معهد له الم المعند معند المعند المعم

▷L ላ ር UP, ባ ດ CT, ባ ዉ, VY, 4 UP, Da, UUP, 90, 6

Lᆞዖልᆞ d ⊲⊳ሲኣᆞ d╰Բ ۍᆞ ⊳ኄ⊳୵ᆞኣ∆⊂ 12

<u>በበና ° / L ל በJ ິ ິ ⊳ቴ⊳/ ° አ ቴና ል⊳ ምኖ - ቴ∆⊂⊳/ L ິ </u>ລል∧ռ 24, 2017-Г : ______ ጔ_ ኀሬላ፣ Ძ ና_ በርናժበዮሎ ምኮ_ ▷ና⊎⊳፣ ረ ካ ላ ∆ና _____10

ݐﻣﺪᢀ᠖᠘ᡧ᠘᠋ᠺᢄᢂ᠊ᡠ᠆ᡐ᠋᠖ᡄ᠆᠂ᠣ᠊᠋ᢕᠷ᠘ᠳ᠙᠖᠉ 7

 $\Box P \downarrow \sigma d P C D \sim D^{c} \sigma^{h} \sigma^{h$ _____5

▷☞╘┌┥╴╫┥╴ᢣ᠈ᡧ᠂᠕ᡧ᠖᠊ᠳᡃᡡ CL᠘᠈᠂ᠳ᠂᠖ᡣ᠂᠋ᠴᠶ᠂

<u>ነ የበ° በ/ L ኦ ዮ Δ6 ኛ ዮ / Δσና ጋ° ለՐ ⊲ኈ በር⊳ነታ Γ σ∘ ርΔL Δ ሮ∿ じታ Γ σ∘ :</u>

᠊᠋ᡰᢂ᠋᠋᠋᠋᠋᠋᠋᠋᠋᠋᠆᠘᠆ᢞ᠂᠋᠖᠘᠆ᢞ᠂᠖ᢕ᠆ᠴᡗ᠂᠋᠌᠌ᡄ᠆ᢞ᠂ᢕᢄᡃ᠖᠊ᢕ᠌᠌᠆᠋ᡄ᠋᠋᠋᠋᠋ᠵ᠆ᠮ

2

ፀ ሀ ፲ ነ ፋ ሀ_የ የ ማር

ﻣ゚ﻪ ﻫ⊳ݬ゚ﻣ゙ݮ゙ݼề ﺟ゙ (ݑ שﯜ∩ݢ∿ש۵゚ﻣ゚⊃)_____

▷ኄ⊳ィ⊳ኇ^ۥሾ L`∧ኄᇈ╴⊲ል՝ ጋ°، ረ Lኇ፟ዮ ኇ

1

3

____6

Λ∿ሮ ഘ∿ው CLΔ∘ ም ♭∩- ጋՐ ⊂ ഘ ው C⊳ ≁ ഘ ም ም.

$b \cap L \sigma^{*} F \sigma^{*} \wedge \Box^{c} \subset L \Delta^{c} \sigma^{*} b \cap \Box^{c} \Box^{c} \sigma^{*} \Delta^{c} \delta^{c} \sigma^{*} F H \Delta^{c} \Lambda^{c} \wedge \dot{\Lambda}^{c} \delta^{*} \sigma^{*} \sigma^{*} \delta^{c} \sigma^{*} F H \Delta^{c} \Lambda^{c} \Lambda^{c} \delta^{*} \sigma^{*} \sigma^{*} \delta^{c} \sigma^{*} \sigma^{*} F (7 \cap \Lambda_{\alpha} 25, 2017 \cdot F) 16$
▷ L ላ ር ቢት ና ላ ላ ካ ሪ በ በ ቴ ጥ ለ ነ ላ በ ቴ ቴ ጋ ና :
▷ L ላ ር ቢት ና ላ ላ ላ ና በበ ጜ ች ለ ን ላ በ ጜ ይ ጋና : CL ካ P ዄ ጋና ካ CL ነ ላ በል ም ች ማ ላጋ ው CD ም ር ላ ይ ና ም ች ለ ር ሲ ም ለ ር ሲ ት ላ ሲ ም ር L Δ ው ም ካ ስ ር ካ ና ሲ ል ኦ ላ ሶ ሲ ት ላ ሲ ት
▷L
۵٫۵–ڶ ﻣﻪ ⊃٫٫ ÞL ∩ ۵ ، ۲ ۵ ن
ﻣـﻪﺕ - ﻣـﺔ ٦

℃ ۲۱۹% کا ۲`د ۲۹ ج» ۲	^&\ \ כם לוי של אים לוי אים לוי רם⊂ ער אים לי לם לי לי לים רי אין אים לי לם אים אים לי לם אים לי לם אים לי לים אים לי לים אים לי לים אים לי לים	⊲d	
9:00 – 9:20 ⊳< خ ^c d ^c	 P ω^b d σ^c^c σ^b D^bD^c b^c ⊃^b b ∩L b^c^b ⊃^b l L t^c, Δ^b l ≪DC^b L ⊃Δ^b l σ^c J^c b ∩L σ^c Γ^b D^bD^c b^c J^c b b ∩L σ^b ΛΓ ⊲^b ∩CD ⊃σ D^b l ⊲^c σ^b d^c, b ∩L t^c ∩^b t ⊲^b d^c PF^c P ⊲^c σ^bC^b d^c, d^c ∩PCDσ^bC^c J^c S^c C^c F^b J^c J^c S^c C^b S^c C^b S^c C^b S^c C^b S^c C^b S^c C^b S^c S^c C^b S^c S^c S^c S^c S^c S^c S^c S^c	20 ۲ σ ^{- ۲ د}	
9:20 – 10:00 ک ^ر نے ^ہ d ^c	ຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼຼ ຼຼຼຼ	40 ٦ ܡ־ܝܪֹ ܟ	
10:00 – 10:15 ⊳< خd ^c	< تو مور مور مور مور مور مور مور مور مور مو	15 ٢ ܡ־ܝ̈́ ݖ	
10:15 – 11:15 ⊳° ∿ ° [®]	۹۸ ﻧﺎᡣᡃ ᢣ ᠘ᡩ ᢦᡰ᠊᠘ ᠴ ᢂ᠖᠙᠈ᢣ᠘ᡩ ᠴᡆᢁᡩ ᡶ ᠌ᢦ᠘᠈᠂ᡆ᠂ᡣ᠊ <i>ᠴᡩ᠕ᢉ᠊᠊ᠺ᠅᠕ᡣᢕᢄᡃ᠋ᠯᢣ᠂ᡤ</i> ᠕᠘᠆᠊᠌ᠺ᠊ᡔᢄᠺ᠋᠈ᢧ᠊᠅	⊲⊂≻៸ ^ኈ 1 ՃԵ ՝ ና ^ኈ	
10:15 – 11:55 ⊳• ∿ ^۱ ۵	ຯ⊂ ⊃֊ Նል՝ d ⊆ ∩୮ ՙdՈՆԵԺ՝ ⊳Ն⊳ሃ ՝ հ ∿ՐՉ	40 ۲ σ ^{- ۲ ۲}	
11:55 – 1:00 ⊳° ۵۰ \ ۳	۵۰ ک⊃ ۲ ⊂ ک	⊲⊂⊳۲ [®] 1 ∆⊌ ^s ⊆ [®] ⊲ ^L L ⊂ 5 Г σ ^c ⁱ ^c	
1:00 – 1:40 ⊳⊶ ۲ °∿		40 ۲ σ ⁻ ۲ ^{, -}	
1:40 – 2:20 ⊳⊶ ۲ ^{-% с}	᠙᠂ᡧ᠆᠆ᡗ᠋᠆ᠿᡃᡅᠡ᠅ᡤᢩ᠅᠘ᢣ᠆᠆ᠬᠣ᠋᠂᠋᠄ ᠖᠒᠘᠈ᢅ᠊ᢂ᠖᠕᠈᠂ᠺ᠆ᠬ	40 ۲ σ ^{- ۲} ۲	
2:20 – 3:00 ⊳⊶ م∙م ۳	⊴ለነፈበነ ኣ Ճና ⊲⊦ L ຼ ⊳ኄ⊳ፖ ነ ኣ Ճና ለ- ຼՐና ዮ ≪- ຕ՟Γ ኆህፈረ ነ ሰና ϷL ጘ লռσ՟ Jና Ե በL ኦና ⊳ኄ⊳ፖ ነ ኣ ռን Ճና	40 ۲ σ ⁻ ۲ ^{, -}	
3:00 – 3:15 ⊳∗ ⊸ ۲۵	⊳< ⊃ [,] مور مور می مر	15 ۲ σ ^ϲ Ϟ ^ʹ ϲ	
3:15 – 3:55 ▷• ∿ \ ∿	⊲ና ል⊲ቍ L ኄ∆ᡤ╴ L ዮ ገ ና ଦ୍ ଦ⊲ኈ ᡤ- ᠴ ৬ ⊃᠈᠈ ኄ∩ᡤ ᠬᢇᠳ᠈▷ኄ▷ᢣ᠈ ᢣ᠂ᠬ	40 ۲ σ ⁻ ۲ ۲	
ל הא <i>יר פיר אין אין אין אין אין אין אין אין אין אין</i>			

حمح ^۲۵۵٬۵۲٬۷۵۰٬۷۵۰٬۷۵۱ ک۵٬۹۲۱۵ ۵٬۵۶٬۹۵۰٬۹۶۰ کم م۵٬۲۶ ۴۵٬۵۸ ۵۷ ۶٬۹۵۲ ۵۵ ۹٬۶۵۵٬۹۲٬۶٬۹۱۸ م۵٬۵۶٬۵٬۵٬۵ ۵۵٬۰۲۶ ۵۵٬۵۵٬۵۰٬۵۰٬۵۰٬۵۰٬۵۰ ۲۵٬۹۵۸ ۴۵٬۹۵۸٬۵۹۸

3:55 – 4:15 ⊳° ۲ ° ۹	۹۸ ነበት ነ ۵ና	30 ۲ σ ⁻ ۲ ^{, -}
4:15 – 4:55 ⊳• ∿ ۲°	┍╶╷╷╖┉┍┙┍╝┍╎╻┦╻┙┙╗┍╷┍┙╔┺ ┙╲┾╒╝┪┉┺╗┺╗┪╗┺ ┙┙╗┪┙╗┺╗┪╗┺ ┙	40 ſ ᠳ [。] ᠠ ^ᆞ
4:55 – 5:25 ⊳ ∿ [∿] *	۹۸٬۹۵۰ ۲ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۹۲ ۹۲ ۹۸٬۹۵۰ ۱۳۹۹ ۲ ۹۰ ۹۲ ۵ ۹۲ ۵ ۹۲ ۵ ۹۲ ۵ ۹۲ ۱۰ ۲۰ ۲۰ ۵۰ ۹۰ ۹۰ ۹۰ ۹۰ ۹۰ ۵۰	30 ۲ ح ⁻ ب ^ا -

ל בי שית 9-10, 2018 הרבי בי ג'י ראינד, אין ארגאינד, אייר בי ג'י ראינד לי ג'יר איינד איינד איינד איינד איינד איינד איינד איינד איינד

₀- ۲ ۲ ۲ ۹۵ ۲ ۲ ۲ ۲ ۲	ንዉ ሃ ዓል' ሪነ ሃ ዓሪያ ዋንግ∻ ውና ላይ' ላ ' ላ እ ሥጉ≏ና ም የ	⊲ባ ଦ⊳⋵ _` ๅ๔๖ ለል՝ ኣ ՙԽԺ^Րഛ
8:30 – 8:45 ⊳< خ ^c	Δº ᢣ «ÞC [®] L ⊃Δ [®] ᢣ ᠳ᠋ᠶ ᠴ ᠺ b ∩L ᠳᠶ ᠮ ᠈ ÞᢐÞᢣ ᠈ ᢣ ᢐᡝ ᠴᠣ, b ∩L ᠳ᠉ ۸ᡗ ᢦ᠉ ሰᢗÞᠴᠦ ᠫ᠈ ᢣ ᢦ᠋ᠶ ᠳ ᡆᡗ , ÞL ᢣ ᡄᡅ᠈᠂ᢣ ᢦ᠈ ᡆ ᡩᠮᠮ᠂᠈ ᢦᡗ ᠳᠬᠳ᠉ᡏᡗᢗÞᠳᡘᡊᠴ ▷< ᠍ᢣᡶᠣ ᠫᡃ ᡄᡅᡃ᠈ᠮ 2 b ∩L ᠈ ᢣ ᠬ᠈ᢣ᠘ᠺ	15 ۲ σ ^{- ۲ ۲}
8:45 – 9:25 ⊳< ⊳4 ^с	╘ ᢞᡗᡃ᠋ᡥᡄᡃᠣ᠋᠋ᠮ᠊ᢂ᠋ᡄ᠘᠄ᢐ᠘ᡤ᠋ᡗ᠋ᡣ᠋ᡬ ᠋ᠮ᠙ᡗ᠊᠊᠋ᠫ᠋ᠮ᠊ᠳ᠋᠋ᢉ᠋᠋᠋᠋ᠬ᠋᠋ᡦ᠘᠋ᡬ᠘᠋ᢥ᠘᠋ᢤᡗ	40 ۲ σ ^{- ۲} ۲
9:25 – 10:00 ⊳< خ d ^c	⊲۸٬۶۵۱٬۲۵ ک ک که که کې ۵۰٬۵۵ ۴۲٬۴۰ که ۲ ۵ ک ۵٬۵۲ ۱ ۵ ک ۲ ۵۰ ک ۲٬۶۰۶ ۱۰ ۴۵۵٬۹۰۰ ک ۵۰	35 ۲ σ ⁻ ۲ ⁻
10:00 – 10:15 ⊳< خ° d ^с	⊳< خ ^ہ ما ⊂ مە ∿لە ∆⊶ م- م- م	15 ୮ ᠳ ^ݛ ᠇ ^ᡝ ᠭ
10:15 – 10:55 ⊳< خ ^c d ^c	᠘ᡃ᠋ᠴᡄ᠋ᡶ᠋᠄᠊᠊ᠯ᠅᠋᠋᠊ᠮ᠋᠅᠘᠋᠖᠘ᡤ᠋ᡗ᠆/ᠫᢪᢣᡅᢣ᠅ᡤ᠋ ᠋ᡏ᠙ᡗ᠊ᠫ᠋᠋᠋᠋᠂ᠳᢒ᠋᠅ᡤ᠆ᠴᢂ᠋᠋᠋᠋ᢂᡔ᠋᠘᠅ᢣ᠅ᢉ	40 ٦ ص ٢ ٢
10:55 – 11:30 ⊳< ٺ d ⊂	⊴ለᆟብ՝ ኣ Ճና Ϥ L ᠴ ϷႪϷ៸ ᠈ ኣ Ճና ለ- ᠴՐና Ճ୳ ᠴᡄᲡ ና ᡕ ኊ ℾ ᠈ L ႪՃՈና ℾ Բ Ր ⊲ና ჾ⊲Ⴊ Ո- ᠴ ৬ Ͻን ኦ ႪႶሶ ∿ᠬᡆ ኦ ϷႪϷ៸ ᠈ ኣ Ճና	30 ۲ σ ⁻ ۲ ⁻ ۲
11:30 – 12:10 ⊳• ۲ ^۱ ۵	᠄ᠳ᠘᠊ᠣ᠋᠈ᢅ᠋⊃ᠠ᠋ᡏ᠆ᡌ᠖᠘ᡤᡄ᠋ᠮ᠙᠘᠅᠘ᡧ᠋᠅ᢕᡄ ᠘᠋᠋᠋᠋᠉᠈᠄᠖᠒ᡤ᠅ᠬᢛᠣ᠈ᢂ᠖᠘᠈ᢣ᠅ᠺ	40 minutes
12:10 – 1:10 PM	ا ۹ ک⊃ ۲ ⊂۲ ۵۴	⊲⊂⊳≀ ∿ 1 ∆⊌ ˤ ʕ ∿
1:15 – 1:45 ⊳• ۲ °ف	⊴ለᆟብ⁰ ኣ Ճና ൞ L ᠴ ▷ኄ▷ፖ ካ ኣ Ճና ለ∸ ചՐ ና ኄL ൙'ጋ⊲ና L ኄՃሰና ୮ ዖ ቦ ⊲ና σ⊲ኈ ሰ∸ ച ৬ ጋን ኦ ኄበሶ ∿Ր֊ ም ▷ኄ▷ፖ ካ ኣ Ճና	30 ۲ σ ⁻ ۲ ⁻
1:45 – 2:25 ⊳• ۲ ^۹ ۲ ۲	᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆ ᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆	40 ٢ ܡ־ܪֹ ־
2:25 – 2:55 ⊳ ۲ ^۹ ۵ ۲	⊲۸٬۶۵۱٬۶۵٬۷۵٬۷۵ ב L ב ۵٬۵۵٬۷۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۰٬ ⊲«ח⊂ת٬۱۵٬۲۵٬۵٬۵٬۶٬۵۵٬۹۵٬۵۵٬۹۵٬ ۵٬۵۵٬۵۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۰۰۰ ۵٬۵۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۰۰۰ ۵٬۵۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵٬۹۵	30 ۲ σ ⁻ ۲ ⁻ ۲

10, 2018 ⊾⊳ ∿⊃ °⊃ °⊂ °° د

حĺ־Ⴍ∆ ᠈ᢗᡥݸᠬᡗᡟ᠋ᠰᡘ᠋ᠬᡘᡟᢉᠬᠶᡟ᠘ᠳᠫ᠕ᢞ᠘ᡗᡅᡆ᠈ᡖᡃᢂᢣ᠈ᡝᠴᠵᢣ᠘ᡠ ᠯᡧᠴᡄ ᡄ᠋᠆ᡘᢣᠵ᠅ᠴ᠅ᡘ᠘>᠂ᢞ᠈᠌ᠦᠲ᠂᠆ᡘ᠂ᡨᡐ᠊ᡂᠺᠫᡩᡟ᠅᠘ᢣ᠘᠂ᠳᠬ᠅ᠣ᠈᠌᠊᠕᠔ᢗ᠅ᡅᡣᠴ ᠈ᡅ᠂ᡣᡆ᠂᠆ᡘᡄ᠕᠅᠘ᡔ᠋ ᠈ᠳᢣᠳ᠊ᡟᡖ᠈᠘᠉ᡨᡘ᠕᠉ᠺᠫ᠓ᡥᠵ᠋᠕

۶ ב ح*n 9-10, 2018* ۲ ح^ه C^r A[®] d^c Dt^r Γ A[®] tor,b ∩L A[®] tor,b ^ot^o c^{-o}r[®], م*a* ح

2:55 – 3:10 ⊳° م °⊳ ۲ %	⊳< ∽ ۹ ⊂ ۵۵%۵۵ ∆۰ ح ۵۰	15 ٦ ᠳ ^ݛ ݷ ﺩ
3:10 – 4:40 ⊳• ۲ °۹	ᢂWF-ᡋᡆ᠊ᢗ᠋᠋᠋ᡗ᠋ᢄ᠂᠋ᡦᢂᡔᡘᡃ᠋᠋ᢣ᠋ᢩ᠆ᡣᡄ	30 ۲ ᠳ ^ݛ ݷ ﺩ
4:40 – 5:00 ▷° ໑° ∖ ^ና	⊲ለ᠄d∩ᡃ ኣ ۵ና ⊲୳ L	20 ٦ ܡ־ܪִׂ ܪ
5:00 – 6:00 ⊳• ∿ ^۹ ⊳	Δຼລ∿	60 ۲ σ ^{- ۲} ۲
6:00 – 6:50 ⊳• م∙ح ۴	Ρ ፟፝፝፝ ፦ ፦ Γ ϷኼϷ៸ ໍ ኣ Δ ዹ_Ր ⊲՞ ϽኁልϷ៸ L ۍኁ ⅃ ິ Δຼຼር Դ Ϸ ł ۍ ላ L ϷL ł ፦ ᡅ᠈ ኁ ł ⊲ˤ ም	50 ۲ ح ^{- با د}

- 4. ∧⊂۲۵ ۵۴٬۵۰۵ ۲۰ ۵۲٬۵۰۵ ۲۰ ۵۲٬۵۰۵ ۲۰۵۰ ۵۴٬۵۰۵ ۹۰٬۵۰۵ ۹۰٬۵۰۵ ۹۰٬۵۰۰ ۹۰٬۵۰۰ ۹۰٬۵۰۰ ۵۰٬۰۰۰ ۵۰٬۰۰۰
- ϽσϞϚϧͶϹϧϿͼϧϿͼ;ϽϿϥϲ;ͳͺͼϲͺϷͶϚ;ϫͳ ͼϲ;ͶϲϞͼ;ϹͺϽϲϧϿͼϫϗϲϹϧ;Ϥϲϧ;Ϥͳ 4 ͺϒͺϿϤϼ;ϫϗϗͺϽϧϲϿ;ϹϷͿϥϲͺϷϫ;ϷϲͺϤͳͺϫϒϷϥͻϳϲͺͶϽϲ;ϚͿϥϲ

- 1. $\dot{P}L \neq cn^{5} \neq d^{c} = d^{c}L = e^{b} = CnP^{5} = CnP^{5} = d^{c}(b \cap L^{\frac{1}{2}})$ $D = d^{c}d^{5} > CD^{5} \cap C^{c}d^{c}L = P^{b}d^{c}d^{c}D^{b} = D^{c}d^{c}D^{b} = d^{c}d^{c}D^{c}$ (30)

בׁב[ַ] ∩ ּז קּ וַ ברע ׂ:

⊲^ь ⊃**<** 20, 2017

௳ ъ, ♥⊳,₽с СЬ , ⊄, ≙, ይ,

⊳° ھن⊷ خ⊂ ∩۲⊳۲⊂ ⊳ح⊸ أه ∿ه ے⊂.

⊇ ィ Ҁ ํ ⊃ ํ Ს ํ < ํ .

- ⊲∧∿ራታና」⊂.
- ف لاد ⊃ۍ ۸۵د ۲ ⊳ ۲ د ۹ د ۳ ه ه که أو تا د ۲۵ ه کې فر لد که د کې کې فر له کې کې
- 17. ÞL ở c clà s l d c l
- 16. کے ماہ فرد ۱۰ کے ۲۰ ان کے ۲۰ من ۲۰ کے ۲۰ کا ۲۰ من ۲۰ کے ۱۵ من ۲۰ من ۲۰ کے ۱۵ من ۲۰ من ۲۰ ک
- فرد ۲۰ ۲ م، ۲.
- م- ⊂⊲- ح⊃∆- مە كل 2/ 2014 فرد ∩ ۲ حا ٦.
- ۵۵۶۲۲۰۲۲ ملا ۲۵ کر فنچ فن ۲۹ ۲۵ ۵۲۲۲۲۲۲۲ . ک۲ ۲ د سوء ۲ ما که محنه بخد ک۲ ۲ د سکه ۲ ۲ ما ۲ د سر ۲ ما که مرب که م
- $12.\dot{\triangleright}L \leftarrow ch^{\circ} \leftarrow d^{\circ} \wedge C \forall^{\circ} \leftarrow d \leftarrow d^{\circ} \geq^{\circ} \dot{c}^{\perp}L^{\circ} \supset \Gamma^{\circ} \wedge A \leftarrow d^{\circ} \wedge d^$
- کڡ ′ ⊃ ح ∕ ⊳ ح ۲ > ° ۵ L ۵ ⊂ ک ح ۲ ⊂ فرد ∩ ۲ ح ۲ . $10.\Delta \stackrel{\circ}{\leftarrow} b\Delta^{\circ}d \rightarrow DL \stackrel{\sim}{\rightarrow} d \cap b \cap L \rightarrow \sigma \circ b L b \subset D \sigma \circ \Gamma^{\circ}$. $\forall r \leftarrow L \stackrel{\sim}{\leftarrow} C \wedge \sigma \wedge \sigma$ $a^{L}L^{C} \supset a^{P} \supset c^{L}C \supset a^{P} \cap a^{P}$
- ل هله ۲۵ مه ۲٫۹۰ ل ۲۵ ۹٬۵۰ أو ۲۰ ۲۲ ۲۲۹ م. ۲۹۲۵ ال ۱۹ ۹٬۵۰ م

౨௳౨^LT TAH WH–⅃ ダ೧^L ー Ր 4th C P L Pth Dth 38 ௳౨^t ユ 5th 4th L² 2007-2008,
 4th L 4th P C P^L Dth 4th C P Jth 4 C P Jth Fth P d Dth 2008-2009, 2009-2010 4th 2010-2011 4th Jth P^L Dth 4 C P Jth 4 C P J

- Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ
 Υ

- 2005/2006-F, உዾኁዾ ጋዮረላLናb/ቦዮኇኁዾ ላዮዖና (MOUs) ላጋሮ ኮ/CPとዾኈጋና ላዛ b/ናጋቦና உዾናCP ~ ይኈጋና (TAH) WH உዾዮዮዾና የላዲላሪይኈጋና 47-σና ላናና
 JCL 56-ዾና ላናና
 JCL WH MOU (Δሬጐሁ 5.7.1) ዾናbጐረL ላኈ ዾር፞σና ጋዮ/ቦላዖ/በርና
 bc?σ ናb>አናσP
- ለኈሁ°Ⴍኈሁσ ር/▷ኦናረላኈ (WH) ႭႭኈՐና ĹσӬ<⅃ና bጋበኦ▷ረና (⊲ኦዶ°Ⴎ⊲ኈ 1).

ጋዮላቦላዖበጐቦי:

אילחינ: די הייכדי איטרי איטרי איטרי די איטרי איטע

ጋьካレላ5ሁ.

∆ረ୮୯⊳๖๙: X

ᠴᡆ᠌ᢟᡰ᠋ᠮ᠄᠌᠔᠆ᡁᢣ᠅ᢣᠿᡀ

<u>ጋ ታ እ የ እ የ እ የ እ የ እ የ እ እ የ እ የ እ </u>

Ľ°ᡆ᠌Þᠵᡃ᠋Г᠋᠋ᡗ᠂ᡃᢐ᠋ᡅ᠘᠆᠋ᢥᠾ᠋᠋ᡔᢥ᠋

(⊲⁺≻≏∿ו⊲₅⊳ 2)

- 'bP>\'op><
 'bP>\'op>
 'op>
 'op><
- 50^{10} 2^{50} $-4\sigma^{70}$ 47^{7} 50^{7} 47^{7} 47^{7} 50^{7} $50^{$

- 2011-F, TAH ቫጭPናCPCP%ጋ% 21 வஹ் ൎഺഀ வP4Fr 4ጋ%CP or or PP° or b%DA ມCip 602456040 602476 4024004500 2012.

 Λ ישרשה פישיכשלליסה, שיטכשיאבשישס (8) אילטכבי איטרשיאבשישס (8) אילטכבי ארישה איטכשיאבשישרים.

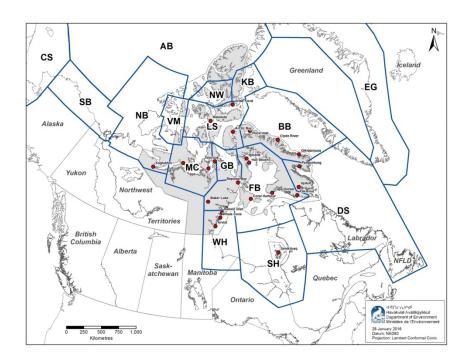
Ϸσ•Ϸͼ Ͻσ+ϷϟͰͰΓϞ Ϸd_Δ ΕCCC ϤͰ Γና ህΔϟ « ϲͺλϷϭ ϷϥCΓ. ἰσ⊃< Ⴑ≪Ͱͼδ μ
 ϤͰ ΕCCC Λϲͺλ Εξη μ
 ΔϟͰ ΕCCC Λϲͺλ
 Δϟ ΕCCC Λϲ,
 Ε
 Δ/Τ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ

- 4° 4° 4
- ______Δ
 _____Δ
 ______Δ
 ______Δ<
- Ċષবিএল bALGP๙σና, ናbPኦኣዖΛΓởς 2016 GN-DPJ⊲™ΛС∿Ⴑ ናb∿ႱርሥჾჃ ናbPኦኣናσ™
 PናbP๙P៤P™Dd™, Δ∟Ր⊲ና⊃J GN ⊲D⊂ናdኦ೭P™Dና ⊲๙ኦኦ™CP∿ՐႽ⊃σ ŰႭϷ๙Γና TAH
 28–໑ና Ⴍ໑ჼ໑ና, Λኦ๙ՈՐႽ⊃Րና ናbPኦኣዖΛΓởς ናbPኦኣናσϷ๙Γና.
- Δας-Γ ϽϞͽΛιΛεδωΣ ϷͰϟσϭΛισ ΒΛΕλͽΓως ΡυθωΣΔΙσ Βερωζαίτ, σίδας, Λρςίζαω σμ Δεοςύς αστρωσεία στο 4 σμ 7 ζαΔ 2017, Δεδίο Ελέσ Δαδι Σμαφί Ομιρως (ΝΤΙ) σμ Ραιαίτι Ελζανός ΒΛΕλωρί (ΚWB).

