintock Channel. The remaining of the sighting was seen on the Gulf of Boothia, with seven polar bears and an female cub pair were observed on the between Abernethy Bay and Mary Jones Bay. No grizzly bear was seen during the survey. Predator sightings, using the predator index, (Heard, 1992) reveled 13 wolves / 100 hours, 25 polar bears / 100 hours.

Figure 7: Locations where Polar Bear and Wolf were observed in the Muskox Management Unit MX08 in relation of caribou distribution.

Discussion

Distribution

Despite that traditional knowledge reveal that muskox has habited on the Boothia Peninsula long ago, it is common knowledge that no muskox was found in this management unit in the 1980s (Gunn & Dragon, 1998). Early in the 1990s, muskox started to move south of Somerset Island colonizing the northern part of the Peninsula, where their distribution remained consistent for a decade (Dumond, 2007). In 2017, although the majority of the muskox were still located north, they re-colonized most of the Peninsula reaching a new southern limit. Favorable environmental conditions and adequate forage, low number of predator (no grizzly bear) would have either contributed to increase the immigration rate or herd productivity. Muskox are now found in close proximity to the community of Taloyoak, as far south of Arcland Point, which can provide new harvesting opportunities. If these muskoxen are from the Arctic

Archipelago, a subspecies genetically and morphologically distinct from the mainland muskox, it will be interesting to track their expansion and monitor the exchange between these two subspecies once their range overlap.

Group Characteristic

The number calf represented 14% of the total number of adult muskox observed on transect. This ratio is normally associated with a population that would be increasing, since it has been establish that 10.5% of calf crops is necessary to keep the muskox population stable (Freeman, 1971). Since the calf ratio have known to vary greatly between years, long term data is needed in order to determine a trend (Reynolds, 1998).

Small group of muskox was a characteristic of the Boothia Peninsula, with an average group number of 5 \pm 4.45 (S.D.), which is consistent with the mean group size of 6 established in 2007 (Dumond, 2007). Comparatively to King Williams Island where the muskox is known to increase in number rapidly, larger groups, 13 \pm 8.40 (S.D.), were observed at the same period of the year (Leclerc, 2015).

Abundance Estimate

The extent of the harvest zone MX09 remained relatively the same after the creation of MX08 when each muskox management unit in Nunavut was reviewed in 2015. The major change, is that the new unit, now called MX08, did not include the southern portion of Somerset Island, but starts at the northernmost coastline. This similitude allowed to compare previous population estimate with new ones.

Survey of the Boothia Peninsula happened sparsely since the 1980s. In 1985 during a survey, no muskox were seen. Local knowledge informed that the presence of disease or parasites caused an abrupt decline in the muskox number. It is only in 1995 that muskox started to re-colonize the area and allowed to generate a first population estimate of 554 \pm 205 SE. The community member of Taloyoak mentioned a consistent increase in the muskox number. This observation triggered a second survey, in 2007. This survey confirmed the local knowledge and the muskox numbers were then estimated at 1,058 \pm 198 SE. Recently, with this continuous increase, muskox have been recorded to be close to the community of Taloyoak and they would like to re-adjust the Total Allowable Harvest. In 2017, the estimated number of muskox reached 3,649 \pm 316 SE, which is the higher number to date. The current harvesting rate will be increased after consultation and discussion with the Hunter and Trapper Organization.

Figure 8: Muskox population estimate for MX-08.

Density

Muskox density was 0.084 muskoxen / $\rm km^2$ on the Boothia Peninsula. These densities are lower to what would have been expected or what was encounter in East Greenland where density varied from 0.3 to up to 1.0 muskox / $\rm km^2$ (Fern, 1977). In this management unit, the muskox has a density higher to the overall density on Victoria Island, 0.074 muskox / $\rm km^2$, but is lower to that of King William Island where muskox population has been also known to increase 0.1123 muskox/ $\rm km^2$ (Leclerc, 2015).

The mechanism driving muskox density is still not fully understood. Heard (1992) noted that group size in not generally related to muskox density. These qualitative comparisons between areas, highlight that density might fluctuate spatially and temporally.

Predator sighting (wolves, polar bear)

The number of known muskox predator was minimal. Only two wolves were observed, and this at close proximity of caribou, their main prey. Wolf predation on muskoxen is common, with packs or single wolves observed following and killing muskox. No Grizzly bears were found on the Boothia Peninsula. The relatively low abundance of predator would benefit calf recruitment and female survival, promoting then an increase in the population. 25 polar bears /100 hours were seen, but polar bear are known to feed on a marine base diet and are not known to predate on muskox and should not contribute to regulate muskox population.