ᠵᡃᡉᢂ᠈᠆ᡠ᠈᠊ᢈ

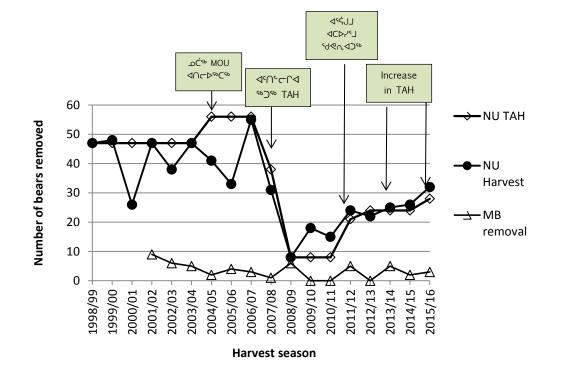
- P స్రికార్ కారింగ్ కారి కారింగ్ కారి కారింగ్ కారారాల్ కారారింగ్ కారి కారింగ్ కారింగ్ కారింగ్ కారింగ్ కారింగ్ కా

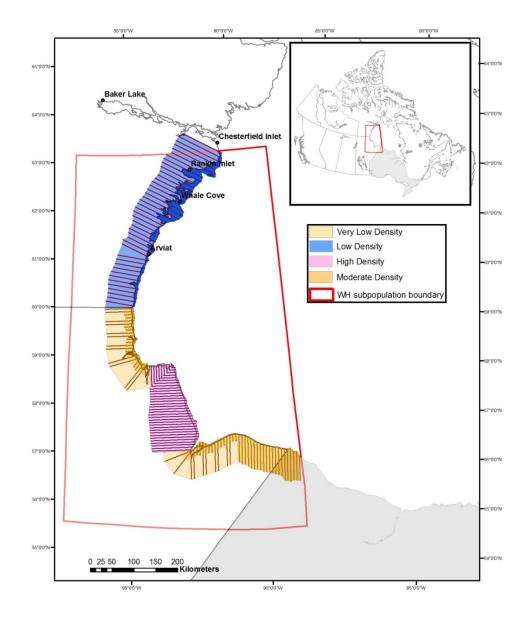
- ዾĊ[™] ለ
 ለ
 5[™] (%)
 5[™] (%)


- b∩^a\b' () (34)
 b∩^a\b' () (10)
 borb
 borb
 adje
 borb
 adje
 borb
 adje
 borb
 adje
 borb
 adje
 borb
 adje
 borb
 borb
 adje
 borb
 borb
- ΟððΔ΄ ΊΦΔΔ°σΛυ<</p>
 ΟððΔ΄ ΊΦΔΔ°σΛυ
 (Οðð) ΔΔϽ<</p>
 ΔΩ
 Δ΄
 Δ΄<

- ບິດ ບິດ ບິດ ບິດ ເຊິ່ງ ເຊິ່

- 2. DOE OC
- 1. DOE ⊲כ־נולאי **⊲ריא״רי_סד** ביםארי WH TAH-∿ט 28 פס∆י.


ᢀ᠋᠆᠂ᢣᡐᢦᡃᠣᢪ


DOE ▷
 ΔοΔ
 ΔοΔ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 <li

⊲d∽⊳۲٦-۲.

 $d^{\flat} \Delta^{\circ} d^{\circ} h$ 1. ወጋወ $\Delta^{\flat} d^{\circ} L \sigma$ ወወ $\Delta^{\circ} L \sigma$ ወወ $\Delta^{\circ} C d^{\circ} d$

2016 AERIAL SURVEY OF THE WESTERN HUDSON BAY POLAR BEAR SUB-POPULATION

FINAL REPORT

MARKUS DYCK¹, MITCH CAMPBELL², DAVID LEE³, JOHN BOULANGER⁴, AND DARYLL HEDMAN⁵

¹ Department of Environment, Box 209 Igloolik, NU, X0A 0L0
 ² Department of Environment, Box 120, Arviat, NU, X0C 0E0
 ³ Nunavut Tunngavik Incorporated, Box 280, Rankin Inlet, NU, X0C 0G0
 ⁴ Integrated Ecological Research, Nelson, BC, V1L 5T2
 ⁵ Manitoba Department of Sustainable Development, Thompson, MB, R8N 1X4

June 26, 2017

Submitted to meet requirements of:

Wildlife Research Permit WL 2016-004 Nunavut Wildlife Research Trust Project 2-16-04 Wapusk National Park Research and Collection Permit Number WAP-2016-21838

> STATUS REPORT 2017-xx NUNAVUT DEPARTMENT OF ENVIRONMENT WILDLIFE RESEARCH SECTION IGLOOLIK, NU

M. Dyck, Campbell, M., Lee, D.S., Boulanger, J., and Hedman, D. 2017. Aerial survey of the western Hudson Bay polar bear sub-population 2016. 2017 Final Report. Government of Nunavut, Department of Environment, Wildlife Research Section, Status Report 2017-xx, Igloolik, NU. 82 pp + 2 Supplements.

Disclaimer

The opinions in this report reflect those of the authors and not necessarily those of the Government of Nunavut, Department of Environment.

Summary

Climatic change has been experienced across the globe during the past 30 years with some transformations now being observed in the Arctic. For example, the sea-ice habitat for some polar bear subpopulations is now experiencing later freeze-up and earlier melt. Other studies documented correlations between these environmental changes and reduction of body mass, survival rates, and reproductive performance of a few polar bear subpopulations. These type of population-wide changes require careful, and at times intense, monitoring in order to inform the status of these subpopulations.

In August 2016, the Government of Nunavut (GN) conducted an aerial survey of the Western Hudson Bay (WH) polar bear subpopulation in order to update its status. Pre-survey consultations with Nunavut HTOs and communities, and with the Manitoba Department of Sustainable Development were conducted in order to utilize local and traditional knowledge in the study design. Nunavummiut living within the range of this subpopulation have repeatedly indicated that they feel the abundance of polar bears has increased within Nunavut. Other studies of WH suggest that numbers appear to have stabilized between 2001-2011 following a period of decline between 1987-2004. The last GN aerial survey produced an estimate of 1030 bears (95% CI: 745–1406) in 2011. Final survey results of this study (2016) produced an estimate of 842 bears (95% CI: 562–1121). The estimate is not significantly different from the 2011 aerial survey estimate of 949¹ bears (95%CI: 618–1280) based upon similar transect sampling methods and analysis of covariates.

A double observer distance-sampling method was employed to estimate abundance. During this survey, bears were observed by front and rear observers from aircraft following inland transects oriented perpendicularly to the coastline. During August 2016, the majority of bears were distributed within 10km of the coast, with the exception of Wapusk National Park where some bears were observed greater than 80 km inland. Very few bears were observed in Nunavut, and a substantial proportion of

¹ During the 2011 aerial survey, coastal and inland transects were flown, which were not identical to the 2016 survey and therefore these estimates are not directly comparable. Regardless, when the derived abundance estimate of 1030 bears from the 2011 survey is statistically compared with the 2016 estimate, no significant difference between those two estimates can be detected.

bears, mostly adult males, were encountered in large concentrations in the south-east section of the study area towards the Manitoba-Ontario border. Cubs and yearlings comprised a small proportion of the sample size, which was also observed during previous studies. This suggests that reproductive performance is low for this subpopulation but this was not a specific objective of this study.

< $\mathsf{CAL}\Delta^{\mathsf{b}} \mathsf{L}\mathcal{A}^{\mathsf{b}} \mathsf{L}\mathcal{A}^{\mathsf{b$

Γ[\]\▷\[\]C▷/L< ዄ፞፝ዾዀዀበቦምዮና. CLጋLም «Δ\Δምፕ, «መልና ዄ▷ትን▷/L<ና />ምምላጋና ዖህምላጋ፦» Δ _C/>D_D^*D^C TPCDUJ4CC %DP>\\b'\DC, %DP>\%CDUD%D^ %DP>\ Δ LD%C_D^C. C Δ L°U

ᠣᡆ᠌᠌ᡔ᠆ᢧ᠆ᡐ᠘᠖᠆ᢕ᠉ᡓᡄ᠕᠉᠆ᡩ᠘᠉᠆ᡩ᠕᠕ᡷᡆ᠘᠉ᡩ᠘ᡩ᠕ᡩᡄᢁᡩᢕᡄ᠅ᡀ᠆ᡔᠧᢁᡩᡄᡄ᠘᠉ᡩᡄᠴᢄ᠆ᢙᠯᢂᡔᡆ ᠋᠄ᢐ᠋᠊ᡗᢂᡔᢞ᠋ᢉ᠋᠊᠋᠋᠆ᠴᢄ᠊ᡆ᠋᠋ᢉ᠆ᡗ᠋ᢌ᠅᠋᠋᠋᠋᠋ᠴ᠆᠋᠆᠘᠖᠆ᡔ᠅᠋᠋᠋ 618-1280) ⊲⊃∿יב∩י ⊲יֿאַטאיריבי ∆ביריבי שאוטיר פעב∆איירער איפייט איריבי שאארער איר פון איריבי געריי $a a \Delta b^{*} r L \sigma^{c}$.

᠘᠋᠋᠋᠋᠋᠋᠘ᠴᢄ᠆᠆᠋᠕᠋ᡷᡬ^ᢁᡗᡓ᠋ᢣᢐ᠋᠋ᠫᠣ᠋᠋᠆᠕᠋᠋᠋᠋᠈ᢣᢠ᠆᠘ᢣ᠋᠆᠕ᡷᡄ᠆ᡐ᠔᠋᠘

م⊃م⊽∿۲۲۹

Contents

Summary	3
ݮݐᡆ∆ ^ᢑ ᠠ᠘⊀ ^ᢑ	5

Field Biologists
HTO Participants and Observers
Person Days11
Aircraft Hours
Field Dates
Fieldwork Location
1. INTRODUCTION
2. METHODS
2.1. Study Area
2.2. Survey design
2.2.1. Double observer pair20
2.2.2. Fixed wing
2.2.3. Rotary wing
2.2.4. Distance Sampling
2.2.5. Observations
2.3 Analyses
2.3.1. Data screening and truncation
2.3.2. Co-variates
2.3.3. Models and modeling approach28
3. RESULTS
3.1. Sightings, Habitat, and Detection
3.2. Distribution
3.3. Distance/Mark-recapture analyses
3.3.1. Distance analysis
3.3.2. Mark-recapture analysis
3.3.3. Distance/mark-recapture analysis
3.3.4. Goodness of fit
3.3.5. Abundance estimates
3.3.6. Sensitivity of estimates to truncation
3.3.7. Analysis of the 2016 data set using only distance sampling methods
3.3.8. Additional analyses
4. DISCUSSION

	4.1. Distribution	.38
	4.2. Abundance	. 39
	4.3. Assumptions and potential biases	.42
5.	CONCLUSION	.44
6.	ACKNOWLEDGEMENTS	.44
7.		.45

List of Figures

Figure 1. The August 2016 western Hudson Bay (WH) polar bear abundance survey strata and transects. All transects were run perpendicular to known polar bear densities. Extension of

	transects outside of the delineated WH polar bear population boundaries were based on Inuit knowledge of the area
Figure 2.	Observer position for the double observer method employed on this survey. The secondary observer calls polar bears not seen by the primary observer after the polar bear/bears have passed the main field of vision of the primary observer at a point half way between same side primary and secondary observers. The small hand on a clock is used to reference relative locations of polar bear groups (e.g. "Polar bear group at 3 o'clock" would suggest a polar bear
Figure 3.	group 90o to the right of the aircrafts longitudinal axis.)
Figure 4.	observation/group)
Figure 5:	Landsat habitat classification and observations for a section of the high-density stratum of the 2016 study area
Figure 6.	Distributions of detections for habitat classes
-	The distribution of observations relative to adjusted distance from the survey line (Distance from transect line-blind spot distance for each aircraft). The right truncation distance of 2250 meters used in the analysis is shown as a vertical line
Figure 8.	Distributions of detections for Landsat remote sensing-based covariates with observer-based habitat classes shown as sub-bars to allow comparison of the 2 methods of habitat classification
Figure 9.	Remote sensing vegetation classes with the shrub and low vegetation category pooled. This covariate was termed RSveg260
Figure 10.	Distributions of detection for aircraft type
Figure 11.	Distribution of polar bear group observations by age/sex class and strata within the study area during the 2016 western Hudson Bay aerial survey. Note that classifications of bears are based on aerial inspection
Figure12.	Comparison of the observed detection distributions with predicted detection probabilities as a function of remote sensing vegetation classes (RSveg2), group size (Bears), and angle of the sun from model 1 (Table 6)
Figure 13.	Comparison of the observed detection distributions with predicted detection probabilities as a function of RSveg2 class, group size (Bears), and observer type from model 1 (Table 6) 64
Figure 14.	Predicted double observed detection probabilities (points) and mean detection (line) superimposed on detection frequencies for model 1 (Table 6)
Figure 15.	Detection plots for the front observer (1) and rear observer (2), pooled observers and duplicate observations (where both observers saw a bear. Conditional probabilities are also given for detection of bear by observer 1 given detection by observer 2 and vice versa. All estimates are from model 1 in Table 6

List of Tables

Table 1.	Covariates considered in the mark-recapture/distance sampling analysis. The primary use of the covariate for distance sampling analysis (DS) and mark-recapture analysis	
		57
Table 2.	Summary of observations by strata. Mean group sizes and numbers of bears by distance category are shown. LT (Blind spot) observations occurred under the planes and were usually only seen by the pilot and front seat navigator. Bears in the survey strip were observed by at least one of the 2 observers, or only seen by data recorders or non-	
Table 3.	Summary of observer data during the Hudson Bay polar bear survey. The naïve probability is the number of detections divided by the total trials. The Bell pilot had the	
Table 4.	Overview of observed polar bears during the western Hudson Bay aerial survey, August 2016, by field age class and spatial occurrence. Areas A-D are defined as in Lunn et al.	: 70
Table 5.	Model selection results for distance sampling analysis. The mark-recapture component of the MRDS model was set at constant for this analysis step. Covariates are listed in Table 1. Estimated abundance is given for reference purposes. Constant models are shaded. Akaike information criterion (AIC), the differences between AIC of the given model and most supported model Δ AIC, Akaike weight (wi), and Log-likelihood of each	
Table 6.	Model selection results for mark-recapture analyses. The most supported distance model (HR(RSveg2+size)) was used in all the models in this analysis. Covariates are listed in Table 1. Estimated abundance is given for reference purposes. Akaike information criterion (AIC), the differences between AIC of the given model and most supported model ΔAIC, Akaike weight (wi), and Log-likelihood of each model is also	72
Table 7.	Model selection results for the combined distance and mark-recapture analysis. The most supported distance model and mark-recapture models given in Tables 4 and 5 were considered in this analysis. Covariates are listed in Table 1. Estimated abundance is given for reference purposes. Akaike information criterion (AIC), the differences between AIC of the given model and most supported model ΔAIC, Akaike weight (wi),	73
Table 8.		74
Table 9.	Sensitivity of MRDS models to left and right truncation. The most supported MRDS	
		74
Table 10.	Mean (standard error) polar bear cub-of-the-year (COY) and yearling (YRLG) litter sizes	
	of populations that inhabit the Hudson Bay complex, also presented as proportion of	
	total observations during the respective studies7	75

Project Co-Leaders

GN Department of Environment

M. Dyck Polar Bear Biologist II Department of Environment Wildlife Research Section Government of Nunavut Box 209 Igloolik, NU X0A 0L0 Phone: (867) 934-2181 Fax: (867) 934-2190 mdyck1@gov.nu.ca GN Department of Environment

M. Campbell Regional Biologist Department of Environment Government of Nunavut Box 120 Arviat, NU X0C 0E0 Phone: (867) 857-3170 Fax: (867) 857-2986 mcampell1@gov.nu.ca

Nunavut Tunngavik Incorporated

D.S. Lee Wildlife Biologist Department of Wildlife and Environment Box 280 Rankin Inlet, NU X0C 0G0 dlee@tunngavik.com

Field Biologists

Daryll Hedman (Manitoba Sustainable Development) Vicki Trim (Manitoba Sustainable Development)

HTO Participants and Observers

Robert Karetak (Nunavut Tunngavik Incorporated) Kelly Owlijoot (Department of Environment, GN) Louis Tattuinee (Rankin Inlet) Leo Ikakhik (Arviat) Kevin Burke (Parks Canada) Chantal Ouimet (Parks Canada)

Person Days

Field work during the 2016 field season (12 – 21 August) involved approximately 76 person days (24 person days by Twin Otter, 52 person days by helicopters).

Aircraft Hours

We flew a total of approximately 132.5 hrs during our field study, including ferry times. These hours were distributed as follows: 55.2 hrs by Twin Otter, 33.7 hrs by the EC135, and 43.6 hrs by the Bell 206 L4.

Field Dates

Field activities for the aerial survey of the western Hudson Bay (WH) polar bear subpopulation took place between 12 and 21 August 2016. There was only one weather delay day during the survey affecting only the EC135 crew. The Bell LR4 crew was stationed in a different field location and was able to fly all survey days.

Fieldwork Location

The survey began with a Twin Otter aircraft positioned initially in Rankin Inlet, Nunavut. We worked the Nunavut coastline including islands, south towards Churchill, Manitoba. During the Nunavut portion of the survey we were positioned in Rankin Inlet and Arviat, finally completing the Twin Otter portion in Churchill, Manitoba. Once in Churchill, the survey utilized two helicopters including an EC135, which was based in Churchill and working south, and a Bell LR4 which was positioned in the York Factory area (Marsh Point) and working north within Wapusk National Park. Once the high-density area between Churchill and the Nelson River was completely surveyed, the EC135 relocated to York Factory National Historic Site while the LR4 remained positioned at Marsh Point, and surveyed the Cape Tatnam area west to Kaskattama near the Manitoba/Ontario border. Both field camps were used to complete the survey area between the Nelson River and the eastern extent of the study area (Figure 1). For this survey we flew a total (transect) distance of approximately 9,700 km.

1. INTRODUCTION

Polar bears (Ursus maritimus Phipps, 1774) hold a place of cultural and spiritual significance in Inuit traditional lifestyles (Honderich 2001; Henri et al. 2010). Aside the spiritual value, in many communities polar bears are also utilized as a source of food. material for clothing and crafts, social/cultural bonding, transfer of hunting and land-use skills, and economic benefits through sport hunting and the sale of hides and skeletal materials (Wenzel 1983, 1995, 2004; Freeman and Wenzel 2006; Freeman and Foote 2009). As the Arctic became more attractive to European explorers in their efforts to map northern sea routes, other resource exploitation including the harvest and sale of marine mammal products including the fur trade, polar bears began facing threats largely due to their prized hides. Historical records estimate a non-native harvest of 55,000 polar bears within the Canadian arctic alone between 1700 and 1935 (Honderich 2001; Wenzel 2004). With seemingly unsustainable harvest rates, and drastically reduced abundance levels on a global scale, the polar bear was becoming endangered (Prestrud and Stirling 1994; Freeman 2001). Concern over such depletion caused the five range states (Canada, United States, Russia, Greenland [Denmark before Home Rule Government], and Norway) to sign an international agreement and to implement conservation and management actions, including quotas, protection of family groups, and hunting prohibitions/restrictions to allow recovery (Fikkan et al. 1993; Prestrud and Stirling 1994; Freeman 2001).

After approximately 45 years of conservation actions as laid out in the international agreement (Fikkan et al. 1993; Prestrud and Stirling 1994), global polar bear abundance estimates increased from a questionable 5,000-19,000 in 1972 to about 26,000 (95% CI: 22,000-31,000) in 2015 (Freeman 1981, 2001; Wiig et al. 2015). This increase in abundance also was confirmed and supported by many Inuit living across the Canadian Arctic (Tyrrell 2006, 2009; Dowsley and Wenzel 2008; Henri et al. 2010). Despite this management success (Prestrud and Stirling 1994; Freeman 2001), polar bears are facing a new potential threat in the form of climatic changes (Derocher et al. 2004; Stirling and Derocher 2012). Across the Arctic, warming temperatures and changes in circulation patterns have led to a deterioration of sea-ice availability, quality

and quantity (Maslanik et al. 2007; Stroeve et al. 2012; Intergovernmental Panel on Climate Change 2013; Overland and Wang 2013; Stern and Laidre 2016).

Out of the 19 polar bear subpopulations recognized world-wide (Obbard et al. 2010), the western Hudson Bay subpopulation (WH) in Canada is one of the moststudied large carnivore populations (Jonkel et al. 1972; Stirling et al. 1977; Derocher and Stirling 1995; Regehr et al. 2007; Stapleton et al. 2014). Long-term monitoring and research, predominantly through a capture-mark-recapture program, suggest that the abundance increased during the 1970s, remained somewhat stable, and then declined by an estimated 22% between 1987 and 2004 (Derocher and Stirling 1995; Lunn et al. 1997; Regehr et al. 2007). A more recent analysis suggests that the population remained stable between 2001 and 2011 which appears to be due to temporary stability in sea-ice conditions (Lunn et al. 2016; but see Castro de la Guardia et al. 2017).

In more recent decades polar bear research and monitoring has increased though not without challenges. Concerns over wildlife handling (e.g., immobilization, collaring, tagging, etc.) were expressed by Nunavut hunters and Inuit organizations over the past decade (Henri et al. 2010; Lunn et al. 2010; Wong et al. 2017). As a response to these apprehensions the Government of Nunavut collaborated with the University of Minnesota to develop less-invasive monitoring techniques, such as aerial surveys (Stapleton et al. 2014). Although only fairly recently applied to study polar bear abundance, aerial surveys have not only proven effective in monitoring the abundance of other wildlife species but have also become more technically advanced over the last two to three decades (e.g., through the introduction of survey methods such as distance sampling and double observer sight and re-sight methodologies) (e.g., Norton-Griffiths 1978; Caughley et al. 1976; Tracey et al. 2008; Aars et al. 2009; Stapleton et al. 2014, 2015; Obbard et al. 2015; Lee and Bond 2016). Aerial surveys have become the method of choice in Nunavut to monitor this sentinel polar bear subpopulation over the long-term to provide less invasive, less expensive, up-to-date information to decision makers and user groups (Yuccoz et al. 2001; Nichols and Williams 2006; Peters 2010; Stapleton et al. 2014). In keeping with community recommendations and previous aerial survey methods used in August 2011, we set out to up-date the status of the WH

subpopulation using a distance sampling, and double observer sight re-sight method in August 2016 during the ice-free period.

2. METHODS

2.1. Study Area

The WH polar bear subpopulation is part of the Hudson Bay complex that includes the neighboring Foxe Basin and southern Hudson Bay subpopulations (Obbard et al. 2010; Thiemann et al. 2008, Peacock et al. 2010; Figure A4.1). Although there is spatial overlap of polar bear movements from these three subpopulations apparent on the seaice (e.g., Stirling et al. 1999; Obbard and Middel 2012; Sahanatien et al. 2015), past capture-mark-recapture studies (Stirling et al. 1977; Derocher and Stirling 1990; Ramsay and Stirling 1990; Kolenosky et al. 1992; Taylor and Lee 1995; Derocher et al. 1997; Lunn et al. 1997, 2016), genetic studies (Paetkau et al. 1995, 1999; Crompton et al. 2008; Malenfant et al. 2016), and analyses of satellite telemetry data (Stirling et al. 1999; Sahanatien et al. 2015; Obbard and Middell 2012) support the currently accepted WH subpopulation boundary (Obbard et al. 2010).

Our study area has been well-described by Brook (2001), Dredge and Nixon (1992), Ritchie (1962), Clark and Stirling (1998), Peacock et al. (2010) and Richardson et al. (2005) and includes the areas described by Stapleton et al. (2014) and Lunn et al. (2016). The terrestrial portion of the study area stretches for approximately 1,500 km from about 35 km southeast of the Manitoba-Ontario border all the way into Nunavut (approximately 20 km south of Chesterfield). In general, the southern portion of the study area displays the characteristics of the Hudson Plains ecozone and the Coastal Hudson Bay and Hudson Bay Lowlands. The northern portion exhibits Taiga and the Southern Arctic ecozone (Ecological Framework of Canada 2016). Where trees (black spruce [*Picea mariana*], white spruce [*P. glauca*], and tamarack [*Larix laricina*]) are quite common in the southern extents, dwarf birch (*Betula nana*), willows (*Salix* spp.), and ericaceous shrubs (*Ericaceae* spp.) are the norm to the north. The near-coastal southern areas exhibit elevated beach ridges, marshes and extensive tidal flats. There is very little relief (<200 m) with underlying continuous and semi-continuous permafrost.

Sea-ice is absent in this region generally from July to November (Stirling et al. 1999; Scott and Marshall 2010; Stern and Laidre, 2016), and biting insects are plentiful during the summer (Twinn 1950).

Polar bears of WH come ashore when sea ice levels diminish to ≤ 50% (Stirling et al. 1999; Cherry et al. 2013, 2016), which generally occurs during July (Stern and Laidre, 2016). Once on land, the bears segregate by sex, age class, and reproductive status within the study area where they exhibit fidelity to their terrestrial summer retreat areas (Stirling et al. 1977; Derocher and Stirling 1990). Adult males are generally found along the coastline, pregnant females and females accompanied by offspring are found in the interior denning area which is mostly included within Wapusk National Park, and subadults are distributed throughout the study area (Stirling 1998; Clark et al. 1997; Richardson et al. 2005). When sea ice reforms during November all bears except pregnant females return to the ice. Pregnant females give birth in terrestrial dens during December and early January, and family groups generally depart their dens in March and April to return to the sea ice (Jonkel et al. 1972; Stirling et al. 1977; Ramsay and Stirling 1988).

2.2. Survey design

The 2016 WH polar bear distance sampling abundance survey used double observer pairs (sight/re-sight) and was based out of the communities of Rankin Inlet and Arviat within the Nunavut Settlement Area, and Churchill and the remote camps of York Factory and Marsh Point within northern Manitoba. The comprehensive stratified aerial survey was flown between 12 and 21 August. The survey was timed to coincide with the ice-free period because; (a) all polar bears of the WH population are forced to be on land during this time, (b) any overlap with neighboring subpopulations is very likely minimal, and (c) bears are readily visible against the terrestrial landscape. In addition, females will likely not have begun to den yet and can be detected while moving towards their inland denning area (Stapleton et al. 2014). The survey was structured into two main components: 1) Pre-stratification using telemetry, past survey results and traditional, local, and ecological knowledge collected during the consultation process, and 2) Distance sampling double observer pair (sight re-sight) aerial visual survey methods using fixed and rotary wing aircraft.

The establishment of the survey area and the division of that study area into strata of individually consistent relative densities of polar bears was modeled after Stapleton et al. (2014). Modifications were based on their 2011 aerial survey results as well as previous and current telemetry findings (n = 8 collared bears in summer of 2016, A. Derocher, University of Alberta and Environment and Climate Change Canada, unpublished data; Manitoba Sustainable Development, unpublished data; Derocher and Stirling 1990; Lunn et al. 1997; Stirling et al. 2004; Richardson et al. 2005; Towns et al. 2010; Stapleton et al. 2014). In addition, we consulted coastal survey maps and den emergence information provided by Manitoba Sustainable Development.

Following a thorough review and spatial plotting of past survey observations across the WH polar bear population boundary, an in-depth round of HTO (Hunters and Trappers Organizations) and community-based consultations were undertaken in January and February of 2016. During those consultations, HTOs from the communities of Baker Lake, Rankin Inlet, Chesterfield Inlet, Whale Cove and Arviat were invited to comment on preliminary stratification of polar bear densities as well as transect placement. Comments and concerns raised during these meetings were incorporated into the survey design. The merging of past survey observations and telemetry data, with the mapped density distributions from consultations, yielded 4 survey strata that slightly varied from those used by Stapleton et al. (2014) in 2011. The 2016 survey strata included the following derived polar bear density distributions: 1) very low, 2) low, 3) moderate, and 4) high (Figure 1).

All survey transects were oriented perpendicular to the bear density to improve precision and to reduce possible bias during sampling (Buckland et al. 2001) (Figure 1). Survey effort, measured as transect spacing, was then allocated across survey strata based on the following constraints: strata with the highest estimated polar bear density for the survey period would receive the highest level of coverage with survey effort for the remaining strata being allocated proportionally to the approximate relative density of polar bears. Effective strip width varied depending on sightability, which in turn was dependent on measured covariates including cloud cover, speed, ground cover, terrain, and observer ability.

The very low density strata and transects represented the inland portions of the survey area outside of the Wapusk National Park high density stratum boundaries (Figure 1). These strata were divided further into two main areas, one north and west of the Churchill River up to the Nunavut/Manitoba boundary in the north, and the second south and east of the Nelson River bounded to the east by Cape Tatnam. The very low density strata covered only inland transects generally ending within 20 to 30 km of the Hudson Bay coastline. Transect spacing was irregular but averaged 17 km across the strata.

The low-density stratum and transects occupied the northern extents of the WH polar bear population boundary (approximately 20 km south of Chesterfield Inlet) to the Nunavut/Manitoba border (Figure 1). Modifications from Stapleton et al. (2014) included IQ-based transect extensions both over water and inland within the northern extent of this stratum. Overwater extensions within the remaining extents including 2 transects bi-secting Sentry Island were derived solely from *Inuit Qaujimajatuqangit* (IQ) reports and recommendations. Transect lines in this stratum were spaced 10 km apart, and extended up to 90 km inland, and up to 30 km into Hudson Bay beyond the coast to incorporate the many off-shore islands characterizing this coastline. The development of this stratum was largely based on local knowledge which strongly recommended the extension of coastal transects inland and across open water and coastal islands.

The moderate-density strata and transects were divided into two areas, one north and west of the Churchill River up to the Nunavut/Manitoba boundary in the north, and the second south and east of the Nelson River, approximately 60 km east into Ontario to the eastern extent of the WH polar bear population boundary. These strata primarily covered a Hudson Bay coastal strip that was approximately 20 to 30 km wide. Transect spacing within this strata was 7 km with transects extended beyond the tidal flats into open water. Recent information collected by the Manitoba Department of Sustainable Development on summer and spring polar bear habitat including denning sites, spring emergence habitat, and coastal summer retreat, led this survey effort to modify Stapleton et al. (2014) survey design to define a moderate-density stratum from Cape Tatnam east toward East Penn Island with transects extending beyond the coastal strip up to 70 km inland into known denning habitat (Figure 1).

The high-density survey stratum and transects followed those described by Stapleton et al. (2014). The stratum boundary ran between the Churchill River in the west to the coast of Hudson Bay in the east with Churchill forming the northern boundary and the Nelson River approximating the southern boundary. The core of the high density stratum included Wapusk National Park which is known to be a high density summering area, and further inland, a heavily used denning area (Lunn et al. 2016). Transects in this stratum extended up to 100 km inland and were spaced 6 km apart. As with all other survey strata, all transects were extended 5-30 km beyond the coast into Hudson Bay which enabled the survey design to include bears either in water or on the extensive tidal flats known to be occupied by bears during summer and fall periods (Dyck, 2001; Clark and Stirling 1997).

Financial and logistical constraints as well as examination of weather patterns dictated the survey window and total number of aircraft required to successfully and efficiently complete the survey without the concern over long-disance polar bear movements between survey days. One de Haviland Twin Otter fixed wing aircraft with radar altimeter, a Eurocopter (model EC135) twin engine rotary wing aircraft with radar altimeter, and a Bell Long Ranger (model L4; Bell LR4) single-engine rotary wing aircraft with pop-out floats were used to complete the August 2016 WH polar bear abundance survey. All aircraft throughout the survey maintained, as close as possible, an altitude of 400 feet above ground level (AGL) and an air speed of between 70 and 90 knots for the fixed wing, and 70 to 80 knots for the rotary wing aircraft while flying on transect. The Twin Otter fixed wing aircraft was used to complete the low density stratum within Nunavut and the very low and moderate density strata west and north of the high density stratum bounded by the Churchill River, Manitoba, in the south. The

twin engine fixed wing configuration and its ability to fly on one engine was chosen to increase safety while flying over extensive water transects characteristic of the northern half of the survey study area within Nunavut.

The Eurocopter EC135 helicopter was incorporated into the survey study design as it has the ability to seat six (6) forward facing observers, four dependent observers (two on the left side of the aircraft and 2 on the right) and two non-dependent observers (a data recorder/observer on the left and a pilot/observer on the right; Appendix 1). We utilized this configuration to test the assumptions that the pilot and navigator, considered non-dedicated observers due to their additional roles that at times would impact continuous observations and associated search patterns. The goal of this configuration was to test whether these non-dedicated observer positions could observe polar bears as effectively as a dedicated observer.

The LR4 was used within the more remote extents of identified survey strata south of Churchill due to its greater fuel economy while operating out of remote fuel caches. The LR4 was configured for four (4) observers: two dedicated observers in the left and right secondary (rear) positions and a data recorder/observer in the front left primary position and a pilot/observer in the front right primary position. Both rotary wing aircraft were used to complete the remaining high, moderate, and very low density strata within the southern half of the survey study area in northern Manitoba.

2.2.1. Double observer pair

The double observer pair (sight/resight) method is a variation of physical markrecapture (Pollok and Kendall 1987). Simply, the aircraft's front and rear observers comprise two independent survey teams, visually 'marking' (i.e., front observers' sighting) and 'recapturing' (i.e., rear observers' resighting) polar bears. Observer teams must be independent to estimate detection probabilities (see Appendix 2). This resultant information provides an independent estimate of the number of bears present in the survey strip that were not observed by either team (Laake et al. 2008; Buckland et al. 2010). The double observer pair method requires two pairs of observers on each of the left and right hand sides of the aircraft (Figure 2) (Buckland et al. 2001; Pollock and Kendall 1987). One "primary" observer sits in the front seat of the aircraft and a "secondary observer" is located behind the primary observer on the same side of the aircraft. To insure visual isolation, a barrier was installed between same side observers to remove any visual cues that could modify an observer's ability to sight the animal (Appendix 1). Observers waited until bear groups passed before calling out the observation to ensure independence of observations. The data recorder/recorders, categorized and recorded counts of each bear (group) into "primary only", "secondary only", and "both"; The observers switched places approximately half way through each survey day (i.e. at lunch or during re-fueling stops) as part of the survey methods to address possible differences in sightability between the primary and secondary positions. Though the methods during all phases of the survey followed these 4 basic steps, there were differences in the methods deployment made between the three aircraft.

2.2.2. Fixed wing

Within the fixed wing aircraft we utilized an 8 person platform; 4 dedicated observers, 2 data recorders (for each of the left and right primary and secondary observer pairs) and a pilot and co-pilot. Observers within the fixed wing survey crew included two experienced Hunters and Trappers Organization (HTO) observers (one from Rankin Inlet and one from Arviat), 3 experienced wildlife biologists (two from the Government of Nunavut – Department of Environment and one NTI wildlife biologist), and one experienced wildlife technician. The observers were further divided into primary and secondary teams, each isolated from the other using visual barriers between the seats as well audio barriers through the use of two independent intercom systems monitored by each of a primary data recorder/navigator and a secondary data recorder/navigator (Appendix 2). The pilot's responsibilities were to monitor air speed and altitude while following transects pre-programmed on a Garmin 650T Geographic positioning system (GPS). The data recorder/navigators were responsible for monitoring a second and third identically programmed GPS unit for the purposes of

double-checking the position as well as to record the geographic position, body condition, composition and numbers of observed polar bear groups on data sheets. The pilots, data recorders, one right side observer, and both left side observers remained consistent throughout the fixed wing portion of the survey, while one right observer position was occupied by 3 different individuals. The primary and secondary observer pairs were alternated between the front and rear positions halfway through the day during scheduled re-fueling stops.

2.2.3. Rotary wing

The EC135 rotary wing platform was configured to have 6 forward facing seats with observation windows, 3 on the left side of the aircraft and 3 on the right. We utilized a 6 person configuration for the first two days of surveying and a 5 person platform for the remainder of the survey to address weight and balance issues as they pertained to extending endurance.

Within the EC135 six (6) person configuration, 4 were dedicated observers, two on the left side of the aircraft and 2 on the right. The remaining 2 positions were within the forward most seats and included a data recorder/observer on the left side and a pilot/observer on the right. Though the final population analysis utilized the observations exclusively from the 4 dedicated observers, the data recorder/observer and pilot/observer observations were also recorded to compare with the observations from respective side dedicated observers for an assessment of a non-dedicated observer's ability to sight bear groups. As only one data recorder could be accommodated using this configuration, front and rear audio isolation was not possible leading to a modification of the fixed wing configuration where the two front most observers (pilot and data recorder) waited until the observation moved to their 5 and 7 o'clock positions respectively to ensure all same side dedicated observers had ample time to independently sight the group. Additionally the primary dedicated observers waited until the bear observation passed their 4 o'clock (right) and 8 o'clock (left) position to allow the secondary observers ample opportunity to make their sighting. As in the fixed wing, the same-side dedicated observers changed between primary and

secondary positions half way through the day. Only one change was made between dedicated observers over the two day period. Additionally all but one dedicated observer remained consistent over the period.

The EC135 five (5) person configuration followed the same basic configuration indicated for the 6 person configuration with the single exception of the removal of the pilot as an observer. The data recorder/observer position continued to further test the comparability between a dedicated and non-dedicated observer. All observers were experienced and remained consistent throughout the remainder of the survey. For this configuration the data recorder/observer position moved back one seat to the left primary position opposite the right primary dedicated observer. Once again primary and secondary positions were exchanged half way through the day.

The Bell LR4 only allowed for a four person configuration due to weight and balance issues while carrying full fuel as well as seating configuration. Using this configuration only the secondary observers were dedicated observers while the left primary observer seat was occupied by a data recorder/observer and the right primary position by a pilot/observer. Additionally, observers could not exchange primary and secondary positions using this configuration to determine sightability differences between seating positions. Though only two dedicated observers could be accommodated within the LR4 configuration, this study used the assessment of non-dedicated observers within the EC135 to inform on the reliability of the non-dedicated observers within the LR4. While the methods used during this study generally followed those used by Stapleton et al. (2014), it is important to note that no pooling of front and rear observers was made. All observations made during this study were independent.

2.2.4. Distance Sampling

In addition to the deployment of the double observer pair method within all aircraft, we also collected observations using distance sampling. The distance sampling method followed Buckland et al. (1993, 2004, 2010) and used Program Distance, Version 6.0

(Thomas et al. 2009), to model stratified line transect observation data and estimate density and abundance for polar bears. Using the conventional distance sampling approach (CDS), we modeled the probability of detecting a group of polar bears and their densities within five delineated strata as a function of distance where the detection function represents the probability of detecting a group of polar bears, given a known distance from the transect (Buckland et al. 2001). Recognizing that other variables may affect the detection probability, density estimates were also derived using multiple covariate distance sampling (MCDS), which allowed us to model probability of detection as a function of both distance and one or more additional covariates (Buckland et al. 2004). This approach was explored in order to increase the reliability of density estimates made on subsets of the data based on terrain, vegetation, and environmental conditions, and to increase precision of the density estimates within each unique density-derived strata (Marques et al. 2007).

For the fixed wing portion of the survey only, and in addition to flying to the observed bears for position and data collection, we also used distance bins marked out with streamers and tape on the wing struts after Norton-Griffiths (1978) (Figure 4). In total, 6 distance bins were used including the following; 0-200 meters, 200-400 meters, 400-600 meters, 600-1,000 meters, 1,000-1,500 meters, and 1,500-2,000 meters. Though binned observations were not used during analysis, they did inform on the precision of binning for distance sampling platforms when compared to the actual observation waypoint recorded.

2.2.5. Observations

Polar bears observed while flying along a transect line were considered on-transect while those observed while ferrying to, from, or between transects, or to bear and/or wildlife sightings, where considered off-transect. Because polar bears are often found in groups, each observation (whether individual or group) represented a group of polar bears. In this work a group of polar bears was defined as one or more individuals within a visually estimated 100 meter radius of one another. All observations were investigated by moving off the transect line to the center of the group as they were

initially observed, to record the location, group size, sex/age classes, body condition, and activity. Additional covariates including topography, habitat, visibility, cloud cover, and ground speed were also recorded for each observation. Observation times were kept to a minimum to reduce disturbance and stress. All distances to the observations were measured perpendicularly (90⁰) from the transect line to the center of the observation, and recorded along with the observation's date and time of day.

We determined gender and body condition, to the extent possible, from approximately 30 meters altitude. A general, relatively robust though subjective fat index has been successfully used in past studies to assess body condition of polar bears (Stirling et al. 2008; SWG 2016; Government of Nunavut, unpublished data). Gender of bears was determined based on body size, the presence of morphometric characteristics (e.g., such as scars, large head, thick neck, long fur on front legs, vulva patch and urine stains) and behavior when encountered (SWG 2016). Age class assessment from the air can be accomplished reliably for adult males, pregnant females, and members of family groups (Government of Nunavut, unpublished data; SWG 2016). Based on these methods, polar bears were classified as male or female, and as adult males (6+ years), adult females (5+ years), sub-adult males (2 to 5 years), sub-adult females (2 to 4 years), yearlings (>1 and < 2 years), and cubs of the year (<1 year). Standardized body condition indices [i.e., poor (1), fair (2), good (3), excellent (4) and obese (5)] were scored for each individual bear (Stirling et al. 2008) as was the activity at the time of observation (i.e., either laying down, sitting, walking, running or swimming). Each aircraft had at least one experienced biologist on board that could identify age classes and body conditions of observed bears with confidence.

For each observation, habitat structure and topography were recorded as covariates as well as cloud cover, visibility and ground speed. Habitat structure was recorded as rocky (1), boulders (2), trees (3), high shrubs (4), grassland (5), sand/mudflats (6), open water (7) and lichen tundra (8). Topography was broken down into an index for slope measured as flat (1), moderate (2) or steep (3), and an index for terrain measured as flat (1), rolling (2) and mountainous (3). By way of example a moderate slope within a rolling terrain would receive a score of 2/2. Visibility of 100%

was indexed as excellent (1), moderate or 75% to 100% (2), and poor or less than 25% (3). All aircraft deployed the distance sampling methods and collection of covariate data consistently across the study.

2.3 Analyses

2.3.1. Data screening and truncation

Data were initially screened for outlier observations that occurred at far distances therefore creating a tail on the detection function that can be difficult to fit. A right truncation distance that eliminated the upper 5% of observations was considered to minimize the influence of these observations (Buckland et al. 1993, Stapleton et al. 2014). Unlike the previous survey (Stapleton et al. 2014) we left-truncated both the front (pilot and data recorder) observations from the Bell helicopter rather than only left truncating the rear observations. The rationale for this was that we wanted to keep the data sets as similar as possible for the double observer analysis. There were 3 observations of 7 bears that were only observed in the rear observer blind spot by the front observers in the Bell helicopter. Therefore, the degree of reduction due to left truncation of the Bell helicopter data was not large.

The blind spot under each aircraft was estimated using geometric formulas. From this, left truncation distances were estimated for the twin otter as 98.9m, 67.2m for the EC135 helicopter, and 73.5 m for the Bell L-4 helicopter. Adjusted distance from the transect line was then estimated as the distance from the transect line minus the left truncation distance for each aircraft.

2.3.2. Co-variates

Covariates that affected bear sightability were considered that included environmental, observer and survey factors (Table 1). These covariates included group size, aircraft type, observer, and visibility. Visibility was reasonably good during the survey where only 15 of 178 observations were recorded as non-optimal conditions. Therefore, visibility was reduced to a binary covariate as was done in previous analyses (Stapleton et al. 2014).

A habitat (*hab*) category based on classification by observers was derived from field observations. This classification included open, shore, shrub, tree, and water habitat classes. A shrub habitat category was also initially considered, however, the number of observations was low and the distribution of observations was disjoint. Therefore, this category was pooled with shore category for observations that occurred on the shore and tree for inland observations.

A remote sensing based covariate (*RSveg*) based on LANDSAT 8 vegetation classification was also considered (Figure 5). The rationale behind this covariate was that it would systematically index dominant vegetation types in the proximity of observations therefore providing the best comparison of habitat and potential obstruction of observations across all observations. Remote sensing covariates based upon the habitat class of the pixel (625m²) where the observation occurred as well as the dominant habitat class within a 90X90m and 150X150m area around the observation were used. The main categories in Figure 5 that were present in the study area were gravel, shrub, trees, low vegetation, and water.

A combination of remote sensing and observer-based habitat scores was also considered (*RSveg-hab*) which re-classified the *RSveg* water category based upon observer habitat scores. For this category *RSveg* that were classified as water were reassigned to gravel (habitat class shore or habitat class water), low-vegetation (habitat class open), shrub (habitat class shrub), and tree (habitat class tree).

All of the survey aircraft except the Bell LR4 (and 3 survey days in the EC135 with only 3 dedicated observers and one observer-recorder on the left hand side) helicopter had 2 dedicated observers per side. The Bell LR4 had 2 dedicated surveyors in the back seat of the helicopter and the pilot and data recorder/navigator as observers in the front. The pilot and data-recorder did not have the same view as the observers, and were distracted by piloting the helicopter and navigating/data recording. Therefore, special covariates were formulated for the pilot and data recorder/observers in this aircraft.

We also noted that the angle of the sun in the afternoon affected our ability to sight bears given that cloud cover was minimal during the survey. This occurred when the sun was lower on the horizon and was directed towards the observers reflecting of the many lakes and ponds characteristic of the survey area. To test for this effect we calculated sun azimuth (e.g., the direction of the sun in the sky) and altitude relative to the path of the survey aircraft. From this we were able to determine when the sun was directed towards the observers (based on sun azimuth relative to flight path) and sun altitude based on time of day. Using this information we constructed a sun covariate which was only considered if the sun was facing the observers. If the sun was facing the observers then sun altitude relative to the horizon was tested as a sightability covariate with the expectation that sightability would be lower at lower sun angles.

2.3.3. Models and modeling approach

Mark-recapture distance sampling methods were applied to the survey data (Buckland et al. 2004, Laake et al. 2008a, Laake et al. 2008b, Buckland et al. 2010, Laake et al. 2012). A mark-recapture/distance sampling model assuming point independence was used which allows estimation of the detection probabilities at the transect line (or left truncation distance) using independent double observer pair methods with distance sampling methods used to model the decline in sighting probabilities as a function of distance from the survey line.

A sequential process was used for model building. First, parsimonious distance sampling models were formulated using a mark recapture model with constant detection probabilities. Once the most supported distance model was determined, parsimonious mark-recapture models were formulated using the most supported distance model as a base model in the mark-recapture model analysis. As a final step, optimal distance and mark-recapture models were combined and assessed for goodness of fit and overall parsimony. Information theoretic methods (Burnham and Anderson 1992) were used to assess relative model fit. More exactly, Akaike Information Criterion (AIC) were used as an index of model parsimony with lower scores indicating a model that explained the most variation in the data set with the least number of parameters. The difference between the most supported model and given model was evaluated (Δ AIC) to indicate

relative support with models at ∆AIC values of less than 2 being of interest. Akaike weights were used to estimate proportional support of models. Models were averaged based on AICc weights using the *AICcmodavg* (Mazerolle 2016) package in program R (R Development Core Team 2009). The AIC score indexes relative fit but does not provide a test of overall goodness-of-fit. Goodness-of-fit tests incorporated in program DISTANCE were used to further evaluate fit of the most supported models.

The 2016 data set was also analyzed using only distance sampling methods to assess if estimates were significantly different when mark-recapture double observer methods were used given that previous surveys did not use the mark-recapture method.

One of the primary objectives of the analysis was to compare the 2011 and 2016 distance survey estimates given that the field sampling designs for the 2 surveys were nearly identical. To ensure that estimates were comparable, the 2011 data set was re-analyzed with the remote sensing based *RSveg* habitat classes to assess whether inclusion of this covariate would influence abundance estimates compared to the structure covariate used in the 2011 analysis (Stapleton et al. 2014). A t-test was used to compare estimates with degrees of freedom estimated using the formulas of Gasaway et al. (1986).

Analyses were conducted using program DISTANCE 7.0 (Thomas et al. 2009) for initial model input and fitting with additional analyses conducted in the *mrds v2.1.1.17* (Laake et al. 2012) R package version 3.3.3 (R Development Core Team 2009). Data were explored graphically using the *ggplot2 R* package v 2.2.1 (Wickham 2009) and QGIS program (QGIS Foundation 2015).

3. RESULTS

3.1. Sightings, Habitat, and Detection

The WH polar bear survey was flown between August 12 and 21, 2016. Survey strata flown between Chesterfield Inlet and Churchill with the Twin Otter took 4 days to complete. The remainder of the study area was completed utilizing 2 rotary wing aircraft

in 5 days. During the survey we flew approximately 35 hrs with the Twin Otter and 80 hrs total with the two rotary wing aircraft for an estimated total distance of approximately 17,100 km, including ferry time.

In total, 339 bears were observed during the survey (Table 2). Of these observations, 17 were in the blind spot of the plane and 25 were beyond the right truncation distance. The remaining 297 bears were in the survey strip, however, 280 of these were seen by one or both of the dedicated observers and only 17 were observed by non-dedicated observers including the data recorder/observers and pilot/observers.

Graphical illustration of the distribution of observations revealed differences for our initially selected habitat types. More distant observations occurred within coastal as well as more open habitats whereas reduced detections and detection distances were observed for the water and tree habitat categories (Figure 6). The majority of observations occurred at distances of less than 2700 meters from survey aircraft (Figure 7). The 95th percentile of this observation data was within 2250 meters of the aircraft and therefore the data was right truncated to this distance value. Sensitivity analyses were conducted at a later stage of the analysis to determine if estimates were sensitive to both left and right truncation distances.

The distribution of LANDSAT remote sensing categories (*RSveg* covariate) revealed a broad distribution for the gravel category with sparse distributions of low vegetation (Figure 8). The tree category had most observations close to the survey line suggesting lower sightability, while the shrub distribution suggests moderate sightability. In contrast to the observation-based habitat water classification (Figure 6), the LANDSAT classification of water in Figure 8 reflected habitat in and around water as opposed to water alone as indicated by the presence of non-water habitat class observations, such as shore, in the water *RSveg* class. As a result, the water category had higher sightability with more observations further from the survey line than the water observation-based habitat class. Most of the gravel category corresponded to observations that occurred on the shore line with mixed distributions of habitat class was

potentially problematic due to few observations close to the survey line. This issue, which was most likely due to sparse data, was alleviated by pooling the shrub and low vegetation classes (Figure 9). This new pooled covariate class was called *RSveg2*.

Distributions of detections for aircraft type were relatively similar with relatively similar ranges of distance for observations (Figure 10). The main difference was the relative number of observations for each aircraft which created distributions that were more disjoint when the number of observations was lower.

Twelve observers were used during the survey of which 2 also were data recorders for at least part of the survey (Table 3). Naïve detection probabilities were estimated as the total number of times a bear was detected when an observer was active divided by the total number of observation event/trials. This is a naïve estimate given that other factors such as distance from the aircraft of the bear is not considered and therefore this probability will underestimate the detection probability on the survey line for any observer. In addition, the actual probability of detection on any side of the aircraft is based on 2 observers and will be higher than a single observer detection probability. Regardless, the average naïve detection probability for an observer was 0.77. Of most interest were detection probabilities below this amount. The Bell LR4 pilot and recorder both had lower detection probabilities and were therefore considered in detail in subsequent analyses.

We observed 39 cubs of the year (COY), and 10 yearlings (YRLG), which resulted in a mean COY and YRLG litter size of 1.63 (SD: 0.49; n = 24) and 1.25 (SD: 0.46; n = 8), respectively. COYS and YRLGs represented 11.5% and 2.9% of the entire observed sample of 339 bears. Approximately 53% of all observations were adult males (Table 4).

3.2. Distribution

A break-down of observed bears by strata, and across the study area is shown in Figure 11 and Table 2. The distribution of bears within the study area during August 2016 was not uniform. The majority (93.5%) of observations occurred in the high and moderate density strata. When the WH polar bear population study area was broken down into

areas according to Lunn et al. (2016), Nunavut (their area A or our low density strata) exhibited the lowest bear density whereas area C (i.e., the high density area) contained 50% of all observed bears (Table 4). Area D (or the area east of the high density area) had the highest density of adult males. We only report the pooled mean \pm SD distance from coast for areas C and D since these are the areas with the highest sample size. In general, adult males were found near the coast (1.3 \pm 1.8 km; range: 0.02 – 12.1 km), whereas adult females were found an average of 25.5 \pm 23.4 km (range: 0.5 – 84.3 km) from the coastal areas. For family groups, the mean distance from shore was 11.5 \pm 16.2 km (range: 0.1 – 54.2 km).

3.3. Distance/Mark-recapture analyses

3.3.1. Distance analysis

The distance component of the analysis used a constant mark-recapture model probability which basically assumed that detection at the left truncation distance did not vary (but was less than 1). Initial fitting revealed that both the hazard rate and half normal models showed some support from the data with a tendency of the hazard rate to be supported when covariates were not used (Table 5, model 13). Of covariates considered, models with group size (*size*), habitat (*hab*), remote sensing veg (*RSveg2*) and visibility (*vis*) were more supported than constant models. Of all models considered, a model with a hazard rate detection function with sightability varying by *RSveg2* and *size* was most supported. However, models with just *RSveg2* as well as models with the half normal detection function with habitat and visibility as covariates (model 3) also showed some support as indicated by Δ AlCc values of less than 2. Therefore, these models were considered further in the joint distance/mark-recapture phase of the analysis.

The most supported hazard rate (*RSveg2+size*) model was used for the mark-recapture analysis phase. Estimated abundance varied between 770 and 966 for models with abundance around 850 for the more supported models in the analysis (Table 5).

3.3.2. Mark-recapture analysis

The most supported distance model (HR (*RSveg2+size*) was then used as a baseline distance model for the mark-recapture component of the analysis (Table 6). Of covariates considered, *group size, aircraft type, sun*, and *observers* were more supported than a constant model (model 12). Of the observer models, a model with unique detection probabilities for the Bell LR4 pilot (*Bellp*) and data recorder/navigator (*Bellr*) and equal probabilities for all other observers (model 4) was more supported than a model with all observer detection probabilities being different (model 6). Overall, a model with the Bell pilot, Bell recorder, sun, and group size was most supported (model 1). A model without group size included (model 2) also had marginal support as indicated by Δ AlCc values of less than 2.