Acknowledgements

I wish to thank the pilot, Brent Abercromby, for his dedication and in making possible the surveys. A special acknowledgement goes to Thomas Bolt and Darien Evyagotailak for their logistical support and their enthusiasm and participation. I am grateful to the Taloyoak HTO for assistance in providing meaningful insight essential to the planning of this survey and the selection of observers. Karen Ikavalloq, Stevenson Kaviatok, Robert Quqqiaqand Jonah Aryout's involvement need to be acknowledge as they assisted as an observer during the aerial survey. I also want to acknowledge the precious time that Tristan Brewer gave as technical support for the data analysis. This project was funded by the Department of Environment (Government of Nunavut) and the Nunavut Wildlife Research Trust Fund under the Research Permit 2017-12.

References:

Adamczewski, J.Z., P.F. Flood, and A. Gunn. 1997. Seasonal patterns in body composition and reproduction of female muskoxen (*Ovibos moschatus*). Journal of Zoology 241: 245-269.

Caughley, G., 1977. Analysis of Vertebrate Populations. John Wiley and Sons. London.

Dumond, M. 2007. Muskoxen distribution and abundance Boothia Peninsula, Kitikmeot Region, Nunavut. Department of Environment, Government of Nunavut. 29 pp.

Dyke, A.S. 1984. Quaternary geology of Boothia Peninsula and northern District of Keewatin, Central Canadian Arctic. Ottawa; Geological Survey of Canada

Environment Canada 1995. Ecological Framework of Canada. <u>http://ecozones.ca/english/</u>. Accessed April 4 2018.

Freeman M.M. 1971. Population characteristics of muskoxen in the Jones Sound region of the Northwest Territories. Journal of Wildlife Management 35(1) 103-108.

Gunn, A. 1983. Review of muskox transplants. NWT Wildlife Service Report. NWT Wildlife Service. 81 pp.

Gunn, A., 1984. Aspects of the Management of Muskoxen in the Northwest Territories. Biol. Pap. Univ. Alaska Spec. Rep. No. 4, 33-40.

Gunn, A. and J. Dragon. 1998. Status of caribou and muskox populations within the Prince of Wales Island- Somerset Island- Boothia Peninsula complex, NWT, July-August 1995. File Report No122. Department of Resources, Wildlife and Economic Development, Government of the Northwest Territories. Yellowknife. 47 pp.

Gunn, A. and J. Ashevak. 1990. Distribution, and abundance and history of caribou and muskoxen north and south of the Boothia Isthmus, Northwest Territories, May-June 1985. Northwest Territories Department of Renewable Resources. File Report No 90. 34pp.

Gunn, A., and Patterson, B.R. 2000. Distribution and Abundance of Muskoxen on Southeastern Victoria Island, Nunavut. Gov. of the N.W.T., Unpubl. Rep.

Heard, D.C. 1992. The effect of wolf predation and snow cover on musk-ox group size. American Naturalist 139: 190-204.

Howard, F., 2011. Aerial Wildlife Survey Manual. Aerial Procedure Manual v. 0.9 (Uganda). Wildlife Conservation Society. 81 pp.

Jolly, G.M. 1969. Sampling methods for aerial census of wildlife populations. East. Afr. Agric. For. J. 34:46-49.

Laidler, G.J., Treitz P.M., Atkinson D.M. 2008. Remote Sensing of Arctic Vegetation: Relationships between the NDVI, Spatial Resolution and Vegetation Cover on Boothia Peninsula, Nunavut. Arctic. 61 (1): 1-13 p.

Leclerc, L-M. 2015. Muskox (*Ovibos moschatus*) Distribution and Abundance, Muskox Management Units, MX-10, Subdivision King Williams Island, September 2013. Department of Environment. Government of Nunavut. 20 pp.

Norton-Griffiths, M. 1978. Counting Animals. Serengetti Ecological Monitoring Programme Handbook No.1. Afropress Ltd., Nairobi Kenya. 139 pp.

Reynolds, P.E. 1998. Dynamics and range expansion of a re-established muskox population- J. Wildlfe. Manage. 62:734-744.

Spencer, W., 1976. Muskox (*Ovibos moschatus*) surveys, central western Arctic. N.W.T. Wildl. Serv. Unpubl. Rep., 11pp.

Tener, J.S. 1965. Muskoxen in Canada; a biological and taxonomic review. Canadian Wildlife Service. Queens Printer and Controller of Stationary. Ottawa.

Walker, D.A. 2000. Hierarchical subdivision of Arctic tundra based on vegetation response to climate, parent material and topography. Global Change Biology. 6:19-34.