3.3.3. Distance/mark-recapture analysis

The most supported covariates for distance sampling (Remote sensing vegetation (*RSveg2*), observer-based habitat class (*hab*), visibility (*vis*), and group size (*size*)) and mark-recapture (group size (*size*), Bell pilot (*Bellp*), Bell recorder (*Bellr*), and sun angel (*sun*)) were considered in the joint distance/mark-recapture analysis. Of the models considered, a model with the most supported stand-alone distance sampling covariates (Table 7; *RSveg2+size*) and most supported mark-recapture covariates (Table 5; (*Bellp* +*Bellr+sun+size*) was most supported (Table 7; model 1). Other models that did not include group size for distance (model 2), used a half-normal detection function with habitat visibility (model 3) as well as other combinations of covariates with a hazard rate detection function (models 4-6) were supported as indicated by Δ AlCc values of less than 2. Estimates from the most supported models were close ranging from 774 to 896 with reasonable levels of precision for all models.

3.3.4. Goodness of fit

Goodness of fit for the most supported model (Table 7) revealed acceptable fit for the distance component (χ^2 =4.33,df=2, p=0.11) with 250meter bin intervals and the mark-recapture component (χ^2 =12.4,df=13, p=0.49) leading to an overall acceptable

goodness of fit score of (χ^2 =16.7,df=15, p=0.34). Kolmogorov-Smirnov tests (0.045, p=0.91) and Cramer-Von-Mises tests (0.035, p=0.89) also suggested reasonable fit.

Predictions for various combinations of distance sampling and mark-recapture covariates were plotted to explore the effect of covariates on detection probabilities as well as assess fit to the main RSveg2 classes (Figure 12). If model fit is adequate then the general pattern of points should parallel the histogram bars. The size of each data point was proportional to group size with larger groups having larger symbols. Larger groups had higher detection probabilities than smaller groups which created the most scatter in the observation points at different distance intervals. In addition, observations that were most affected by sun altitude (as indicated by a sun altitude of less than 30 degrees) are denoted as red dots with yellow dots representing situations where the sun was facing the observer but was higher in altitude (with less of an estimated effect on detection probabilities). Finally, black dots indicate when the sun was behind the observer therefore not affecting detection probabilities. A few patterns arise from Figure 12. First, the fit of the data to each RSveg2 class is reasonable with the general pattern of observations following the shape of the histograms. Most notably, the tree observations decline steeply with distance with moderate declines in vegetation-shrub, lesser declines in habitat areas in and around water, and minimal decline in the gravel categories. Larger group sizes of bears show a less substantial decline compared to smaller group sizes with some large groups having higher sighting probabilities at further distances from the survey aircraft. However, observations that were affected by the sun (denoted by red points) have lower detection probabilities than other observations at similar distances and group sizes.

The other factor affecting sightability was reduced sightability near the line for the Bell helicopter recorder and pilot. This basically reduced the y-intercept of the detection probability to be lower than one; an effect that is most noticeable when group size is smaller (Figure 13). A plot of pooled detection probabilities superimposed on the detection frequencies also suggests reasonable fit (Figure 14). The points on Figure 14 are for each observation whose probability will vary by covariates such as habitat, visibility, group size, and observer as described in Figures 12 and 13.

Average front observer detection probabilities for the front and rear observer was 0.63 and 0.76 which resulted in a combined double observer detection probability of 0.90 at the survey line (Figure 15). Plots of detections by front (observer=1) and rear observer (observer=2) reveal similar detection function shapes for situations when a bear was only detected by a single observer as well as both observers (duplicate detections) (Figure15). The conditional detection probabilities were similar with distance for observer 1 given detection by observer 2 but slightly higher for observer 2 when detected by observer 1 at further distances. This could be due to cueing or more time for the rear observer to spot animals at further distances.

3.3.5. Abundance estimates

A model averaged estimate of abundance that considered all of the candidate models in the analyses (Tables 5-7) was 842 bears (SE=142.6, CV=16.9%, CI-562-1121) during August 2016. This estimate was very close to the most supported model estimate of 831 (Table 7). The corresponding model averaged estimate of density is 9.9 bears per 1000 km² (SE=1.67, CI=6.62 -13.18).

Abundance estimates are given by strata for the most supported model (model 1) in Table 7. One issue we encountered was that only one observation of 8 bears occurred in the very low strata leading to very imprecise estimates. The low and very low could be pooled into a single strata to confront this issue. However, the actual estimates will not be affected greatly (Table 8).

3.3.6. Sensitivity of estimates to truncation

The most supported model (model 1, Table 7) was rerun at various right truncation distances to determine the overall sensitivity of estimates to deletion of observations that occurred far from the transect line. Decreasing the right truncation distance to 1800 meters which is closer to the data limit by the previous survey (Stapleton et al. 2014) decreased the estimate slightly to 826 bears whereas increasing the right truncation distance to 2700 m include further observations (Figure 7) decreased the estimate by 6 bears. Overall, the effect of truncation was minimal on estimates (Table 9).

3.3.7. Analysis of the 2016 data set using only distance sampling methods

The data were also run through the most supported distance model (HR(*RSveg2*+size) to assess estimates if data observed by non-dedicated observers was included but with sightability assumed to be 1 on the survey line. For this analysis the 17 bears that were not observed by the 2 dedicated observers were included in the analysis given that they were observed from the aircraft by data recorders or pilots. Of the 17 bears not seen by the dedicated observers, 7 were observed by the front left data recorder at 696 meters on the EC135, 7 were observed on the twin otter by the front right data recorder, and 3 were observed by the front left pilot on the twin otter. All of these bears were within the survey strip.

The HR (*RSveg2*+size) displayed adequate fit to the data (χ 2=7.71,df=6, p=0.26). Kolmogorov-Smirnov tests (0.041, p=0.95) and Cramer-Von-Mises tests (0.032, p=0.97) also suggested reasonable fit. The resulting abundance estimate was 843 bears (SE=104.2, CV=16.8%, CI=607-1170) which is very close to the mark-recapture/distance sampling estimate of 831 (Table 8).

3.3.8. Additional analyses

We conducted additional analyses with the main objective of comparing abundance estimates from the 2011 and 2016 surveys to allow a robust estimate of trend. The rationale behind these analyses was to ensure similar modelling and analysis methods were used in each survey year therefore allowing direct comparison of the estimates.

3.3.8.1. Re-analysis of 2011 data set using LANDSAT covariates

We re-analyzed the 2011 data set using the remote sensing (LANDSAT) based habitat classification scheme to determine if this covariate was also supported as a detection function covariate for the 2011 data set, and to assess any change in estimates with this covariate. A full suite of models were considered including those from the original analysis (Stapleton et al 2014). A model with the LANDSAT covariate (along with visibility and habitat structure) with a hazard rate detection function was most

supported. The model averaged estimate of abundance from this analysis was 949 bears, (SE=168.9, CI=618-1280, CV=17.7%). This analysis is detailed in Supplemental Material 1.

3.3.8.2. Trend analysis based on distance sampling and coastal surveys

The 2011 estimate of 949 derived from the LANDSAT covariate analysis was used to estimate trend between the two surveys with the rationale that the most comparable estimates would be obtained by models that used the same covariates for sightability and employed similar survey methodologies. We note that another estimate of abundance of 1030 that combined coastal surveys and inland samples was produced for the 2011 data set (Stapleton et al 2014). Coastal surveys were not conducted in unison with distance sampling in 2016 and therefore this type of estimate could not be derived for 2016. Therefore, the most comparable estimates in terms of assessing trends are the distance sampling only estimates from the two years which used similar methodologies and detection function covariates.

A comparison of model averaged abundance estimates from 2011 using the LANDSAT covariate of 949 bears (SE=168.9, CI=618-1280, CV=17.7%) and the 2016 estimate of 842 bears bears (SE=142.6, CV=16.9%, CI-562-1121) using t-tests suggested the difference between the 2 estimates was not significant (t=0.48, df=452,p=0.63). The ratio of the 2 estimates resulted in a 5-year change of 0.89 which translates to an annual change (λ) of 0.98 (0.89-1.07). The λ estimate in this case suggests a very slight annual decline in abundance, however, the confidence intervals overlap 1 and therefore this decrease is not significant.

We also performed a trend analysis that used coastal survey data collected by the government of Manitoba and compared trend estimates from these surveys to trend based on the ratio of the distance sampling estimates. Estimates of trend based on coastal surveys from 2011 to 2016 suggested a non-significant annual increase (λ =1.06, CI=0.98-1.14) in abundance based on coastal surveys.

One relevant question was whether changes in abundance were apparent in adult male and adult female bears. To explore this we conducted a post-stratified analysis with age-sex groups defined by adult males and adult females (lone and with offspring). Subadults and unknown bears, for which classification is less certain, were excluded from this analysis. The 2011 and 2016 distance sampling estimates were post-stratified to produce estimates for each age-sex group. In addition, trend analyses were conducted for coastal surveys based on these 2 groups.

Results from both the distance sampling and coastal survey analyses suggest a stable to declining adult female segment of the population and an increasing adult male segment. While trends are apparent in both data sets, neither are statistically significant. These results suggest that any apparent increase in abundance may be more based upon increase in adult males compared to adult females. The details of this analysis are described in Supplementary Material 2.

4. **DISCUSSION**

4.1. Distribution

As with the previous 2011 aerial survey (Stapleton et al. 2014), the 2016 data provide a comprehensive and detailed overview of summer polar bear distribution across the entire study area. The recent data suggest that, at least during the summer, the majority of WH polar bears reside in Manitoba; only about 5.3% of the sightings occurred in Nunavut. These findings are consistent with previous studies (Stapleton et al. 2014, Peacock and Taylor 2007) but are in contrast to local knowledge where communities along the Nunavut coastline report increasing numbers of polar bears (Tyrell 2006, 2009; Kotierk 2012). Kotierk (2012) suggested that Inuit see more bears in coastal areas than they ever have and that this creates a number of public safety concerns. However, that report is not specific about the time of year. It is generally understood that more bears frequent the Nunavut coastline during fall before freeze-up when compared to summer, but more empirical or traditional data should be collected to verify the timing.

With the exception of the high density strata, bears generally occupied a narrow strip along the coastline (Figure 11), rarely farther inland than 20 km. Most adult males were observed < 10 km from the coastline. Polar bears are sexually dimorphic with males being about twice as large as females (Derocher et al. 2005, 2010). Being near the coastline likely offers opportunities to reduce thermal stress, and may also be beneficial in reducing attacks by biting insects due to the cooler temperature and ability to enter the water. In the high density stratum (or area C in Lunn et al. 2016) bears were distributed throughout the general area with distances ranging up to > 80 km from the coastline for solitary adult females. Sexual segregation became most apparent in this stratum, which has been reported in previous studies (Derocher and Stirling 1990; Jonkel et al. 1972; Stirling et al. 1977).

4.2. Abundance

As in 2011, the 2016 WH polar bear study represents a systematic and geographically comprehensive survey of the WH polar bear population (Stapleton et al. 2014). Thus, we provide an updated abundance estimate for the WH polar bear population as well as a comparison between the two aerial study results. Additionally the current study's methods parallel those of Obbard et al. (2015) who also used a distance mark-recapture sampling method to estimate polar bears in southern Hudson Bay.

Stapleton et al. (2014) produced two population estimates. An estimate of 1030 bears was derived that combined coastal surveys and inland transect observations for the 2011 data set (Stapleton et al 2014). In 2016, because two helicopters were utilized to conduct a systematic transect survey to cover the entire study area, a separate coastal strip survey was not required. Therefore, we used estimates that were the most comparable between 2011 and 2016 to assess trend. In general it is challenging to detect declines in abundance between two surveys unless the change is quite large (Gerrodette 1987, Thompson et al. 1998). In addition, comparison of two survey estimates does not allow separation of sampling variance from natural "process" variance in the population (Buckland et al 2004). For this reason we also considered annual coastal survey trend estimates (conducted by Manitoba) as well as an estimation of age-sex group specific trends to allow further inference on overall population trend

and demography. Coastal surveys assume that similar proportions of the population occur on the coast during the survey each year. This assumption needs to be vigorously investigated prior to validation of this key assumption. For example, documented long range movements of male bears suggest that their aggregation points and localized movement rates may not be consistent and less predictable. A comparison of counts of adult males in coastal surveys suggest a larger degree of annual variation compared to females with offspring (as detailed in Supplementary Material). Despite these differences, the coastal surveys and distance sampling surveys suggest similar trends with the adult male segment increasing and adult females (with offspring) stable to decreasing from 2011–2016.

Very few bears were observed in Nunavut, and a substantial proportion of bears, mostly adult males, were encountered in the south-east section of the study area towards the Manitoba-Ontario border. Cubs and yearlings comprised a small proportion of the sample size, which was also observed during previous studies. This suggests that reproductive performance is low for this subpopulation but this was not a specific objective of this study (Table 10). These findings are consistent with previous mark-recapture studies (Regehr et al. 2007). Of three polar bear subpopulations that inhabit the Hudson Bay complex, WH had the lowest reproductive performance values (Table 10). Whether this phenomenon is linked to a reduction in sea ice (e.g., Stirling et al. 1999), high intra-species offspring predation due to a high proportion of adult males in the population (Table 4), or a combination would require further examination. Until recently, the neighboring southern Hudson Bay (SH) polar bear subpopulation has exhibited a relatively healthy reproductive performance despite observed long-term changes in sea-ice conditions in the area (Gagnon and Gough 2005, Etkin 1991, Hochheim and Barber 2014, Stern and Laidre 2016, Obbard et al. 2016).

Southern Hudson Bay polar bears have been experiencing a significant decline in body condition between 1984 and 2009 that was linked to a later sea ice freeze-up (Obbard et al. 2016). The decline in body condition for cubs, however, was less than for adult males, suggesting that adult females may be allocating a greater amount of energy to their dependent offspring at an energetic cost to themselves. Obbard et al. (2016) argue that declines in reproductive success are likely in the future if body condition of reproductive-age females continues to decrease.

Aerial surveys (e.g., distance sampling methods) rely on techniques that minimize heterogeneity of sighting conditions with one of the assumptions that similar sighting probabilities exist by a given observer for all encountered animals or animal groups. Sightability may also be affected by internal factors (e.g., observer fatigue, observer skill, and/or aircraft type), external factors such as animal behavior, group size, and distance from observer, and environmental factors (e.g., cloud cover, topography, vegetation cover, sun angle, etc.) (Ransom 2012, Fleming and Tracey 2008, Lubow and Ransom 2016). The 2016 WH survey protocol and analyses included several topographical and vegetation indices, and land classification studies (including postsurvey inclusion of LANDSAT imagery), sun angle and position, and observer position and function as covariates which were most supported through our modeling approach (Tables 1, 3, 5-7).

It has been assumed that there was little difference between a dedicated and non-dedicated observer's ability to observe and detect wildlife during an aerial survey, meaning that sightability is equal. We were able to demonstrate for this survey that the ability of the pilot and data recorder for all aircraft to detect animals appeared to be influenced by their primary responsibilities (e.g. flying the aircraft and observing weather conditions and aircraft equipment, and recording observation data and monitoring transects and survey equipment, respectively). Even when animals are conspicuous against their background and environment (e.g., polar bears during the summer against a white/green environment), we recommend individually assessing the detection ability of animals by all dedicated and non-dedicated observers, so that the option to include observer performance as a co-variate into final models remains open and some assurances that model assumptions are not being violated.

We included sun angle and position into our modeling approach because observers found that this factor reduced sightability. When facing the sun during aerial surveys, additional glare is created on lighter-coloured background (e.g., lichen, water body surfaces) that makes the detection of animals more difficult, which can subsequently lead to missed observations, even within a double observer pair platform.

4.3. Assumptions and potential biases

One assumption during aerial surveys is that animals are detected at their initial location (Buckland et al. 2001). During the 2016 WH survey, behavioral response to survey aircraft varied depending on age and sex class and distance from aircraft. Adult males appeared to be the least affected by aircraft, while other age and sex classes appeared to react more strongly to aircraft when groups were approached that were close to transect lines or being overflown by survey aircraft to record detailed group and animal observational data. The majority (approximately 88%) of bears when first observed from survey transects were either laying down, sitting, standing, or swimming. Given an aircraft speed of 130 to 148 km per hour, any movement that may have occurred prior to detecting the bears further away from transects was minimal (Buckland et al. 1993, 2001). Bears did, however, display greater avoidance behaviors when aircraft broke off transect and flew to the observed group for age and sex determination. In many cases and depending on proximal habitat, bears fled into water in order to avoid the aircraft while some moved into thick shrub to hide from the oncoming aircraft. Large mature males appeared to be the least disrupted upon initial approach of the aircraft, with some exceptions.

The analysis also assumed that the distance from the survey line was measured accurately and that detections were independent of each other. Each observation was marked at the exact point at which the group was observed from transect even in the instance where bears had moved off that location assuring accurate off transect measurements. We used groups to define observations and ensured that observers did not search for additional bears while flying to observed groups to waypoint and classify the animals, therefore ensuring independence of observations. Additionally, observers on the same side were at all times visually separated by a screen therefore ensuring that detections were independent between observers.

It is possible that some bears were missed during the survey because they were unavailable for observations when in a den or visually obscured by vegetation. Dens are used quite frequently during the ice-free period by WH polar bears, at times as early as mid-to-late August, where pregnant adult females are more likely to be missed if inside a den (Stirling et al. 1977, Clark et al. 1997, Clark and Stirling 1998, Richardson et al. 2005, Jonkel et al. 1972). We encountered several freshly constructed dens excavated into peat. In several instances the bear was standing near the den entrance and could be observed. Moreover, our methods allowed for aerial inspection of any den to check for bear presence. Most freshly excavated dens that were observed during the 2016 survey effort also observed a polar bear and/or polar bear group in the vicinity. Therefore, the number of bears hidden from sight inside dens was low.

Habitats within the 2016 survey study area are diverse ranging from both coastal and fresh water shoreline, open tundra, to densely vegetated areas of shrubs and trees farther inland, where the detection of bears becomes challenging (Appendix 3). Including vegetation as a covariate into our modeling approach was important to capture the variation of detection among these varying habitats (Figure 9). Detection distances were reduced in treed habitat when compared to the other habitat types.

The point independence mark-recapture distance sampling model that we used in our analysis assumes that sightability at the left truncation distance (closest distance to the plane) is in part accounted for by covariates. However, variation in sightability due to vegetation and other factors away from the survey line can occur with minimal effect on estimates (Laake et al. 2008, Burt et al. 2014). Similar to Obbard et al. (2015) we found that sightability at the left truncation distance was not exact (or 1). Through the use of covariates in our analysis, factors influencing sightability both on the survey line as well as the shape of the detection functions were utilized to account for these potential biases to produce more robust abundance and density estimates.

5. CONCLUSION

The WH polar bear population has been subjected to changes in sea ice conditions reported in other studies resulting in reductions of body condition and vital rates (Gagnon and Gough 2005, Scott and Marshall 2010, Regehr et al. 2007, Stirling et al. 1999, Lunn et al. 2016). Under such conditions, and in order to provide goal-oriented conservation and management recommendations, up-dated information is needed in regular monitoring intervals. Traditional capture-mark-recapture studies are logistically challenging, locally unpopular, and they are time-consuming until results are disseminated. Comprehensive aerial surveys have become a useful monitoring tool for this subpopulation especially in response to the apprehension by Inuit toward intrusive physical handling of wildlife. As with any research methods, aerial surveys have their own limitations in terms of the scientific information that they can provide. Nevertheless, they have been proven to be an additional tool that can provide quick and updated information on the abundance, trend, distribution, and insights into reproductive success of a population.

6. ACKNOWLEDGEMENTS

We thank our observers R. Karetak (Nunavut Tunngavik Incorporated), K. Owlijoot (Department of Environment, Government of Nunavut), L. Tattuinee (Rankin Inlet), L. Ikakhik (Arviat), V. Trim (Manitoba Sustainable Development) and K. Burke and C. Ouimet (Parks Canada Agency) for their time. Funding and other in-kind or logistical support for this project was provided by the Government of Nunavut, the Nunavut Wildlife Management Board, Manitoba Sustainable Development, Parks Canada Agency, Nunavut Tunngavik Incorporated, Ontario Ministry of Natural Resources. This study was approved under research permits from Parks Canada Agency (Wapusk National Park Research and Collection Permit Number WAP-2016-21838) and the Government of Nunavut (Wildlife Research Permit Number WRP 2016-004), and supported by the Nunavut communities/Hunters and Trappers Organizations of Rankin Inlet, Baker Lake, Arviat, Whale Cove and Chesterfield Inlet. We also acknowledge our pilots for their professionalism and resourcefulness throughout this study (R. Bissett - EC135; S. Douglas Bell – LR4; S. Green and P.Tender – Twin Otter). We also express our gratitude to the research team of the 2011 aerial survey and their development of the basic survey design which assisted us substantially in this study.

7. LITERATURE CITED

- Aars, J., Marques, T.A., Buckland, S.T., Andersen, M., Belikov, S., Boltunov, A., Wiig, Ø., 2009. Estimating the Barents Sea polar bear subpopulation size. Mar. Mammal Sci. 25, 35–52.
- Amstrup, S.C., 2003, Polar Bear (*Ursus maritimus*), *in* Feldhamer, G.A., Thompson, B.C., and Chapman, J.A., eds., Mammals of North America—Biology, management, and conservation: (2d ed.): Baltimore, Maryland, John Hopkins University Press, p. 587–610.
- Brook, R.K. 2001. Structure and dynamics of the vegetation in Wapusk National Park and the Cape Churchill Wildlife Management Area of Manitoba: community and landscape scales. M.N.R.M. thesis, Natural Resource Institute, The University of Manitoba, Winnipeg, MB.
- Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L., and Thomas, L. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, Oxford, UK. 432 pp.
- Buckland, S. T., D. R. Anderson, K. P. Burnham, and J. L. Laake. 1993. Distance sampling. Estimating abundance of biological populations. Chapman & Hall, London.
- Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas. 2004. Advanced Distance Sampling - Estimating abundance of biological populations. Oxford Press.
- Buckland, S. T., J. Laake, and D. L. Borchers. 2010. Double-observer line transect methods : levels of independence Biometrics 66:169-177.
- Burnham, K. P., and D. R. Anderson. 1992. Data-based selection of the appropriate model: The key to modern data analysis. Pages 16-30 *in* D. R. McCullough, and R. Barrett, editors. Wildlife 2001: Populations. Elsevier, New York, USA.
- Burt, M. L., D. L. Borchers, K. J. Jenkins, and T. A. Marques. 2014. Using mark– recapture distance sampling methods on line transect surveys. Methods in Ecology and Evolution 5:1180-1191.
- Castro de la Guardia, L., Myers, P.G., Derocher, A. E., Lunn, N.J., Terwisscha van Scheltinga, A.D. 2017. Sea ice cycle in western Hudson Bay, Canada, from a polar bear perspective. Marine Ecology Progress Series, 564: 225-233.
- Caughley, G., R. Sinclair, and D. Scott-Kemmis. 1976. Experiments in aerial survey. Journal of Wildlife Management 40:290–300.
- Cherry, S.G., Derocher, A.E., Thiemann, G.W., and Lunn, N.J., 2013. Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics. Journal of Animal Ecology, http://dx.doi.org/10.1111/1365-2656.

- Cherry, S.G., Derocher, A.E., and Lunn, N.J., 2016. Habitat-mediated timing of migration in polar bears: an individual perspective. Ecology and Evolution, 6: 5032-5042.
- Clark, D.A., and Stirling, I. 1998. Habitat preferences of polar bears in the Hudson Bay Lowlands during late summer and fall. Ursus, 10:243-250.
- Clark, D.A., Stirling, I., and Calvert, W., 1997. Distribution, characteristics, and use of earth dens and related excavations by polar bears on the Western Hudson Bay lowlands. Arctic, 50:158–166.
- Crompton, A.E., Obbard, M.E., Petersen, S.D., and Wilson, P.J., 2008. Population genetic structure in polar bears (*Ursus maritimus*) from Hudson Bay, Canada: implications for future climate change. Biological Conservation, 141:2528–2539.
- Derocher, A.E., and Stirling, I., 1995. Estimation of polar bear population size and survival in western Hudson Bay. Journal of Wildlife Management, 59:215–221.
- Derocher, A.E., Lunn, N.J., and Stirling, I. 2004. Polar bears in a warming climate. Integrative and Comparative Biology, 44:163–176.
- Derocher, A.E., and Stirling, I. 1990. Distribution of polar bears (*Ursus maritimus*) during the ice-free period in western Hudson Bay. Canadian Journal of Zoology, 68:1395-1403.
- Derocher, A.E., Stirling, I., and Calvert, W., 1997. Male-biased harvesting of polar bears in western Hudson Bay. Journal of Wildlife Management, 61:1075–1082.
- Derocher, A.E., Andersen, M. Wiig, Ø. 2005. Sexual dimorphism of polar bears. Journal of Mammalogy, 86:895-901.
- Derocher, A.E., Andersen, M. Wiig, Ø., and Aars, J. 2010. Sexual dimorphism and the mating ecology of polar bears (*Ursus maritimus*) at Svalbard. Behaviour, Ecology, and Sociobiology, 64:939–946.
- Dyck, M. 2001. Effects of tundra vehicle activity on polar bears (*Ursus maritimus*) at Churchill, Manitoba. M.N.R.M. thesis, University of Manitoba, Winnipeg, MB.
- Dowsley, M., and Wenzel, G. 2008. "The time of the most polar bears": a comanagement conflict in Nunavut. Arctic, 61:177-189.
- Dredge, L.A., and Nixon, F.M. 1992. Glacial and environmental geology of northeastern Manitoba. Geological Survey of Canada Memoir 432. Ottawa, ON. 80 pp.
- Ecological Framework of Canada. 2016. Accessed on 15 November 2016. Available at: http://ecozones.ca/english.
- Etkin, D.A. 1991. Break-up in Hudson Bay: its sensitivity to air temperatures and implications for climate warming. Climatol. Bull. 25: 21–34.
- Fleming, P, and Tracey, J. 2008. Some human, aircraft and animal factors affecting aerial surveys: how to enumerate animals from the air. Wildlife Research,35:258–267.
- Freeman, M.M.R., and Wenzel, G. 2006. The nature and significance of polar bear conservation hunting in the Canadian Arctic. Arctic, 59:21-30.
- Freeman, M.M.R. 2001. Culture, commerce, and international co-operation in the global recovery of polar bears. Pacific Conservation Biology, 7:161-168.
- Freeman, M.M.R., and Foote, L. (eds). 2009. Inuit, polar bears and sustainable use: local, national and international perspectives. CCI Press, University of Alberta, AB, Canada.

- Fikkan, A., Osherenko, G., and Arikainen, A. 1993. Polar bears: the importance of simplicity. Pp. 96-151 *in* Young, O. R., and Osherenko, G. (eds). Polar politics: creating international environmental regimes. Ithaca, NY: Cornell University Press.
- Gagnon, A.S., and Gough, W.A. 2005. Trends in the dates of ice freeze-up and breakup over Hudson Bay, Canada. Arctic. 58: 370–382.
- Gasaway, W. C., S. D. Dubois, D. J. Reed, and S. J. Harbo. 1986. Estimating moose population parameters from aerial surveys. Biological Papers of the University of Alaska No 22:1-108.
- Gerrodette, T. 1987. A power analysis for detecting trends. Ecology 68:1364-1372.
- Henri, D., Gilchrist, H.G., and Peacock, E. 2010. Understanding and managing wildlife in Hudson Bay under a changing climate: some recent contributions from Inuit and Cree ecological knowledge. Pp. 267 – 289 in S.H. Ferguson, L.L. Loseto, and M.L. Mallory (eds). A little less Arctic: top predators in the world's largest northern inland sea, Hudson Bay. Springer Science, New York, New York.
- Hochheim, K.P., and Barber, D.G. 2014. An update on the ice climatology of the Hudson Bay system. Arct. Antarct. Alp. Res. 46:66–83. doi: 10.1657/1938-4246-46.1.66.
- Honderich, J. E. 2001. Wildlife as a hazardous resource: an analysis of the historical interaction of humans and polar bears in the Canadian Arctic 2000 B.C. to 1935 A.D. M. A. thesis, University of Waterloo, ON, Waterloo. 193 pp.
- Intergovernmental Panel on Climate Change. 2013. Summary for policymakers, climate change 2013—The physical science basis—Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge, United Kingdom, and New York, Cambridge University Press.
- Jonkel, C.J., Kolenosky, G.B., Robertson, R.J., and Russell, R.H., 1972. Further notes on polar bear denning habits. International Conference on Bear Research and Management, 2:142–158.
- Kolenosky, G.B., Abraham, K.F., and Greenwood, C.J., 1992. Polar bears of southern Hudson Bay. Polar Bear Project, 1984–88. Final Report, Ontario Ministry of Natural Resources, Maple, Ontario.
- Kotierk, M. 2012. Public and Inuit interests, western Hudson Bay polar bears and wildlife management: results of a public opinion poll in western Hudson Bay communities. Unpublished Report, Government of Nunavut, Igloolik, Nunavut. 55 pp.
- Laake, J., D. L. Borchers, L. Thomas, D. Miller, and J. Bishop. 2012. Mark-recapture distance sampling (MRDS) 2.1.0. R statistical package program.
- Laake, J., M. J. Dawson, and J. Hone. 2008a. Visibility bias in aerial survey: markrecapture, line-transect or both? Wildlife Research 35:299-309.
- Laake, J., R. J. Guenzel, J. L. Bengtson, P. Boveng, M. Cameron, and M. B. Hanson. 2008b. Coping with variation in aerial survey protocol for line-transect sampling. Wildlife Research 35:289-298.
- Lee, D.E., and Bond, M.L. 2016. Precision, accuracy, and costs of survey methods for giraffe *Giraffa camelopardalis*. Journal of Mammalogy, DOI: 10.1093/jmammal/gyw025.

- Lubow, B.C., and Ransom, J.I. 2016. Practical bias correction in aerial surveys of large mammals: validation of hybrid double-observer with sightability method against known abundance of feral horse (*Equua caballus*) populations PLoS One DOI: 10.1371/journal.pone.0154902.
- Lunn, N.J., Stirling, I., Andriashek, and D., Kolenosky, G.B., 1997. Re-estimating the size of the polar bear population in western Hudson Bay. Arctic, 50:234–240.
- Lunn, N.J., Stirling, I., Andriashek, D., Richardson, E. 2004. Selection of maternity dens by female polar bears in western Hudson Bay. Polar Biol. 7, 350–356.
- Lunn, N. J. et al. 2010. Polar bear management in Canada 2005-2008. Pages 87-114 in M. E. Obbard, G. W. Thiemann, E. Peacock, and T. DeBruyn, editors. Polar Bears – Proceedings of the 15th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, Copenhagen, Denmark, 29 June – 3 July 2009. IUCN, Gland, Switzerland and Cambridge, United Kingdom.
- Lunn, N.J., Servanty, S., Regehr, E.V., Converse, S.J., Richardson, E., and Stirling, I. 2016. Demography of an apex predator at the edge of its range: impacts of changing sea ice on polar bears in Hudson Bay. Ecological Applications, 26: 1302-1320.
- Malenfant, R.M., Davis, C.S., Cullingham, C.I., and Coltman, D.W. 2016. Circumpolar genetic structure and recent gene flow of polar bears: a reanalysis. PLoS ONE, 11: e0148967. doi:10.1371/journal. pone.0148967
- Marques, T., Andersen, M., Christensen-Dalsgaard, S., Belikov, S., Boltunov, A., Wiig, Ø., Buckland, S., and Aars, J. 2006. The use of global positioning systems to record distances in a helicopter line-transect survey. Wildlife Society Bulletin, 34:759-763.
- Maslanik, J.A., Fowler, C., Stroeve, J., Drobot, S., Zwally, J., Yi, D., and Emery, W. 2007. A younger, thinner Arctic ice cover—increased potential for rapid, extensive sea-ice loss: Geophysical Research Letters, 34: L24501, doi: 10.1029/2007GL032043.
- Mazerolle, M. J. 2016. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.1-0.: <u>https://cran.r-</u> project.org/package=AICcmodavg
- Nichols, J. D., and B. K. Williams. 2006. Monitoring for conservation. Trends in Ecology and Evolution 21:668–673.
- Norton-Griffiths, M. 1978. Counting animals. 2nd ed. Pp. 139. African Wildlife Foundation technical handbook No. 1 (J. J. R. Grimsdell, ed.). African Wildlife Foundation, Nairobi, Kenya.
- Obbard, M.E., Thiemann, G.W., Peacock, E., and DeBruyn, T.D. (eds) (2010). Polar Bears: Proceedings of the 15th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, Copenhagen, Denmark, 29 June–3 July 2009. Gland, Switzerland and Cambridge, UK: IUCN. vii + 235 pp.
- Obbard, M.E., and Middel, K.R. 2012. Bounding the southern Hudson Bay polar bear subpopulation. Ursus, 23:134-144.
- Obbard, M.E., S. Stapleton, K.R. Middel, I. Thibault, V. Brodeur, and C. Jutras. 2015. Estimating abundance of the Southern Hudson Bay polar bear subpopulation using aerial surveys, 2011 and 2012. Polar Biology 38: 1713-1725.

- Obbard, M.E., Cattet, M.R.L., E.J. Howe, K.R. Middel, E.J. Newton, G.B. Kolenosky, K.F. Abraham, and C.J. Greenwood. 2016. Trends in body condition in polar bears (*Ursus maritimus*) from the Southern Hudson Bay subpopulation in relation to changes in sea ice. Arctic Science 2:15-32.
- Overland, J.E., and Wang, M. 2013. When will the summer Arctic be nearly sea ice free? Geophysical Research Letters, 40:2097–2101.
- Paetkau, D., Calvert, W., Stirling, I., and Strobeck, C. 1995. Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology, 4:347–354.
- Paetkau, D., Amstrup, S.C., Born, E.W., Calvert, W., Derocher, A.E., Garner, G.W., Messier, F., Stirling, I., Taylor, M.K., Wiig, Ø., and Strobeck, C. 1999. Genetic structure of the world's polar bear populations. Molecular Ecology, 8:1571– 1584.
- Peacock, E., Derocher, A.E., Lunn, N.J., and Obbard, M.E. 2010. Polar bear ecology and management in Hudson Bay in the face of climate change. Pp. 93 -115 in S. H. Ferguson, L.L. Loseto, M.L. Mallory. (eds). A little less Arctic: top predators in the world's largest northern inland sea, Hudson Bay. Springer Science + Business Media B. V. doi: 10.1007/978-90-481-9121-5 5.
- Peacock, E., Sonsthagen, S.A., Obbard, M.E., Boltunov, A., Regehr, E.V., Ovsyanikov, N., Aars, J., Atkinson, S.N., Sage, G.K., Hope, A.G., Zeyl, E., Bachmann, L., Ehrich, D., Scribner, K.T., Amstrup, S.C., Belikov, S., Born, E.W., Derocher, A.E., Stirling, I., Taylor, M.K., Wiig, Ø., Paetkau, D., and Talbot, S.L. 2015. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic: Plos One, 10(1): e112021, doi:10.1371/ journal.pone.0112021.
- Peacock, E., and Taylor, M.K. 2007. Polar bears of western Hudson Bay: survey extension investigation. Unpublished Report, Government of Nunavut, Igloolik, Nunavut.
- Peters, D. P. C. 2010. Accessible ecology: synthesis of the long, deep, and broad. Trends in Ecology and Evolution 25:592–601.
- Pollock, K., and Kendall, W. 1987. Visibility bias in aerial surveys: a review of estimation procedures. Journal of Wildlife Management, 51:502-510.
- Prestrud, P., and Stirling, I. 1994. The international polar bear agreement and the current status of polar bear conservation. Aquatic Mammals, 20:113-124.
- QGIS_Foundation. 2015. QGIS: A free and open geographic information system (www.qgis.org).
- R_Development_Core_Team. 2009. R Foundation for Statistical Computing, Vienna, Austria.
- Ramsay, M. A., and Stirling, I. 1988. Reproductive biology and ecology of female polar bears (*Ursus maritimus*). Journal of Zoology (London), 214:601-634.
- Ramsay, M. A., and Stirling, I. 1990. Fidelity of polar bears to winter den sites. Journal of Mammalogy, 71:233–236.
- Ransom, J.I. 2012. Detection probability in aerial surveys of feral horses. Journal of Wildlife Management,76:299–307.
- Regehr, E.V., Lunn, N.J., Amstrup, S.C., and Stirling, I., 2007. Effects of earlier sea ice breakup on survival and population size of polar bears in western Hudson Bay. Journal of Wildlife Management, 71: 2673–2683.

- Richardson, E., Stirling, I., and Hik, D.S. 2005. Polar bear (*Ursus maritimus*) maternity denning habitat in western Hudson Bay: a bottom-up approach to resource selection functions. Canadian Journal of Zoology, 83:860-870.
- Ritchie, J.C. 1962. A geobotanical survey of northern Manitoba. Technical Paper of the Arctic Institute of North America, 9. 48 pp.
- Sahanatien, V., Peacock, E., and Derocher, A.E. 2015. Population substructure and space use of Foxe Basin polar bears. Ecology and Evolution, doi: 10.1002/ece3.1571.
- Scott, J.B.T., and Marshall, G.J. 2010. A step-change in the date of sea-ice breakup in western Hudson Bay. Arctic, 63:155-164.
- Stapleton, S., Atkinson, S., Hedman, D., and Garshelis, D. 2014. Revisiting Western Hudson Bay: using aerial surveys to update polar bear abundance in a sentinel population. Biological Conservation, 170:38-47.
- Stapleton, S., E. Peacock, and D. Garshelis. 2015. Aerial surveys suggest long-term stability in the seasonally ice-free Foxe Basin (Nunavut) polar bear population. Marine Mammal Science 32: 181-201.
- Stern, H.L., and Laidre, K.L. 2016. Sea-ice indicators of polar bear habitat. The Cryosphere, 10:1-15.
- Stirling, I., Lunn, N.J., Iacozza, J., Elliott, C., Obbard, M., 2004. Polar bear distribution and abundance on the southwestern Hudson Bay coast during open water season, in relation to population trends and annual ice patterns. Arctic 57, 15–26.
- Stirling, I., and Derocher, A.E. 2012. Effects of climate warming on polar bears a review of the evidence. Global Change Biology, 18:2694-2706.
- Stirling, I., Lunn, N.J., and Iacozza, J. 1999. Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climatic change. Arctic, 52:294-306.
- Stirling, I., Thiemann, G.W., and Richardson, E. 2008. Quantitative support for a subjective fatness index for immobilized polar bears. Journal of Wildlife Management, 72:568-574.
- Stirling, I., Jonkel, C., Smith, P., Robertson, R., and Cross, D. 1977. The ecology of the polar bear (*Ursus maritimus*) along the western coast of Hudson Bay. Canadian Wildlife Service Occasional Paper 33. Ottawa: Canadian Wildlife Service. 64 p.
- Stroeve, J.C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., and Meier, W.N. 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39: doi: 10.1029/2012GL052676.
- SWG [Scientific Working Group to the Canada-Greenland Joint Commission on Polar Bear]. 2016. Re-Assessment of the Baffin Bay and Kane Basin Polar Bear Subpopulations: Final report to the Canada-Greenland Joint Commission on Polar Bear. 31 July 2016: x+636 pp.
- Taylor, M.K., and Lee, L.J. 1995. Distribution and abundance of Canadian polar bear populations: A management perspective. Arctic, 48:147–154.
- Thiemann, G.W., Derocher, A.E., and Stirling, I. 2008. Polar bear *Ursus maritimus* conservation in Canada: an ecological basis for identifying designatable units. Oryx 42:504-515.
- Thompson, W. L., G. C. White, and C. Gowan. 1998. Monitoring Vertebrate Populations. Academic Press, San Diego, California, USA.

- Towns, L., Derocher, A.E., Stirling, I., Lunn, N.J., 2010. Changes in land distribution of polar bears in Western Hudson Bay. Arctic 63, 206–212.
- Tracey, J. P., P. J. S. Fleming, and G. J. Melville. 2008. Accuracy of some aerial survey estimators—contrasts with known numbers. Wildlife Research 35:377–384.
- Twinn, C. R. 1950. Studies of the biology and control of biting flies in northern Canada. Arctic, 3:14-26.
- Tyrrell, M. 2006. More bears, less bears: Inuit and scientific perceptions of polar bear populations on the west coast of Hudson Bay. Etudes/Inuit/Studies, 30:191-208.
- Tyrrell, M. 2009. West Hudson Bay polar bears: the Inuit perspective. Pp. 95-110 in Freeman, M. M. R., and Foote, L. (eds). Inuit, polar bears and sustainable use: local, national and international perspectives. CCI Press, University of Alberta, AB, Canada.
- Wenzel, G. 2004. Polar bear as a resource: an overview. Third northern research forum open meeting position paper. URL: <u>http://www.nrf.is/open_meetings_files/</u> Yellowknife_2004/Wenzel.pdf.
- Wenzel, G. 1983. Inuit and polar bears: observations from a hunt near Resolute Bay, N.W.T. Arctic, 38:90-94.
- Wenzel, G. 1995. Ningiqtuq: Inuit resource sharing and generalized reciprocity in Clyde River, Nunavut. Arctic Anthropology, 32:43-60.
- Wickham, H. 2009. ggplot2: Elegant graphics for data analysis. Springer, New York.
- Wiig, Ø., Amstrup, S., Atwood, T. Laidre, K., Lunn, N., Obbard, M. Regehr, E., and Thiemann, G. 2015. Ursus maritimus. IUCN Red List Assessment of Threatened Species 2015: e.T22823A14871490.
- Wong, P.B.Y., Dyck, M.G., Arviat Hunters and Trappers, Ikajutit Hunters and Trappers, Mayukalik Hunters and Trappers, and Murphy, R.W. 2017. Inuit perspectives of polar bear research: lessons for community-based collaborations. Polar Record, DOI: 10.1017/S003224741700031.
- Yuccoz, N. G., J. D. Nichols, and T. Boulinier. 2001. Monitoring of biological diversity in space and time. Trends in Ecology and Evolution 16:446–453.

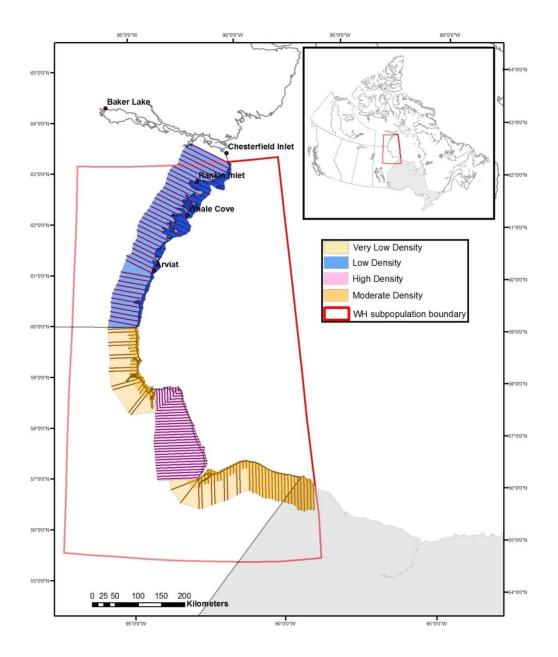


Figure 1. The August 2016 western Hudson Bay (WH) polar bear abundance survey strata and transects. All transects were run perpendicular to known polar bear densities. Extension of transects outside of the delineated WH polar bear population boundaries were based on Inuit knowledge of the area.

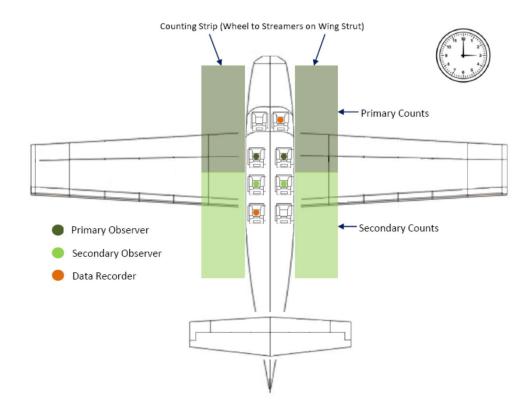


Figure 2. Observer position for the double observer method employed on this survey. The secondary observer calls polar bears not seen by the primary observer after the polar bear/bears have passed the main field of vision of the primary observer at a point half way between same side primary and secondary observers. The small hand on a clock is used to reference relative locations of polar bear groups (e.g. "Polar bear group at 3 o'clock" would suggest a polar bear group 900 to the right of the aircrafts longitudinal axis.).

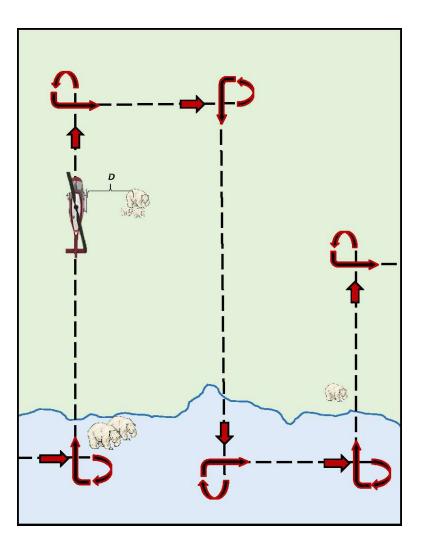
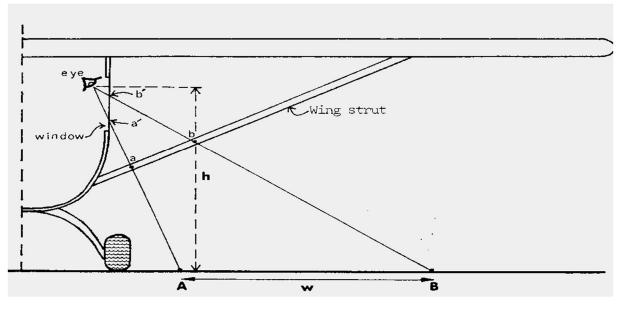



Figure 3. Application of the distance sampling method during the August 2016 polar bear aerial survey in western Hudson Bay. Once observed the aircraft would move off the transect to the center of the observation to record location via a GPS, and assess and record field age, sex, and body condition for all individuals within the group as well as environmental covariate information (Note: D = the distance as measured 900 from the transect to the center of the observation/group).

w = W * h/H

Where:

W = the required strip width; *h* = the height of the observer's eye from the tarmac; and *H* = the required flying height

Figure 4.Schematic diagram of aircraft configuration for strip width sampling (Norton-Griffiths,1978). W is marked out on the tarmac, and the two lines of sight a' - a - A and b' - b - B established.The streamers are attached to the struts at a and b, whereas a' and b' are the window marks.

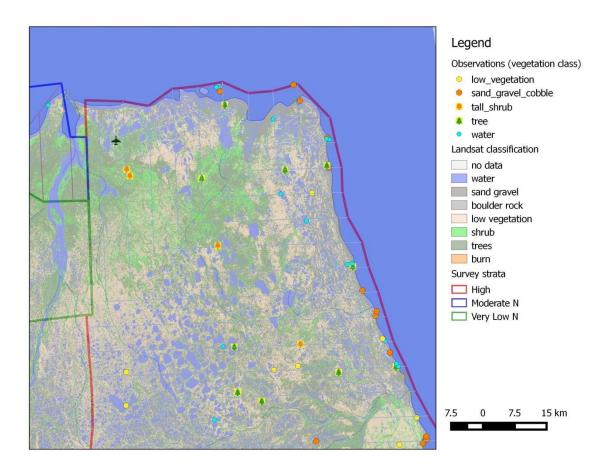


Figure 5: Landsat habitat classification and observations for a section of the high-density stratum of the 2016 study area.

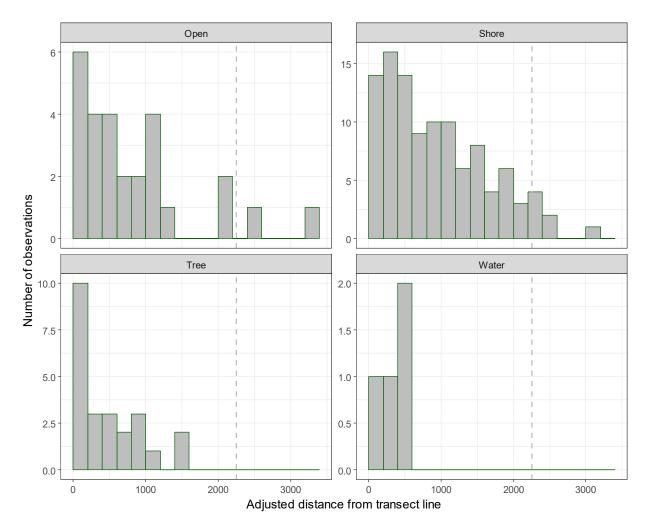


Figure 6. Distributions of detections for habitat classes.

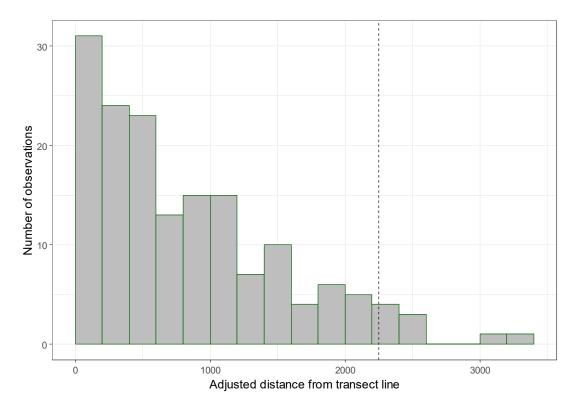


Figure 7. The distribution of observations relative to adjusted distance from the survey line (Distance from transect line-blind spot distance for each aircraft). The right truncation distance of 2250 meters used in the analysis is shown as a vertical line.

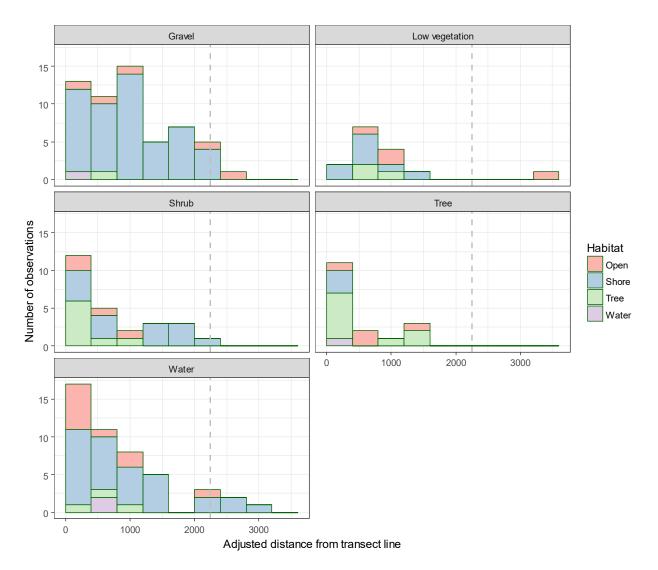


Figure 8. Distributions of detections for Landsat remote sensing-based covariates with observer-based habitat classes shown as sub-bars to allow comparison of the 2 methods of habitat classification.

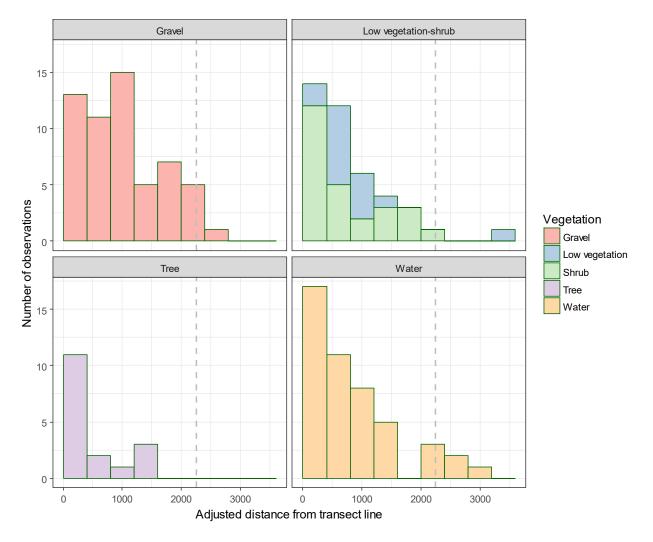


Figure 9. Remote sensing vegetation classes with the shrub and low vegetation category pooled. This covariate was termed RSveg2.

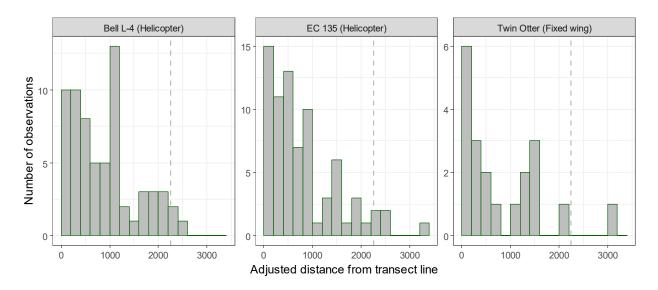


Figure 10. Distributions of detection for aircraft type.

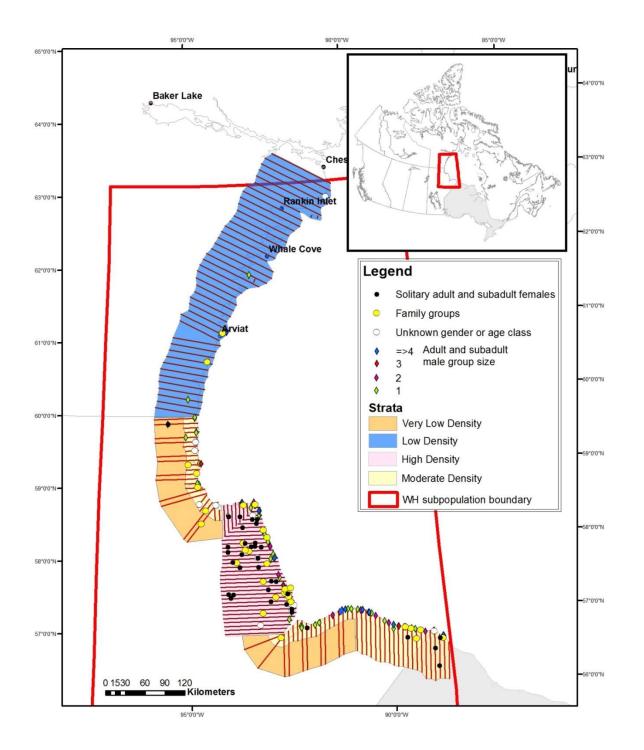


Figure 11. Distribution of polar bear group observations by age/sex class and strata within the study area during the 2016 western Hudson Bay aerial survey. Note that classifications of bears are based on aerial inspection.

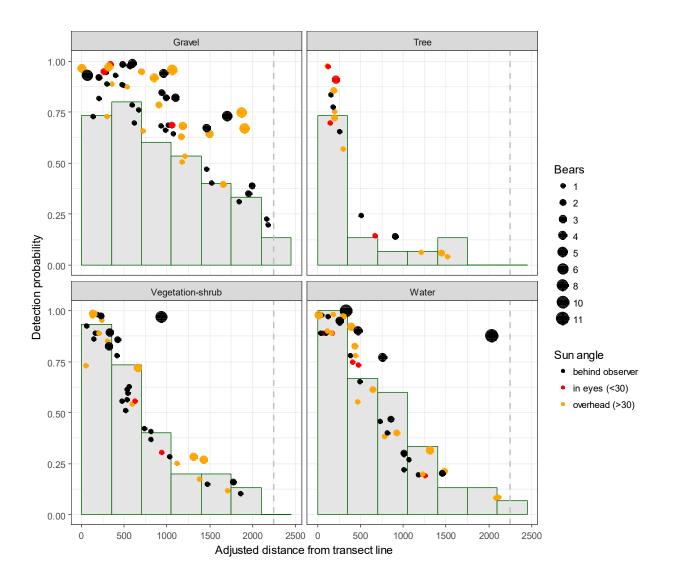


Figure 12. Comparison of the observed detection distributions with predicted detection probabilities as a function of remote sensing vegetation classes (RSveg2), group size (Bears), and angle of the sun from model 1 (Table 6).

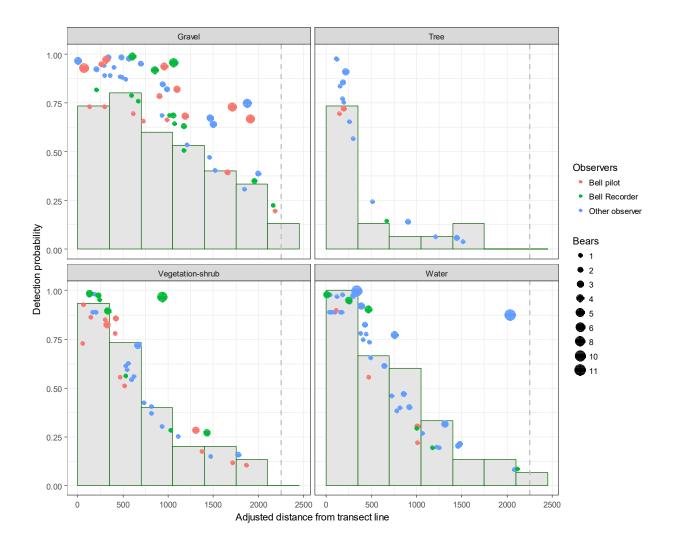
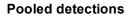



Figure 13. Comparison of the observed detection distributions with predicted detection probabilities as a function of RSveg2 class, group size (Bears), and observer type from model 1 (Table 6).

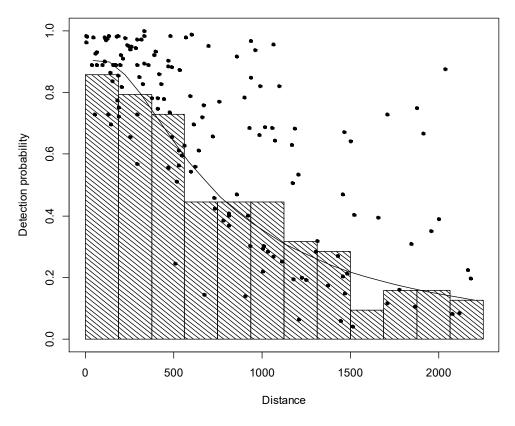


Figure 14. Predicted double observed detection probabilities (points) and mean detection (line) superimposed on detection frequencies for model 1 (Table 6).

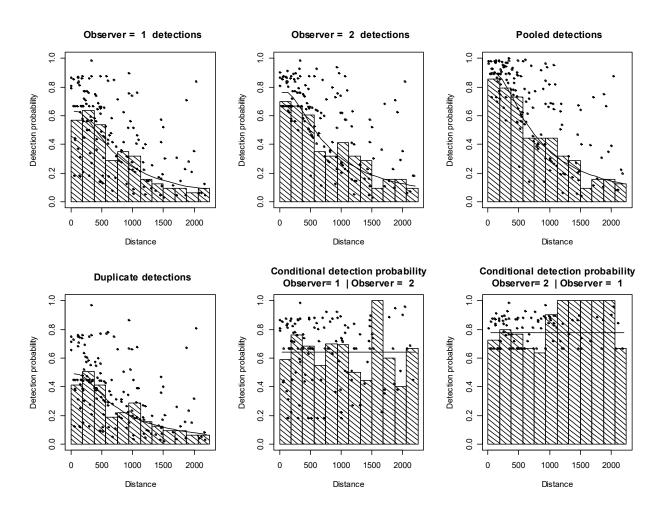


Figure 15. Detection plots for the front observer (1) and rear observer (2), pooled observers and duplicate observations (where both observers saw a bear. Conditional probabilities are also given for detection of bear by observer 1 given detection by observer 2 and vice versa. All estimates are from model 1 in Table 6.

 Table 1. Covariates considered in the mark-recapture/distance sampling analysis.
 The primary use of the covariate for distance sampling analysis (DS) and mark-recapture analysis (MR) is denoted.

Covariate	Туре	DS	MR	description
size	continuous	х	х	group size
aircraft	categorical	х	х	aircraft (Twin Otter, Bell, or EC135)
heli	binary	х	х	helicopter or airplane
Bell	binary	х	х	Bell helicopter
Bellp	binary	х	х	Pilot of Bell helicopter
Bellr	binary	х	х	Recorder/Navigator of Bell helicopter.
hab	categorical	х	х	habitat within 30m of observation as classified by observers (Open, Water, Shore, and Tree)
RSveg	categorical	х	х	Landsat habitat (Gravel,Low vegetation, Shrub, Tree, and water) at pixel (625 m ²) scale
RSveg2	categorical	х	х	RSveg habitat category with the Low vegetation and shrub category pooled.
RSveg90	categorical	х	х	RSveg at 90X90m scale
RSveg150	categorical	х	х	RSveg at 150X150m scale
RSveg-hab	categorical	х	х	RSveg water class re-assigned based on habitat classes.
vis	binary	х	х	ideal (163) or marginal (15 observations)
obs	categorical		х	Observers (12)
Sun	continuous	х	х	Sun altitude; only in equation if sun was facing observer
pilot	binary	х	х	if observer was a pilot
rec	binary	х	х	if observer was a data recorder

Table 2.	Summary of observations by strata. Mean group sizes and numbers of bears by							
distance category are shown. LT (Blind spot) observations occurred under the planes and were usually								
only seen by the pilot and front seat navigator. Bears in the survey strip were observed by at least one								
of the 2 observers, or only seen by data recorders or non-observer personnel.								

Strata	Group size				Numbers of bears by distance category							
n		mean	std	min	max	LT (Blind	Observed	Not	RT	Total		
						spot)		observed	>2250m			
High	98	1.72	1.17	1	7	5	150	7	7	169		
Low	8	2.25	2.12	1	7	1	6	4	7	18		
Moderate	69	2.14	1.98	1	11	8	123	6	11	148		
Very Low	3	1.33	0.58	1	2	3	1	0	0	4		
Totals	178					17	280	17	25	339		

Table 3.	Summary of observer data during the Hudson Bay polar bear survey. The naïve
probability is	the number of detections divided by the total trials. The Bell pilot had the lowest
probability.	

Individual	Role	Bea	ar observations		Naïve probability
		Not detected	detected	Total trials	
1	observer	2	22	24	0.92
2	observer	3	28	31	0.90
3	Bell recorder	11	20	31	0.65
4	observer	6	16	22	0.73
5	observer	4	10	14	0.71
6	observer	1	6	7	0.86
7	observer	5	15	20	0.75
8	observer	12	35	47	0.74
9	Recorder	1	14	15	0.93
10	observer	3	37	40	0.93
11	Bell pilot	22	13	35	0.37
12	observer	4	34	38	0.89
		74	250	324	0.77

Age Class ^{§ 1}			Area			
	NU (A)	MB (B)	MB/WNP (C)	MB EAST (D)	Total (bears or km)	PPN
ADF+1COY	0	2	7	0	18	0.053
ADF+2COY	2	2	7	4	45	0.132
ADF+1YRLG	0	1	4	1	12	0.035
ADF+2YRLG ADF+1 2-yr	0	0	2	0	6	0.018
old	0	0	1	0	2	0.006
ADF	0	1	27	5	33	0.097
ADM	11	23	63	84	181	0.532
SAM	0	0	21	4	25	0.074
SAF	0	0	2	0	2	
U	1	5	9	1	16	0.047
Flown distance						
(km)	4 900	1 870	6 200	4 300	17 270	
Transect flights (km) TOTAL	3 511	1 053	2 881	2 237	9 682	
bears observed	18	41	173	108	340	
PPN	0.053	0.121	0.509	0.318	0.10	

Table 4.Overview of observed polar bears during the western Hudson Bay aerial survey,August 2016, by field age class and spatial occurrence. Areas A-D are defined as in Lunn et al. (2016).

§ ADF=adult female; COY=cub-of-the-year; ADM=adult male; SAM=subadult male; SAF=subadult female; U=unknown; YRLG=yearling; 2-yr=2-year old.

¹ all classifications are based on aerial assessments from helicopters

Table 5. Model selection results for distance sampling analysis. The mark-recapture component of the MRDS model was set at constant for this analysis step. Covariates are listed in Table 1. Estimated abundance is given for reference purposes. Constant models are shaded. Akaike information criterion (AIC), the differences between AIC of the given model and most supported model Δ AIC, Akaike weight (wi), and Log-likelihood of each model is also shown.

No	DF	Distance	AIC	ΔΑΙϹ	Wi	К	LogL	Ν	Con	f. int	CV
1	HR	Rsveg2 +size	2611.6	0.00	0.22	7	-1298.8	836	602	1160	16.7%
2	HR	Rsveg2	2612.3	0.78	0.15	6	-1300.2	908	644	1279	17.5%
3	HN	hab+vis	2612.9	1.31	0.12	6	-1300.4	816	625	1067	13.6%
4	HR	RSveg2+size+vis	2613.2	1.67	0.10	8	-1298.6	833	603	1152	16.5%
5	HN	hab+vis+size	2613.5	2.00	0.08	7	-1299.8	779	588	1033	14.4%
6	HR	RSveg-hab	2613.7	2.14	0.08	6	-1300.8	900	643	1262	17.2%
7	HR	Rsveg2+vis	2613.7	2.19	0.07	7	-1299.9	898	641	1258	17.2%
8	HN	hab	2613.8	2.26	0.07	5	-1301.9	813	622	1065	13.7%
9	HN	hab+size	2614.0	2.46	0.06	6	-1301.0	770	581	1019	14.3%
10	HR	hab+vis	2617.0	5.48	0.01	7	-1301.5	862	633	1173	15.7%
11	HR	size	2617.4	5.82	0.01	4	-1304.7	773	578	1035	14.9%
12	HN	vis	2619.2	7.68	0.00	3	-1306.6	800	615	1040	13.4%
13	HR	Constant	2619.9	8.33	0.00	3	-1306.9	931	658	1316	17.7%
14	HR	RSveg90m	2619.9	8.33	0.00	7	-1302.9	966	675	1381	18.3%
15	HR	RSveg150m	2620.0	8.42	0.00	7	-1303.0	955	670	1362	18.2%
16	HR	bellheli	2620.5	8.91	0.00	4	-1306.2	904	644	1269	17.3%
17	HN	Constant	2620.6	9.05	0.00	2	-1308.3	799	614	1040	13.4%
18	HR	bellpilot+bellrec	2621.4	9.80	0.00	5	-1305.7	922	652	1302	17.7%
19	HR	Sun	2621.6	10.04	0.00	4	-1306.8	939	661	1333	18.0%
20	HR	vis	2621.7	10.17	0.00	4	-1306.9	917	652	1290	17.5%
21	HR	aircraft	2622.1	10.59	0.00	5	-1306.1	944	661	1348	18.2%

Table 6. Model selection results for mark-recapture analyses. The most supported distance model (HR(RSveg2+size)) was used in all the models in this analysis. Covariates are listed in Table 1. Estimated abundance is given for reference purposes. Akaike information criterion (AIC), the differences between AIC of the given model and most supported model Δ AIC, Akaike weight (wi), and Log-likelihood of each model is also shown.

No	Mark-recapture model	AIC	ΔAIC	Wi	К	LogL	Ν	N Conf. Limit		N CV
1	Bellp+Bellr+sun+size	2575.5	0.00	0.65	11	-1278.1	896	638	1258	17.4%
2	Bellp+Bellr+sun	2577.0	1.48	0.31	10	-1279.9	911	647	1282	17.5%
3	Bellp+Bellr+size	2582.2	6.70	0.02	10	-1282.5	884	630	1240	17.3%
4	Bellp+Bellr	2584.0	8.52	0.01	9	-1284.4	897	638	1260	17.4%
5	aircraft+Bellp+Bellr	2585.1	9.61	0.01	11	-1282.9	893	634	1256	17.5%
6	observers	2591.9	16.47	0.00	18	-1279.4	891	633	1255	17.5%
7	sun	2605.1	29.64	0.00	8	-1295.9	922	654	1301	17.6%
8	aircraft	2605.6	30.08	0.00	9	-1295.2	926	658	1304	17.5%
9	heli	2607.9	32.37	0.00	8	-1297.3	914	648	1288	17.5%
10	size	2611.2	35.75	0.00	8	-1299.0	896	637	1259	17.4%
11	constant	2611.6	36.08	0.00	7	-1300.2	908	644	1279	17.5%
12	vis	2612.2	36.72	0.00	8	-1299.5	908	645	1279	17.5%
13	pilot	2612.2	36.73	0.00	8	-1299.5	908	645	1279	17.5%
14	hab	2613.2	37.71	0.00	10	-1298.0	921	652	1300	17.7%
15	recorder	2613.5	38.06	0.00	8	-1300.2	908	644	1279	17.5%
16	distance	2613.5	38.06	0.00	8	-1300.2	908	644	1279	17.5%
17	Rsveg	2617.0	41.55	0.00	11	-1298.9	915	648	1292	17.7%

Table 7. Model selection results for the combined distance and mark-recapture analysis. The most supported distance model and mark-recapture models given in Tables 4 and 5 were considered in this analysis. Covariates are listed in Table 1. Estimated abundance is given for reference purposes. Akaike information criterion (AIC), the differences between AIC of the given model and most supported model ΔAIC, Akaike weight (wi), and Log-likelihood of each model is also shown.

No	DF	Distance	MR	AIC	ΔAIC	wi	К	LogL	Ν	Conf.	Limit	N CV
1	HR	Rsveg2+size	Bellp+Bellr+sun+size	2575.5	0.00	0.22	11	-1276.7	831	599	1151	16.7%
2	HR	Rsveg2	Bellp+Bellr+sun+size	2576.3	0.78	0.15	10	-1278.1	896	638	1258	17.4%
3	ΗN	Hab+vis	Bellp+Bellr+sun+size	2576.8	1.30	0.11	10	-1278.4	808	619	1056	13.6%
4	HR	Rsveg2+size	Bellp+Bellr+sun	2577.0	1.48	0.10	10	-1278.5	840	605	1165	16.7%
5	HR	Rsveg2+size+vis	Bellp+Bellr+sun+size	2577.1	1.67	0.10	12	-1276.6	828	600	1143	16.5%
6	ΗN	Hab+vis+size	Bellp+Bellr+sun+size	2577.5	2.00	0.08	11	-1277.7	774	585	1024	14.3%
7	HR	Rsveg2+vis	Bellp+Bellr+sun+size	2577.7	2.19	0.07	11	-1277.8	887	635	1238	17.1%
8	HR	RSveg2	Bellp+Bellr+sun	2577.7	2.26	0.07	9	-1279.9	911	647	1282	17.5%
9	ΗN	Hab+vis	Bellp+Bellr+sun	2578.3	2.78	0.05	9	-1280.1	823	627	1079	13.8%
10	ΗN	Hab+vis+size	Bellp+Bellr+sun	2578.9	3.47	0.04	10	-1279.5	785	590	1045	14.6%

Western Hudson Bay Aerial Survey 2016

Strata	Individuals	Ν	SE	CV	Conf.	Limit
High	150	471	103.0	21.9%	307	723
Low	6	27	13.8	50.8%	10	71
Moderate	123	323	63.4	19.6%	220	475
Very Low	1	9	9.7	102.2%	2	54
Total	280	831	138.5	16.7%	599	1151

Table 8. Strata-specific and total estimates of abundance for model 1 (Table 6).

Table 9. Sensitivity of MRDS models to left and right truncation. The most supported MRDS model from Table 6 was used for estimates.

Right Truncation	Ν	CV	Conf.	Limit
2250	831	16.7%	599	1,151
2700	825	16.4%	599	1,136
1800	826	17.9%	581	1,173

Table 10.Mean (standard error) polar bear cub-of-the-year (COY) and yearling (YRLG) litter sizesof populations that inhabit the Hudson Bay complex, also presented as proportion of totalobservations during the respective studies.

Subpopulation	Litte	r size	Propor total obse		Source	
	COY	YRLG	COY	YRLG		
Western Hudson Bay (2016)	1.63 (0.10)	1.25 (0.16)	0.11	0.03	GN (unpublished data)	
Western Hudson Bay (2011)	1.43 (0.08)	1.22 (0.10)	0.07	0.03	Stapleton et al. (2014)	
Southern Hudson Bay (2011)	1.56 (0.06)	1.49 (0.08)	0.16	0.12	Obbard et al. 2015	
Foxe Basin (2009-2010)	1.54 (0.04)	1.48 (0.05)	0.13	0.10	Stapleton et al. (2015)	

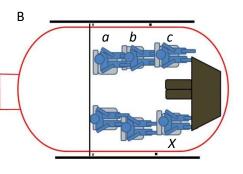


Figure A1: Overview of the EC135 rotary wing seat/observer configuration with separation wall set-up. Left photograph (A) depicts position *a* and *b* in the schematic diagram (right panel, B; *c* not shown in photograph A, *X* denotes pilot).

Figure A2. Depicted are the front observers (local members of the Rankin Inlet and Arviat Hunters and Trappers Association) in a Twin Otter fixed-wing survey platform, separated by a cardboard barrier from the rear observers. Not shown are the recorders.

Figure A3.1. Extended tidal flats in the western Hudson Bay study area. Red circle indicates 2 polar bears near boulders observed during the August 2016 aerial survey.

Figure A3.2 Boreal forest several kilometers inland interspersed with ponds and lakes. Red circle indicates a swimming polar bear seen during the August 2016 aerial survey.

Figure A3.3 View of the coastal plains interspersed with lichen/peat tundra and pond/lakes. Red circle indicates a polar bear seen resting next to a pond during the August 2016 aerial survey.

Figure A3.4 Polar bear (red circle) seen near the shore in the water at high tide during the August 2016 aerial survey in western Hudson Bay.

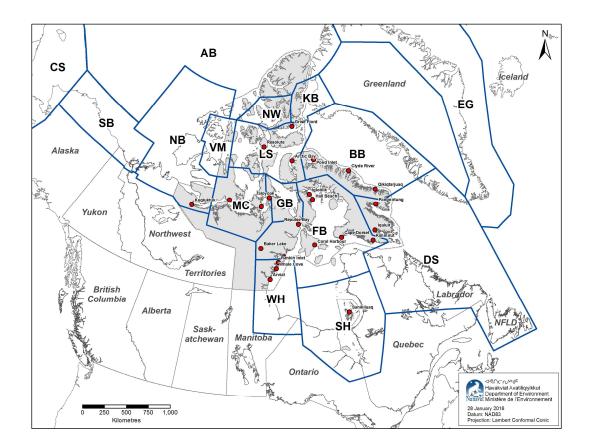
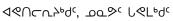



Figure A4.1. Canadian and Nunavut (dark grey) polar bear subpopulations [BB = Baffin Bay; DS = Davis Strait; SH = Southern Hudson Bay; WH = Western Hudson Bay; FB = Foxe Basin; GB = Gulf of Boothia; MC = M'Clintock Channel; LS = Lancaster Sound; KB = Kane Basin; NW = Norwegian Bay; VM = Viscount Melville Sound; NB = Northern Beaufort Sea; SB = Southern Beaufort Sea.

∩∩ና™⊂⊳⊀י: 11 לב∆, 2017

∆لت⊂, הסש∂ر

- 4 ≺∟Δ, 2017: ᲮኁՐኁ๙σ™ ≻L⊀ъσ⊲∩ь₫ Ხ∩L≻ኁՐҁ, ᲮኁՐኁ๙σኈ

Ċŀd< Ϸσŀϧ· σωσγγασια μαιρικου Αιθαλαμαιο Αιθαλαμαιο Αιθαλαμαιο Αιθαλαμαιο Αιθαλαμαιο Αιθαλαμαιο Αιθαλαμαιο Αιθα Ċŀdσ[®]υ διδργρασιαιό δημαράσιο

ጋኣኈበናበሀበϷሩ ላዜ ጋየረቦላዖሰና ഛላርϷሩ ርካሪታኒ ϷናሪϷንትቦላናውϷሩውና ΔረደቦንϷውላጭጋና ኣኈየበናበር-ዖበ ሪበናጋቦና ዾደሩኈርϷሩሚኈጋውና (TAH) ላጋሮናሪታϷሩና WH ሚውዮዮውና ጋውንϷውላኈጋና ΔረደሮϷዖርϷውው ውልጅና ዾደሩሲትናላውሪና ሪበደትዮዮውና (NWMB) ረበለሲΓ ሪበደፍኄኈበናውቦና, 2017.

∧'<∩Րಎ<™C∿Ს Ċŀda∿Ს ჂᲐჼ心∩の₽<₽ ჂჾჇჂ๛ (4₽೭℃∩ჼႦ∩Ր≯₽< ₽dσ∿Ⴑ:
1) ௳೨௳∆۶ჼჄႾჾჀႠ ႾჼႭႽႠႸႠႸ<ჾ ჼႦ₽ჂჽჼのႭჼ ჼႦ₽Ⴢჽჼჾ₽< ჼႦ₽ჂჽჇႶႠჾჼჾ
∧ჀႱჼႭჀႭ ႠჄႲჂჼ<
(WH) ႭჂჼႶჼႭჼ (Δ೭ႮႠჀႱ 1); 4Ⴞ
2) ዾႭႽჼ Ⴑ≪ႾჾႷ
47²ႦჼႶჼჂჾ ႾჼႭႲ<Ⴀ TAH ჼႦჼႶჼႭჇႭჃႽჂჃჼႶჼჂႶ 47²ჾჼႶჾ (2016–Ⴀ
47²ჾჼႶჂჾ ႠჽჂႦჽ (2016)
2011 ჼႦჀႱႠჇႦႷ ჼႦႲჂჽჾჼႮ ႠჽჂႦჽჿ (1030, 754-1406 95% Cl).

 $\Delta a \otimes^{\circ} b \ll b \otimes^{\circ} a \ll b \otimes^{\circ} b$

ᡆ᠋᠋ᠴᡆ᠘ᡃᡃᡃᢛᠠ᠘᠊᠋᠋᠆ᢐ᠆ᠬ

CONSULTATION SUMMARY NOTES FOR THE 2016 WESTERN HUDSON BAY POLAR BEAR AERIAL SURVEY COMPILED DURING MEETINGS CONDUCTED BETWEEN 4-7 JULY 2017

4 July, 2017: Rankin Inlet HTO, Rankin Inlet

- 5 July, 2017: Issatik HTO, Whale Cove
- 6 July, 2017: Arviat HTO, Arviat
- 7 July, 2017: Aqigiq HTO, Chesterfield Inlet

Department of Environment, Government of Nunavut

Igloolik, NU

Prepared: 11 July, 2017

Executive Summary

Government of Nunavut, Department of Environment representatives together with delegates from Nunavut Tunngavik Inc. and the Kivalliq Wildlife Board conducted consultations with the Hunters and Trappers Organizations of Rankin Inlet, Whale Cove, Arviat, and Chesterfield Inlet on July 4, 5, 6, and 7, 2017, respectively. Invited Baker Lake HTO representatives did not attend the meeting in Chesterfield Inlet on 7 July 2017.

The primary purpose of these consultations was to provide co-management partners with:

1) an overview of the most recent scientific study results on the western Hudson Bay (WH) polar bear sub-population (Appendix 1); and

2) the GN's management recommendation of no change to the current TAH despite a decline in abundance in the 2016 population estimate (842, 562-1121 95% CI) relative to the 2011 aerial survey estimate (1030, 754-1406 95% CI).

In addition, the GN representatives collected feedback on the results and any additional information or management concerns expressed by co-management partners. This included public safety concerns expressed by the Arviat HTO, to which the GN suggested it would recommend re-setting the current TAH of 28 bears to the NWMB, thus eliminating existing polar bear tag credit issues so as to allow each community full, restored access to its quota allocation.

Only communities that hunt from the WH polar bear sub-population were consulted.

The feedback and information collected during these consultations will be considered when forming Total Allowable Harvest (TAH) recommendations for the WH subpopulation to be submitted for decision to the Nunavut Wildlife Management Board (NWMB) at its September, 2017 meeting.

This report attempts to summarize the comments made by HTO members/participants during these consultation meetings.

Preface

This report represents the Department of Environment's best efforts to accurately capture all of the information that was shared during consultation meetings with the Hunters and Trappers Organizations of Rankin Inlet, Whale Cove, Arviat, and Chesterfield Inlet.

The views expressed herein do not necessarily reflect those of the Department of Environment, or the Government of Nunavut.

Table of Contents

Executive Summary	2
Preface	3
1.0 Report Purpose and Structure	5
2.0 Purpose of Consultations	5
2.1 Format of Meetings	6
3.0 Summary by Community	6
3.1 Rankin Inlet Consultation Summary	6
3.2 Whale Cove Consultation Summary	7
3.3 Arviat Consultation Summary	7
3.4 Chesterfield Inlet Consultation Summary	8
4.0 Summary	9

1.0 Report Purpose and Structure

This report is intended to: 1) provide the details of the GN DOE presentation and resulting management recommendations for the WH polar bear subpopulation assessment, 2016 (Appendix 1), and 2) collate and summarize comments, questions, concerns and suggestions provided by the HTOs in response to the results from the recent western Hudson Bay (WH) scientific study. In addition, these consultations were conducted with community HTOs to collect feedback and TK prior to submitting formal recommendations for the WH sub-population to the NWMB that include no change to the current TAH. The following community HTOs were consulted from July 4-7, 2017:

- 4 July, 2017: Rankin Inlet HTO, Rankin Inlet
- 5 July, 2017: Issatik HTO, Whale Cove
- 6 July, 2017: Arviat HTO, Arviat
- 7 July, 2017: Aqigiq HTO, Chesterfield Inlet

After these consultations, the DOE will provide a submission to the NWMB for decision that includes no change in the existing TAH and management approach, but as per Arviat HTO's suggestion GN DOE will recommend to re-set and zero credits so that communities are able to harvest bears but are also in a position to deal with defense of life and property kills, should the situation arise.

In addition to the HTO Board members, co-management representatives from Nunavut Tunngavik Inc. (NTI), and the Kivalliq Wildlife Board (KWB) also attended each of the consultations. The NWMB had no delegates present during these meetings.

2.0 Purpose of Consultations

The purpose of these consultations was to discuss the newest scientific information that was collected during the 2016 aerial survey regarding the WH polar bear subpopulation, and as reported in the final GN report which was produced by several coauthors. After the consultations the GN DOE will submit TAH recommendations for the WH sub-population to the NWMB for decision which will include no change in the existing TAH and management approach, but as per Arviat HTO suggestion to re-set the credits to zero. This would allow communities to harvest bears while also being in a position to deal with defense of life and property kills, should the situation arise.

2.1 Format of Meetings

The meetings were held in the evenings, usually between 19:00 and 22:00, and ran approximately 2.5 hours depending on HTO engagement. Meetings were facilitated and led by the GN Polar Bear Biologist, M. Dyck, who was also the presenter. Each consultation session began with an overview of the study design, study execution, and results from the aerial survey study conducted on the WH polar bear sub-population (Appendix 1). It was also mentioned that the population has remained relatively stable and that no difference between the 2011 and 2016 aerial survey results existed. The GN's position, therefore, was to recommend no change in the current TAH for the WH sub-population. The participants were invited to ask any questions, raise concerns, or provide recommendations throughout the meetings. After the presentation, questions/discussions continued until no further questions were raised.

3.0 Summary by Community

The objectives of the consultations were made clear to the HTO members prior to and at the start of each meeting. There were many similar questions, concerns and suggestions raised by HTO Board members in all the communities consulted. A full report of the questions and comments from each community follows in Appendix 2.

3.1 Rankin Inlet Consultation Summary

Date: 4 July, 2017

Representatives:

- GN-DOE, Polar Bear Biologist: Markus Dyck
- GN-DOE, Regional Manager: Rob Harmer
- GN-DOE, Conservation Officer: Joanne Coutu-Autut
- NTI: Raymond Mercer
- NTI: Robert Karetak
- Rankin Inlet HTO, Secretary: Nigel Kubluitok
- Rankin Inlet HTO, Temporary Secretary: Clayton Tartak
- KWB Representative: Qovik Netser

Comments and questions:

There were no HTO board members present in Rankin Inlet, however, several questions regarding the presentation and results of the study were raised by representatives. The question whether there is current concern for this population was raised, and it was discussed that although there does not seem to be a significant decline in abundance, declines in body condition, survival rates, and reproduction have

been documented for years. In particular, there are some effects on cubs-of-the-year that only allow a small proportion to survive to the yearling stage.

There was also some support for a new IQ study, and a fall coastal survey to determine when and how many bears migrate through and are in the vicinity of the community.

3.2 Whale Cove Consultation Summary

Date: 5 July, 2017

Representatives:

- GN-DOE, Polar Bear Biologist: Markus Dyck
- GN-DOE, Regional Manager: Rob Harmer
- NTI: Raymond Mercer
- NTI: Cheryl Wray
- KWB Representative: Nick Arnalukjuaq
- Issatik HTO: Shirley Kabloona
- Issatik HTO: Eva Voisey
- Issatik HTO: Martha Arualak
- Issatik HTO: Chris Jones
- Issatik HTO: Robert Enuapik

Comments and questions:

In response to questions asked by M. Dyck regarding when many bears would show up near the community, HTO members responded usually in the fall between October and December, and that there may be a disproportionate migration of bears north from Manitoba. HTO members agreed that there were fewer polar bears during the 1960s and 1970s, and that during the 1980s more bears were seen on the land. It was also suggested whether biopsy sampling could be used in order to track problem bears near the community, or if a fall coastline survey could be used to determine some trends over time. There also seemed to be support for a renewed study in order to continue the monitoring of the WH polar bears.

3.3 Arviat Consultation Summary

Date: 6 July, 2017

Representatives:

- GN-DOE, Polar Bear Biologist: Markus Dyck
- GN-DOE, Regional Manager: Rob Harmer
- GN-DOE, Conservation Officer: Joe Savikataaq Jr.
- NTI: Raymond Mercer

- NTI: Cheryl Wray
- NTI: Bert Dean
- NTI: Robert Karetak
- KWB Representative: Nick Arnalukjuaq
- KWB Chairperson: Stanley Adjuk
- Arviat HTO: Thomas Alikaswa
- Arviat HTO: Ludovic Issumatarjuak
- Arviat HTO: Gordy Kidlupik
- Arviat HTO: Angelina Suluk
- Arviat HTO: Sam Garry Muckpa
- Arviat HTO: Jamie Kablutsiak
- Arviat HTO: Mary Issumatarjuak

Comments and questions:

In response to questions asked by M. Dyck regarding when many bears would show up near the community, HTO members responded usually in the fall between October and December. HTO members agreed that there were fewer polar bears during the 1960s and 1970s, and that during the 1980s more bears were seen on the land. It was also discussed if a fall coastline survey could be used to determine some trends over time. Concern over the TAH was expressed and that it is likely low to deal with problem bears. M. Dyck suggested to bring forward to DOE whether it is possible to re-set credits and TAH for the new harvest season. Some HTO members suggested that bears in the Arviat area move inland up to 120 miles – and that this was important local information that should be documented for the next aerial survey. Problem bears do also not seem to be scared anymore of people like they used to.

3.4 Chesterfield Inlet Consultation Summary

Date: 7 July, 2017

Representatives:

- GN-DOE, Polar Bear Biologist: Markus Dyck
- GN-DOE, Regional Manager: Rob Harmer
- GN-DOE, Conservation Officer: Peter Kattegatsiak Sr.
- NTI: Raymond Mercer
- NTI: Cheryl Wray
- NTI: Bert Dean
- NTI: Robert Karetak
- KWB Representative: Nick Arnalukjuaq
- Aqigiq HTO: Harry Aggark
- Aqigiq HTO: Leonie Mimialik
- Aqigiq HTO: Patrick Putulik

- Aqigiq HTO: Jerome Misheralak
- No Baker Lake HTO members attended the meeting after invitations and travel was arranged to Chesterfield Inlet

Comments and questions:

In response to questions asked by M. Dyck regarding when many bears would show up near the community, HTO members responded usually in the fall between October and December, but also in the spring time. HTO members agreed that there were fewer polar bears during the 1960s and 1970s, and that during the 1980s more bears were seen on the land, and that there are bears from 2 sub-populations near the community (e.g., Foxe Basin and WH). It was also discussed if a fall coastline survey could be used to determine some trends over time.

4.0 Summary

Some common themes that were apparent during several HTO discussions were that communities would likely support a fall coastal survey allowing to monitor bears near communities, and possibly means of genetic biopsy sampling so that bears near communities could be identified and their background examined if they had contact with communities and humans before. It also seemed that HTOs would be in support of a new traditional knowledge study that would examine whether freeze-up patterns near their communities have changed during the past 20-30 years, and how the fall distribution of bears near communities has changed from the 1970s to the present. The Arviat HTO commented that the current TAH likely is not sufficient to cover problem bears and it was suggested that a credit re-set could be considered so that the full TAH is available for all communities, given the public safety concern. M. Dyck and R. Harmer offered all communities to forward questions to the GN should they arise so that anything that was not discussed or unclear at the meetings could be explained.

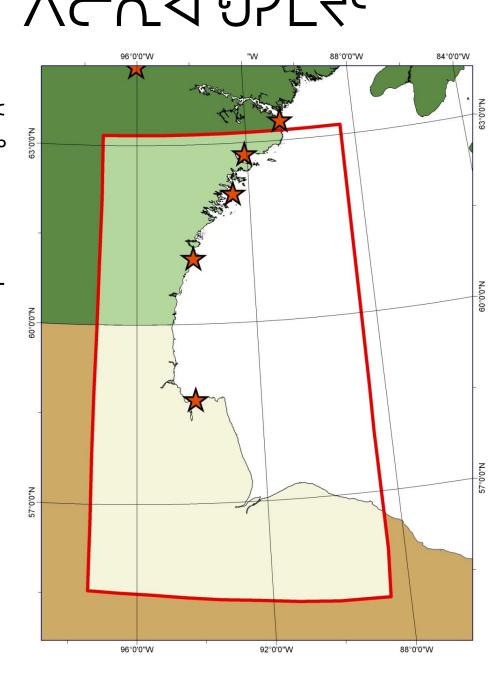
 00° 0° 0°

ᡆ᠊᠋ᠴ᠋᠋ᠳᠳ᠖᠋᠘ᢣ᠋ᢩ᠆ᠳ

ᡋᡣ᠘ᡣ᠋ᡣᡢᠦ᠋᠋ᠳᡗ᠈ᠳᡐᡃ᠋ᡪ᠘ᢩ ᠈ᡃᢛ᠋᠋ᠹᢁᢕᡔ᠅ᡋ᠌᠌ᡔᢣᠺᢓᢕᡄᢩᢄᡂᠧ᠌᠌ᢧ᠖ᡷ ᠖᠋ᢄ᠆ᡘ᠂ᡦᢄ᠆ᡘ᠂ᡦᢄ᠆ᡘ᠆ᡘ᠆ᡘ᠆ᡘ ᠕᠅ᠾᡄᢩ᠖᠆᠈᠆ᡁ᠘᠈ᡩ᠘᠆᠘ ᠘᠆᠘᠆ᡔᡨᢕ᠆᠘᠘᠈᠘ᠴ᠘᠈᠘ᠴ᠘

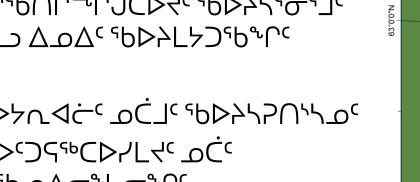
⊲≪∩⊂∩>⊌d Department of Environment Avatiliqiyikkut Ministère de l'Environnement

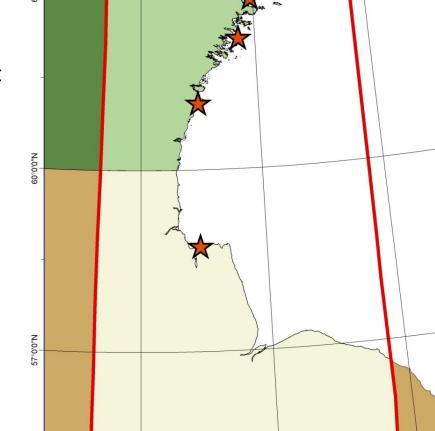
1


Western Hudson Bay Polar Bear Aerial Survey 2016

Wildlife Research Section GN - Department of Environment

- > ۵؍ ڶے ۲۵٫ ۲۵٫ ۲۵ مذار ۲۵٫ ۲۵٫ ۲۵ ۵٫۵٫۵٫ ۲۰ ۲۵٫۵٫۵٫ ۲۵ ۵٫۵٫۵٫ ۲۹٫۹۵٬ ۲۵٫۵۵ ۲۵٫۹٫۲۹٫۹۵٬ ۲۵۵٬ ۲۵
- ᠉᠋ᡣᡥᠣᡏᢕ᠈ᢣᢂ᠆ᢣ᠉᠋᠆ᡷ᠆᠆᠆ ᡆᢩᠮᡨᢧᠧᡐᢕ᠋᠋
- ᢀ᠘᠆ᡎᠴ᠑ᡐ᠈᠘ᡔ᠉᠊ᠣ᠅᠘ᡔ ᠘᠆᠉᠊᠐᠈᠆᠘᠆ᡥᠫ᠈


- レペL[∿]し–^ናb[∿]しC[∽]_⊃σ ^ናb▷≻\⁵σ^{ናь}
 [2011])
 ➤ EC \⁵⁶P⁵⁶C[∿]P⁶ ⊲[∿]P⁵b∩[†]<> WH
- > ^ເb▷ኦ\ናσ^ና:
 > 1030 ዉ_ມΔ^c (ቦኄ)^c⊂^ና/Г ______^C



 $\Lambda \subset \Lambda$ \mathcal{A} \mathcal{A}

᠋ᠳ᠘᠆᠋᠋᠘᠊᠋᠆᠘ᢕ᠋ ᠴ᠋ᡃᢣ᠋ᡣᡅ᠊ᡐᡃᡄ᠆᠋᠋᠆ᡐᡃᡞ᠋᠊᠌᠊᠆ ⁶δ⁶C^{ib}d^c ⁶DDA⁶σ^{6b}

≻ d^{isb}P^oσ^{sb}

92°0'0"W

88°0'0"W

84°0'0"V

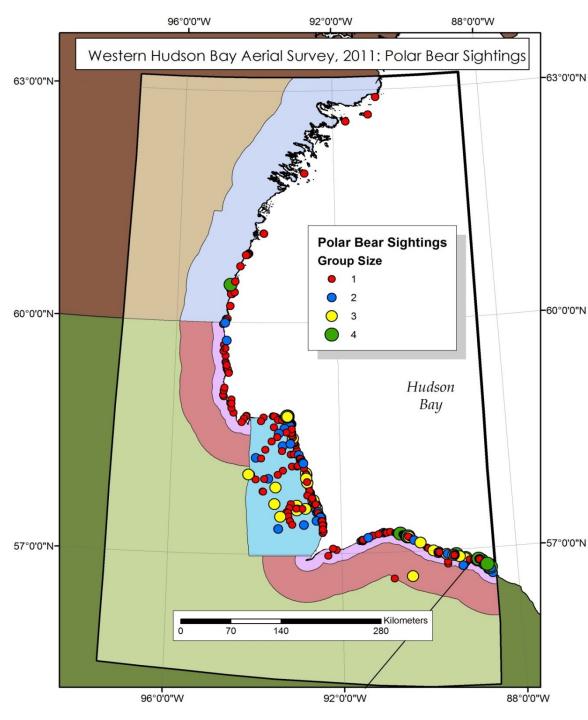
N..0.0.25

N..0.0.09

N..0.0.25

88°0'0"W

96°0'0"W


96°0'0"W

> ללשחי ים לאים כסידי ᠋᠂ᡃ᠋᠋ᡋ᠘ᢕᢄᡄ᠋ᡓ ᡖᡪᢣᢁ᠆᠆᠆ᡐ᠆ᡐ᠘

᠕᠃ᡴ᠋᠘ᢕᢣ᠋ᠣᡄ

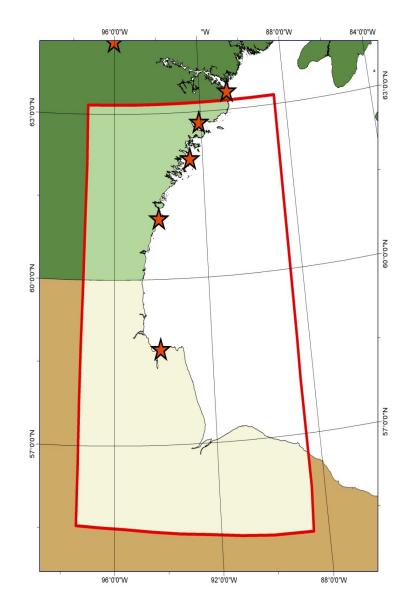
- \subpublic \suppublic \supp
- ⁵ d^cΩ^cL^LL^LC^c σ^{C^{sb}<ζ²^bU^cC^c Λ^bU^cΩ^{sb}<ζ²^bU^c b^bC^{sb}ζ⁴Δ⁻⁵}

ͼϧͽϦϹϲϳͼϥϲ ͼϧͻͻϥͼ Ϟͼϧϲͻϲͼ

– ϼͺϹϷͽϹʹͽϹϷϟͺϫϿϪͺͺϙϫϻϿϤͺͺϙͺϥ ͻͺϹϷͽϹʹͽϹϷϟͺϫϿϭͺϤͽϭͺϧϲ ϟϥϪͼͺͼϼϿϪϲͺͼϭϧͺϹϧϲ

- ۲^եհϷ^ϧϷΖΖζ^c 806 գ. քΔ^c (CΔbσ 2011)
- \^{ናь}ዖ^{ናь}CDጚ^c:

᠊ᠧ᠘᠔ᡘ᠈ᢣ᠘᠔ᡄ᠘᠈ᢣᡏ᠔ᡷᢣᡩᡏᡆ᠈ᢕᠧ᠘᠑᠉ᢗᢦ᠈ᢕᢉ ᠈ᢣᡆ᠊ᡡ᠈ᢣᡏᡆ᠈ᡀᢂᡔ᠆ᡔ᠈ᡔ᠉ᡕᡩᡆᡆ



- ᠆᠆᠕ᡩᠣ᠘ᡩᠣ᠋᠅ᢕᢄ᠆᠕ᡩ᠖᠘ᡩ᠖᠖᠘ᡩ᠖᠘ᡩ᠖ᡬ᠖᠘᠘ᡩ᠖᠖᠘᠘ᡩ᠖ ᠃᠘᠘ᡩ᠘᠙᠘ᡩ᠖᠘᠘ᡩ᠖᠘᠘ᡩ᠖᠘᠘ᡩ᠖᠘᠘ᡩ᠖᠘᠘ᡩ᠖᠘᠘ᡩ

- ᠈ᠳ᠘ᠴ᠙᠆ᡣ᠉᠊ᠣ᠉᠆᠑᠉᠊ᠳ᠉᠆᠉᠆᠉᠆᠉᠆᠉᠆᠉᠆᠘᠘ᡩ᠉᠊ᠣ᠉᠘ᢗᢣᠲ᠉ᠣ᠉᠘ᡩᡏ᠘ ᠘᠘ᠴ᠘᠈᠘᠈᠘ᠵ᠘ᠺᠫᠲᢣ᠘ᢄ
- ⁶ ነይ ጋ ይ ር ⁶ ነው ⁶

 $\bigcap OPCDaddeDc:$

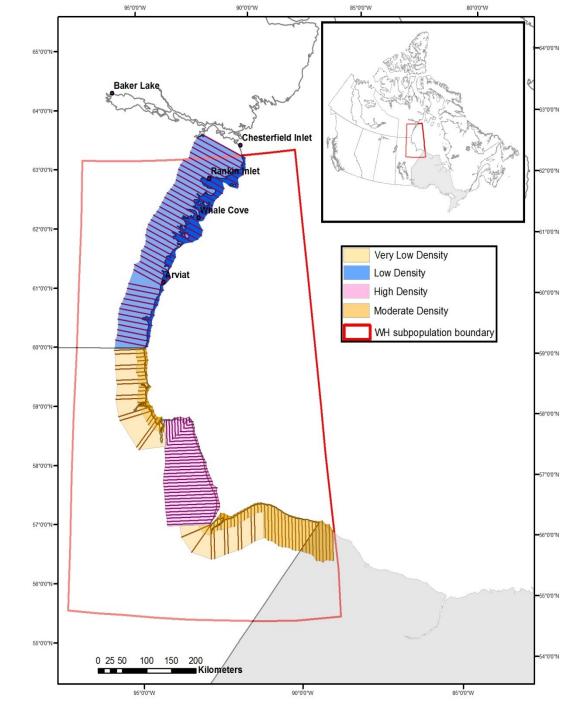
- $C\Delta b\sigma \wedge b^{e} a^{sb} < \gamma^{sb} b^{sb} / a^{sb} < \beta^{sb} / a^{sb} / a^{sb}$ $\Lambda \supset \Box \sigma$
- ʹ**᠆**᠕᠈ᢣ᠘ᡤᢆᢁ᠋ᢕᢩᢁ᠊᠋᠆ᠬ᠙᠋᠙ᢣ᠆᠆ᡣ᠉ 6 (2011)
- ᠈ᡣᡅ᠈ᡅᠧ᠈ᠣᡆᠫ᠅ᢕᠧ᠈ᡝᡄ᠈ᡯ᠘᠅᠘ ᠋᠄᠘ᢂ᠋ᢣ᠋ᠬᢛ᠆᠆᠆᠘ᢣᢑ᠆᠆᠘ᢣᢑ᠆᠆᠘ ᠂ᡃᠣ᠘᠆᠋᠋᠈᠘᠋᠋᠆ᡭ᠘᠋᠋᠋ᠳ᠋ᠺ
- ᠈᠆᠋ᠴ᠘᠋ᡩᡆ᠋ᡦ᠘ᢞᡈ᠋᠋᠂ᠳ᠋᠘᠘ᡩ᠘ $\Box \prec \mathsf{P} \subset \mathsf{P} \subset \mathsf{P} \subset \mathsf{P}$ ᠋᠂ᡃ᠋᠘᠋᠋᠋᠆᠋᠂ᠳᢑ᠘ᡄ᠋᠂ᠳ᠘᠆ᠺ᠆ᠺᢕ

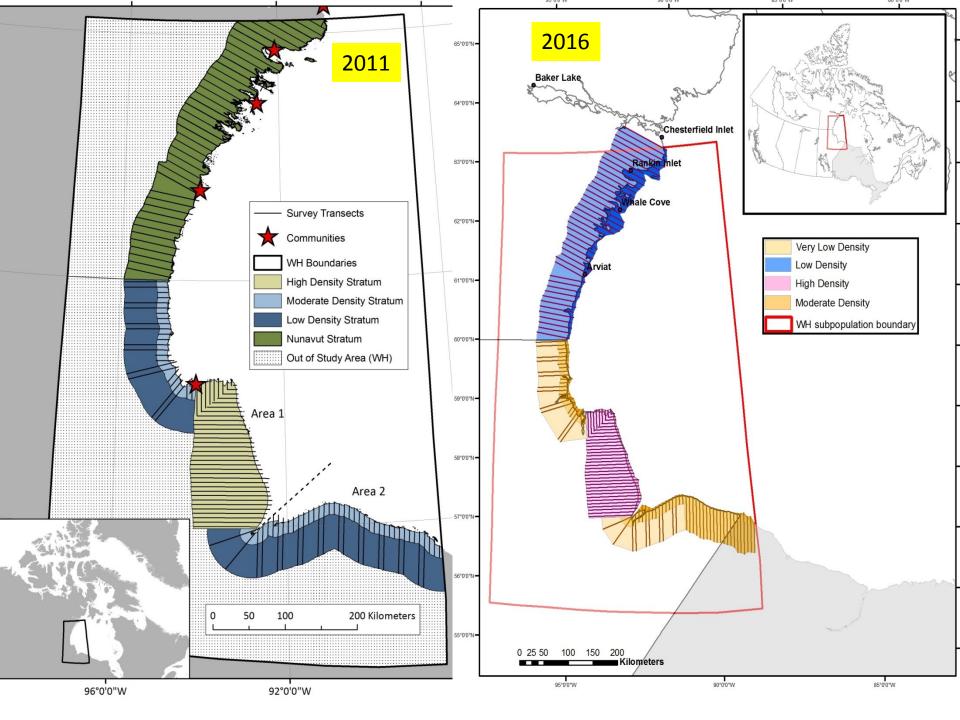
$^{6}bbaa$

> 「しっして」」」」。
> 「しっして」」。
> 「しっして」。
」 「しっし」
」 「しっし

> b</>

> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b
> b


ʹ→ ^۱۵۵۵٬ ۵۵٬ ۵۵٬ ۵۲۲۲۲ کار⊂ ^۲۵۵٬ ۶۵ ۲۲٫ 2010 ۹۲۲ کی 2011


- >」סטרב°יסי יטרטרטרטים יטטיישטיים
- > σδ[°] υĊ^b d^c ⁶ b > ⁵ c^c Lσ⁵ «Γ (>40 Δ^c)

հօլեԾջի

ለት⊳ጘΓ┽‹ ጋьጘႱ⊲₅Ų·:

 Ċŀd⊲ϲĹϤ ϽΡΥΓϤΡΩΡΨ ϤϽϤΡΟΡϤ ϤͿϤϿϤΟΓ ϤͿϤϿϤ ϤͿϤ

᠈᠊᠋᠋ᡃ᠋ᢑ᠆ᡆᢓ᠋ᡣ᠋᠕ᢛᢣ᠘ᢣ᠋ᢉ᠈ᠪᡊ᠐ᡔᠼᢕᡕ᠘ᠺ

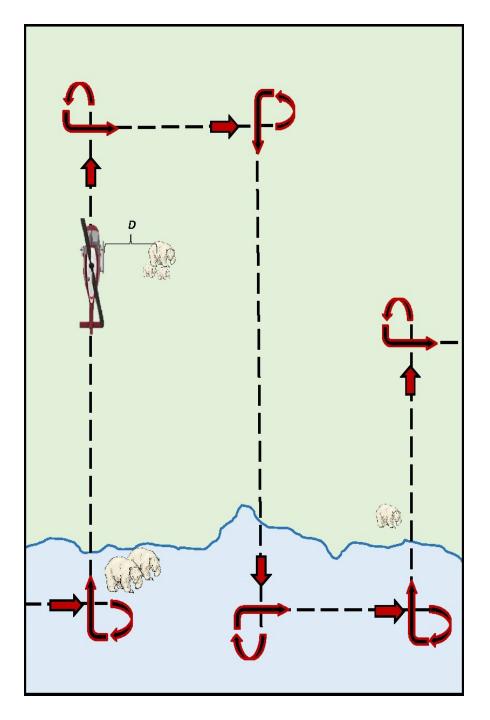
ᢄ᠋ᠴ᠘᠋ᢗ᠘ᡐᠣᠧᢆ᠘ᢑ

۲ĽL?

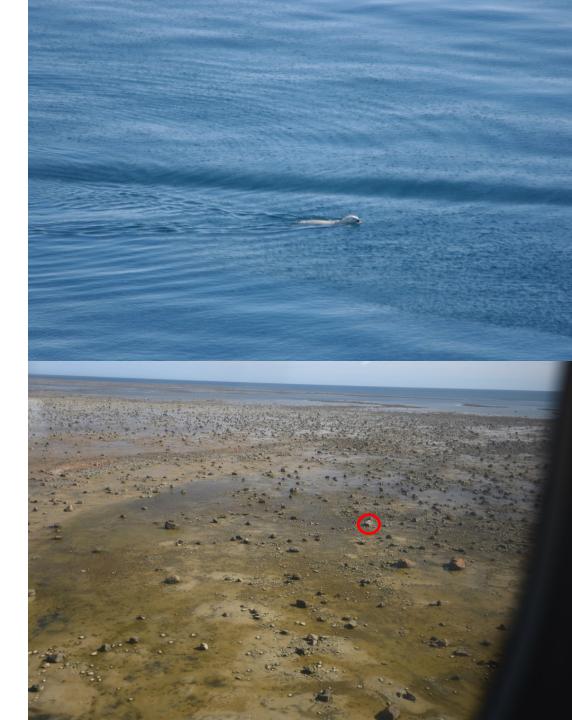
᠆᠐᠆ᢞᠣᢩ᠈᠆ᡘ᠆ᡏ᠘᠉᠆᠕᠆᠕᠆᠕᠆᠕᠆᠕ ᠕᠆᠕᠆᠕᠆᠕

᠈ᠳ᠈᠘᠆᠆ᠬᢦᢅ᠘᠆ᡩᢂᡬ᠆ᡩᢐ᠘ᢗᡄᢩᢂᡷ᠘ ᠈᠐᠆᠆ᡘ᠆ᡏᡆ᠙

- 2 ^らdー「Jー」で (17-22 ベロ・イン 2016) してうや「
- ᠈᠊᠋ᢩ᠆᠈᠆᠈᠆᠈᠆᠈᠆᠈᠆᠈ ᠕᠆᠋ᠬ᠋᠋ᠮ᠖᠋ᢕᡗ᠈᠊ᢕ
- ᠉᠆ᡗᢀᠳᡐᠥ᠊ᠿ᠋ᡃ᠘ᠴ᠑ᠴᡐᠥ ᠔᠈᠈ᠳ᠘᠄ᢆ᠉᠕᠄᠂᠘ ᠘ᠬ᠋᠔᠘ᢣᢛᢅ᠘
- ONG[®]CD7L4^c σΛCD[®]CD7L4^c
 ⁶b Δ^c Dσ[®]C^c 4^LL Δ L^c^eσ[®]C^c
 ΔΔ^c Dσ[®]C^c 4^LL Δ L^c^eσ[®]C^c
 ΔΔ^c Cd7D^c 0^c 4^LL Δ L^c^eσ[®]C^c
 ΔΔ^c Cd7D^c 0^c 4^LL Δ L^c
 Δ Δ^c C^dC^bC^c
 Δ Δ^c C^dC^bC^c
 Δ Δ^c C^dC^bC^c
 Δ Δ^c
 Δ Δ^c C^dC^c
 Δ Δ^c
 Δ Δ^c C^dC^c
 Δ Δ^c
 Δ



ᠳ᠖ᢞᠾᢕᡄ ᠫᢕ ᠘ᢆᡃᡖᢑᠫᠬ


ჼႱჼႱႠჂ Ⴖ᠘ႱჼჾჂႷ

Λ^{L}

᠉᠙᠙ᠬ᠖ᢕ ᠘᠙᠙ᠺ᠘᠋ᠺ᠘

ᠵ᠋∩ᠣᢩᡩ᠋ᢉᠵ᠋᠅ᢩᡠᡕ

$\sim \sqrt{2} \sqrt{2} \sqrt{2}$

≻°b⊳Lċ־י

 $4^{b}7^{5}\sigma^{5b}C$

$> \sqrt{2} \sqrt{2} \sqrt{2}$

264260 40DC

<u>Υ</u>^{ερ}δος γς

۶۵۲٬σ٬۰۵۲ 130 Δ۵٬۶Δ٬٬۰۵۳ ۲۵٬

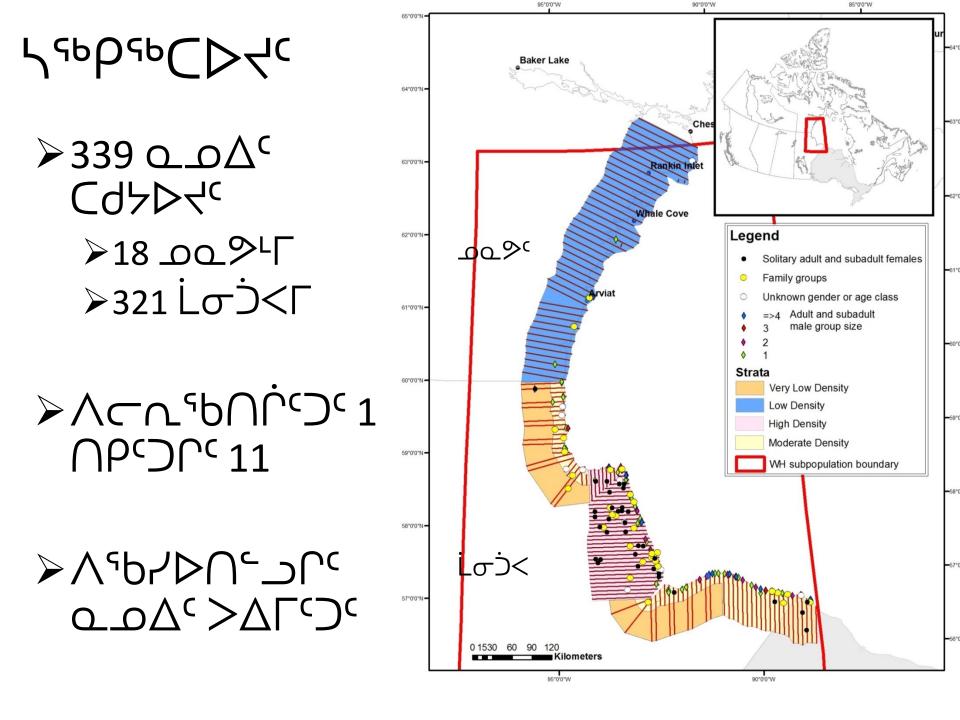
>▷∿ບĊσ 9500 km בם ۵°ם יר Δטיים איטר אריים עריים ערטיים ערטיים ערטיים ארטיים לבין

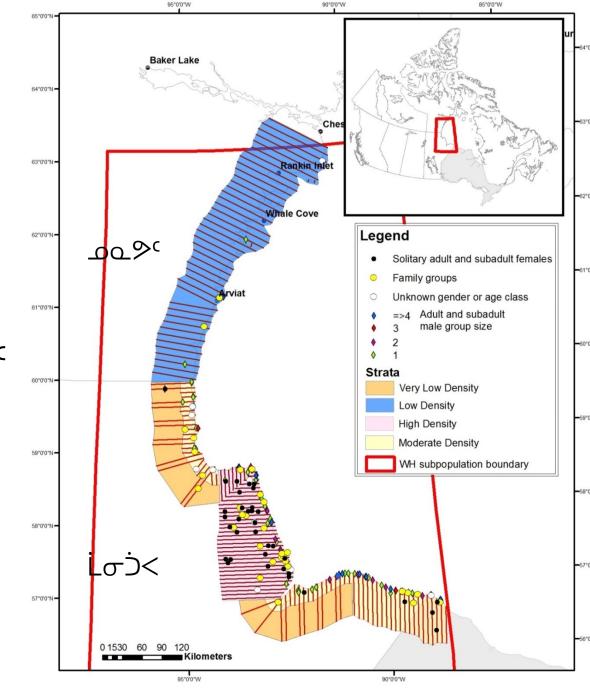
V₂PCÞ4c

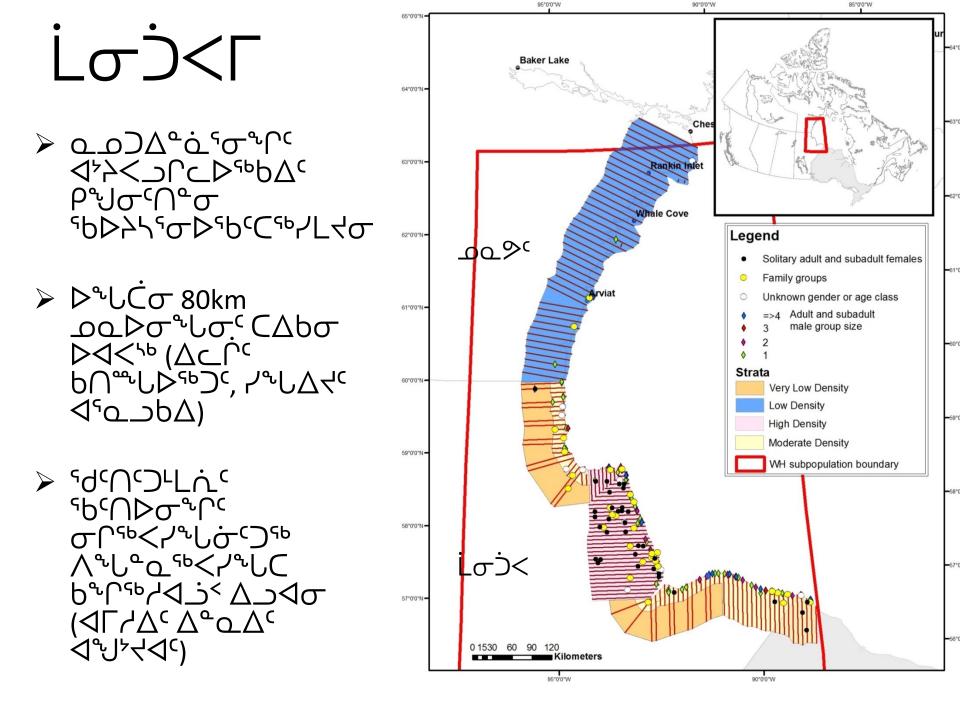
 $\succ \Gamma^{c_{i}}\dot{b}^{L} \geq c_{i}, b \subset \dot{D} \subset \dot{C}^{c_{i}}, L. C \Delta^{b} (D \cap \mathcal{D}^{c})$ $U \otimes U^{\circ} \cup A \otimes U \subset L^{\circ} \cup A \otimes U \subset L^{\circ} \cup A \otimes U$ \succ CA c , $\dot{\varsigma}$ c b C sb (La c) sb C sb $\bigcap \Gamma^{v} \cup^{c}$ \succ \Box Δ b^{b} H Δ^{b} (Δ^{c} Δ Δ^{c} \dot{D} L \mathcal{A}^{c} σ Δ \cap^{b} d^{c}) **~** _ Δ[、] C^c Ͻ Δ σ [~] υ (b[~] μ ⁻ σ ⁻ σ ⁻ σ $P \Gamma 4_{c} Q \cup P q_{c}$ ➣∩▷裡 HẢºL°, ໖₽ Ͻጢၬ (Ủ♂Ͻペ PT4CU7Pqc)>P<<p>>P<<p>>

>

>
 $(\Gamma^{s} U \Delta \gamma^{s} A \subset \Lambda^{b} d^{c} b a C \Gamma)$

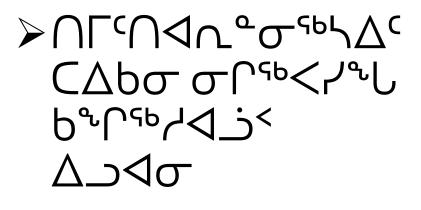

The fit



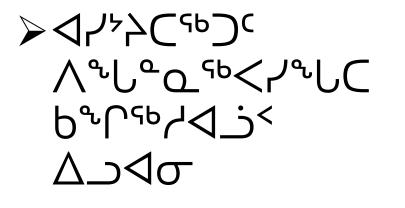


ᠫᢇᡐᢩᡅ

ʹϿϤϲϿϭͼϧϽͼ ʹϤϹϧϿ ʹϤϲϧϲ ʹ

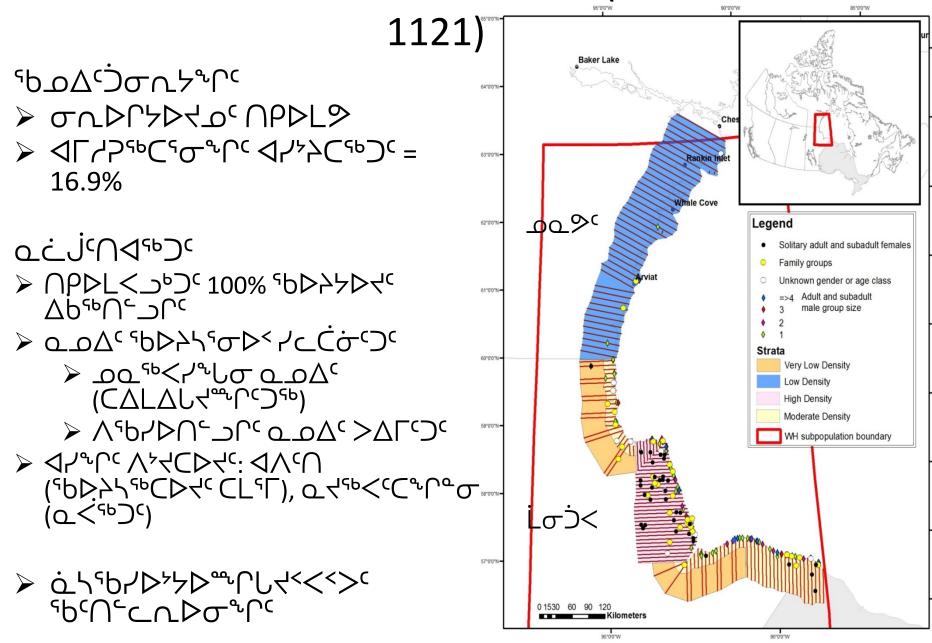

σ ^ኈ ቦና	V			-2000	
0 4 4	COY	YRLG	COY	YRLG	
∿ [⊷] ڡ∾ح∿ل ۵∿⊂∆ >ذ⊿له ۳∿۳ (2016)	1.63 (0.10)	1.25 (0.16)	0.11	0.03	ϼͼͺϿͼͺϿͼͺϷͼͺϹϘͺϹͽͺϹ (ᡪᢛ᠋ϼᢛᠸ᠌Ϸᢣ᠘᠊ᢟᡳᡗ᠌ᢅ ՈႶϚᢛᢣ᠘ᢣ᠋ ᠂᠋ᡋϷᢣᡪᢛᢗϷσϥΔᡕ
∧∿ك°ڡ∿<√∿ل ∆ >ذ_∆ >ذي0% ∿°∩ (2011)	1.43 (0.08)	1.22 (0.10)	0.07	0.03	Stapleton et al. (2014)
♂℃⊸>∿ل>∿ل ۵℃_∆ >ذ_۵لا‰ (2011)	1.56 (0.06)	1.49 (0.08)	0.16	0.12	Obbard et al. 2015
۲۵، کار (2009–2019)	1.54 (0.04)	1.48 (0.05)	0.13	0.10	Stapleton et al. 2015

᠘ᡄᡃ᠋᠊᠋ᡋ᠊᠋᠆ᡗ᠆ᡐ᠋ᠴ᠋᠋ᡗ


 $\Delta \subset \Delta^{\circ} \Omega^{\circ} \Gamma^{\circ}$

CLΔ°σϲĹ^ͼ

᠔᠈᠊ᢣ᠖᠘ᢁ᠘ᢁᠺ



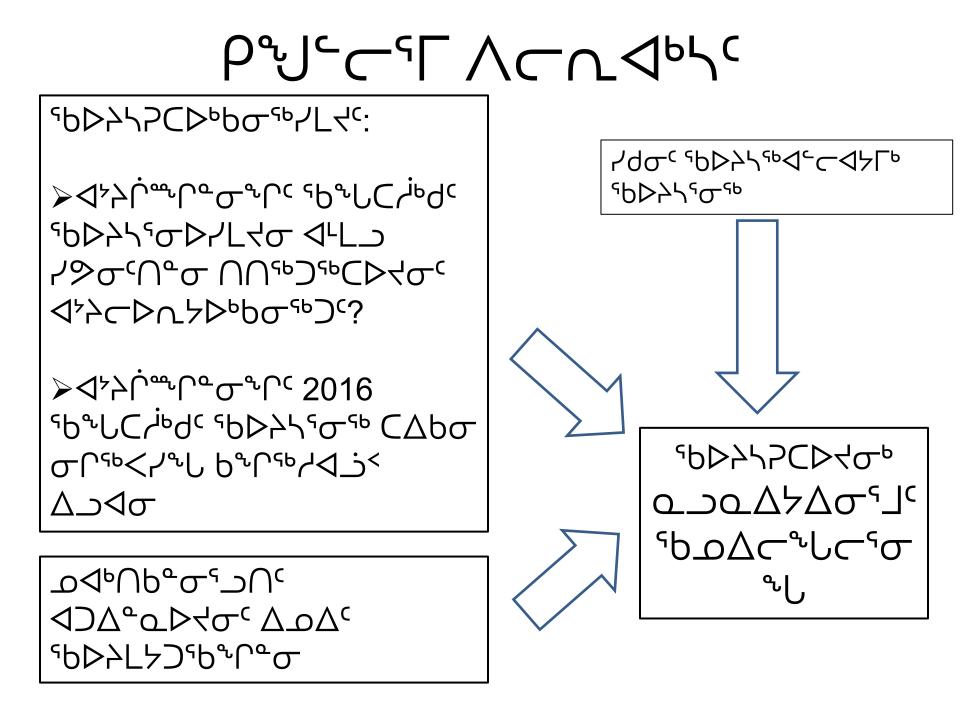
ᡣ᠋᠋ᡗᢞᡳ᠋ᢗ᠄ᡃᠣ᠋᠋ᠴ᠘᠆᠋᠋᠋᠋᠘᠆᠋᠋᠋᠋

<u>2016 ריאסאלעלי 842 אין 2016 Cl: 562-</u> (95% Cl: 562-

⊲۲ بٰۍ∿رد ۲⊌*۲*⊳۶/۲<

2010 2011 2012 2013 2014 2015 2016 2017 2018

ᢀ᠋᠋᠋᠋᠋ᢆᡩ᠕᠋᠃᠘᠉᠘᠉ᠳᢕ



۶<L۷eم-۵۰ م. م. ۲

> 2016 ^ら^b^b^c ^{ib}^b^c ^{ib}^b^b^c ^{ib}^b^b^c ^{ib}^b^b^c ^{ib}^b^b^c ^{ib}^b^b^c ^{ib}^b^c ^{ib}^b^c ^{ib}^c ^{ib}^{c</sub> ^{ib}^c ^{ib}^c ^{ib}^c ^{ib^c^c ^{ib^c}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

᠉ᡃ᠔᠔ᢞᠺ᠘ᢞ᠙᠋᠕᠘ᢞ᠉᠆ᡣ᠉᠆᠕᠘ᢣ᠘ᢣ᠖ 2016 ᢗ᠘᠋ᡄ᠋ᢩ᠆ᠴᢩ᠕᠆᠋ᠴᢩ᠉᠋᠋᠊᠙ᡃ᠍ᡁᠳᠺᡥᠳ᠋ᠧ᠄ᡃᡉᢤᢕᢕᡝᡃᡉᡅ ᠈᠔᠋ᡔ᠘ᢣ᠘ᠵᠧ

$d^{c} - d^{c} - d^{c}$

CONSULTATION SUMMARY NOTES FOR THE 2016 WESTERN HUDSON BAY POLAR BEAR AERIAL SURVEY COMPILED DURING MEETINGS CONDUCTED BETWEEN 4-7 JULY 2017

1. Rankin Inlet

Date: 4 July 2017 Time: 19:00 – 21:00

- Present: R. Harmer, GN, Regional Manager Kivalliq J. Coutou, GN, Conservation Officer, Rankin Inlet M. Dyck, GN, Polar Bear Biologist II Nigel Kubluitok, Secretary, Rankin Inlet HTO Clayton Tartak, Secretary (temporary), Rankin Inlet HTO Raymond Mercer, NTI Robert Karetak, NTI Qovik Netser, KWB Representative
 - No HTO Board members present -
- a) M. Dyck welcomed everyone to the meeting, and also explained that the timing is likely not the best because many board members will be out on the land and a meeting during October would have been much better. However, the Minister thought this was a high priority to report back the results from the 2016 survey, and so we are here to do just that. M. Dyck presented the current status of the western Hudson Bay (WH) polar bear population, i.e., what is currently known from a scientific perspective. The presentation (attached in English and Inuktitut) included a background of the scientific findings up to 2015, why a new study is needed, what the basis was for the new aerial survey, how it was designed, what information was used to design it, how it was conducted, and what the results were of this study. The presentation also included the position of the GN on the current status of WH polar bears, i.e., that the population appears to be stable and the GN currently does not support an increase in the TAH.
- b) Questions that arose from the presentation:
 - i) Q: R. Mercer: Do you think there is a concern with this population currently?

A: M. Dyck: The population appears to be stable based on the new aerial survey results where we could not detect a significant difference between the last survey from 2011 and the current one from 2016. However, as in the previous aerial survey and other previous ECCC studies, the reproductive performance of the population is poor compared to other Hudson Bay complex polar bear populations (see Table in ppt presentation). There are few coys surviving into the yearling stage. ECCC also documented that body condition, survival and reproduction has been decreasing for many years in this population. Abundancewise the population appears to be stable, but something concerning is going on regarding the reproduction. Ongoing monitoring of this population is needed as well as sea-ice monitoring for the future.

- Q: Nigel: I heard there is some tagging going on?
 A: R. Harmer/M.Dyck: There is a PITT tagging program going on for polar bear hides to monitor export and identity of the population where bears were harvested – that is a collaborative program between ECCC and the GN. In addition, ECCC and the University of Alberta is putting out satellite ear tags in Manitoba to monitor and examine male polar bear movements and how they are distributed during freeze up.
- Q: Nigel: When will the next survey be?
 A: M. Dyck: Ideally we want to survey every 3-5 years. If intervals are too large between aerial surveys then all the investment in previous surveys was for nothing so we need to maintain a rigorous monitoring schedule. I will make sure that we can have the next survey in 2020 for WH.
- iv) Q: R. Mercer: If we wanted to conduct a coastal survey in Nunavut like Manitoba does, how much would it cost?

A: M. Dyck: I think that with about 10-15K we could cover most of the coastal area, and it would be a great effort to collect this information over the next few years, in addition to traditional knowledge, to examine fall distribution of bears in Nunavut. We could get money from the GN, and likely NWMB, and maybe the RWO to apply together to secure funding.

Meeting adjourned around 21:30 Notes by M. Dyck

2. Whale Cove

Date: 5 July 2017

Time: 19:00 – 21:00

- Present: Rob Harmer, GN, Regional Manager Kivalliq Markus Dyck, GN, Polar Bear Biologist II Eva Voisey, Whale Cove HTO Shirley Kabloona, Whale Cove HTO Martha Arualak, Whale Cove HTO Chris Jones, Whale Cove HTO Robert Enuapik, Whale Cove, HTO Raymond Mercer, NTI Cheryl Wray, NTI Nick Arnalukjuaq- KWB Representative
- a) M. Dyck welcomed everyone to the meeting, and also explained that the timing is likely not the best because many board members will be out on the land and a meeting during October would have been much better. However, the Minister thought this was a high priority to report back the results from the 2016 survey, and so we are here to do just that. M. Dyck presented the current status of the western Hudson Bay (WH) polar bear population, i.e., what is currently known from a scientific perspective. The presentation (attached in English and Inuktitut) included a background of the scientific findings up to 2015, why a new study is needed, what the basis was for the new aerial survey, how it was designed, what information was used to design it, how it was conducted, and what the results were of this study. The presentation also included the position of the GN on the current status of WH polar bears, i.e., that the population appears to be stable.
- b) Questions that arose from the presentation:
 - i) Q: Eva Voisey: How can you tell if it is a male or female from the air?

A: M. Dyck: We tested this in the Baffin Bay but it is difficult. The males are easy to spot as they have distinctive features like larger necks and scars on their faces. We are flying 300-400 feet up and we take the GPS location, then we go to about 100 feet, take a picture and can tell the differences. But there are times, when we don't know the sex of the bear and we do state that.

Q: Rob Harmer: how far inland is that photo taken (slide 18)?
 A: M.Dyck: I can't remember specifically but around 30-40 kilometers inland.

- Q: Nick Arnaklujuaq– I don't see any partners that include HTO's? Why don't we include that on our slides?
 A: M. Dyck: This slide only includes organizations that provided financial assistance and fuel. We did include the HTO's during consultations and I can add a slide that shows the HTO's that were involved. I have to apply for funding from a lot of different organizations and that is what I am trying to convey here.
 A: R. Harmer: I just want to add that we are in no way trying to be disrespectful and not listing the different individuals or HTO's. We do not in any way under value the contributions of individuals or HTO's and we realize the importance and that is conveyed to upper management.
- iv) Q: Chris Jones: Did you mention that there was a concentration of family groups in Manitoba? In Coral Harbour the females with cubs would always stay away from the big males.
- v) Q: Are the transects 7 km apart? Maybe the transects are too far apart to get an accurate count?
 A: M. Dyck: We designed the study so that the transects were closer in areas where we knew the densities were higher. It wouldn't make any difference if we spaced the transects closer, as there just are not more bears. Having transects closer in some areas would not mean that we find more bears the effort was already maximised considering density of bears and costs involved. We need to work closer together with communities and HTO's to determine when the best time of the year to survey.

Chris Jones: Our problems are in October to December when we see a lot more bears, and what we think is happening that a greater proportion of bears from Manitoba are moving into Nunavut.

Markus: See that is very interesting as this is the first time I have heard that there are proportionally more bears moving up and not just an increase in the population overall.

vi) Markus: Q: Have you seen a change in the sea ice freeze-up patterns here? Maybe ice freezers here sooner than in Churchill and that is why bears move into Nunavut faster in higher

numbers. We need to collect that information. When did you see a change in bear numbers occurring in your community? Eva/Chris: In the 60s and 70s there were very few bears around and people were on the land in spring or summer and did not see bears. In the 80s that started to change and more bears were seen. Usually the number of bears in Whale Cove seems to be higher in October before freeze-up.

Markus explains also that between the 1800s and early 1900s about 55K polar bears were harvested by explorers and whalers, and not many bears were suspected to be left across the arctic, that is why the international agreement was put in place – to contribute towards conservation. But also the tourism industry in Churchill began and by the mid 1990s it was in upswing – there are bears habituated to tourism, the Ladoon dog yard, and other activities, and maybe all these combinations lead to have more bears showing up in Nunavut during early fall. We need to collect the IQ that is out there, and try to get genetic samples of all bears that are frequenting the communities, and then compare that to the ECCC data base which will allow us to find out the history of each bear in communities where it is know. Then we can hopefully explain better why there are more bears in Nunavut, and how we can manage that situation. I have brought this issue up with Manitoba several times, and I think they are seeing this more now as a concern and are willing to collaborate on that topic.

- vii) Chris Jones: Maybe we can use the biopsy darts as part of our deterrent and help collect the information.
 Markus: we should discuss this and if the HTO is willing to do this, then I think that would be great.
- viii) Eva Voisey: I think the climate change has a lot to do with impacting the bear populations. Also when we have the bear problems; they are used to people from being habituated in Churchill.

Markus: I did research this in Churchill and I think that the tourism has allowed habituation and conditioning and now Nunavut is paying for it.

Chris Jones: Deterring bears has changed dramatically in that they are not scared anymore.

Chris Jones: there is a trail that the bears use to move around Whale Cove.

Rob Harmer: Have the conditions of the bears changed? Chris: we had an older male last year. We have a lot of bears in town. Female with 2 cubs under the houses.

- ix) Eva Voisey: I don't understand this quota thing? Why does it come from America?
 Markus/Rob: I think you are talking about CITES and the trade of the hides.
 Eva: it's not only humans that kill the bears. It's also contamination from plastics etc.
- x) Chris Jones: When is the next time you'll be in the communities?
 Markus: My plan is to conduct the next survey in 2020. But that is also dependent on where the community concerns are. We are traveling to all the WHB communities to provide updates. We need to keep up a regular interval with the surveys as it makes the data set stronger. We can detect a change if we maintain a rigorous survey interval.
- xi) Chris Jones: do you guys regularly count the bears in Arviat?
 Rob: we have a couple of employment positions that are bear monitors and keep track of wildlife sightings.
 Markus: We can work with the communities as we have darts that will take a sample but also colour it so you can keep track of what bears are moving through.

Meeting adjourned at 21:30

Notes by Cheryl Wray

3. Arviat HTO

Date: 6 July 2017 Time: 19:00 – 21:00

- Present[.] Rob Harmer, GN, Regional Manager Kivallig Markus Dyck, GN, Polar Bear Biologist II Joe Savikataag Jr., GN Conservation Officer Thomas Alikaswa, Arviat Vice-Chairman HTO Ludovic Issumatarjuak, Arviat HTO Gordy Kidlupik, Arviat HTO Angelina Suluk, Arviat HTO Sam Garry Muckpa, Arviat HTO Jamie Kablutsiak, Arviat HTO Bert Dean. NTI Robert Karetak, NTI Raymond Mercer, NTI Cheryl Wray, NTI Nick Arnalukjuaq- KWB Secretary/Treasurer Stanley Adjuk – KWB Chairperson Mary Issumatarjuak, HTO Office Bobby Suluk, Interpeter
- a) M. Dyck welcomed everyone to the meeting and presented the current status of the western Hudson Bay (WH) polar bear population, i.e., what is currently known from a scientific perspective. The presentation (attached in English and Inuktitut) included a background of the scientific findings up to 2015, why a new study is needed, what the basis was for the new aerial survey, how it was designed, what information was used to design it, how it was conducted, and what the results were of this study. The presentation also included the position of the GN on the current status of WH polar bears, i.e., that the population appears to be stable and the GN would not recommend an increase in TAH.
- b) Questions that arose from the presentation:
 - Q: Markus: One of the questions I asked the other HTOs was when do you see these bears coming into the communities? Also is there a difference in when the bears would show up historically vs present day? I believe that if we work together and partner western science and IQ that we can get a better idea of when the bears pose problems to the communities to keep people safe.
 - ii) Q: Gordy Can we share this information with the public with people in our communities?

A: Markus: Yes this information is public to Nunavut right now, but when I get back to Igloolik next week I will share the information with Manitoba, Parks Canada. It has also been shared with NWMB.

- iii) Q: Sam: For aerial surveys would it be possible during the migration to conduct surveys during that time of the year? We hear that sometimes 20-30 bears are moving by the community. A: Markus: What I think we could is during the fall time is to conduct a coastal survey. Manitoba conducts a survey during the fall down to the Ontario border. What I think we should do in Nunavut is that we survey north of the border and see how many bears up during this time frame. I think we should think about this. In order to time this right, we can discuss with all the HTOs as to when a good time would be. The other option is that we can genetically biosample bears, I think we could do this throughout the community. Joe is already helping with this. But we can compare the genetics of the bears moving by the community to what ECCC has and learn the history of these bears then we will be able to determine if bears had past encounters with humans, the dump in Churchill and whether this contributes to bears near communities. If there are bears that have been captured before we can compare the genetics to what ECCC has and learn the history of this bear such as if it was captured in Manitoba. Myself and some other HTOs think is that some of these bears that have been conditioned in Churchill could possibly be bears that are coming into our communities here in Nunvaut. We don't know this, but the genetics could tell us a story. I also have darts that can mark a bear with colour as well as take a biopsy. This could actually help us monitor if it is a bear that is returning or different bears moving through. We have some options and we should discuss this further.
- iv) Q: Gordy: We need to keep in mind that the bears we see here will be in another community in a couple of weeks. Maybe October is a good month to conduct the surveys. They will be here and then in Whale Cove in a couple of weeks.

- Q: Markus have you seen a change in the sea ice in the last 15-20 years in freeze up? By knowing all these different pieces of the puzzle, we can figure out how the bears are moving and whether they are coming from the Churchill area. Churchill now has a weir and perhaps that can play a factor in how the ice freezes now in that area and that could be a contributing factor.
- Q: Thomas: There is a difference between thin bears and large bears that spend more time on the ice and that thin bears have been walking for miles. It's not because they can't hunt, it's because they have been walking for a long time. The second point is that I don't believe that there is a decrease in the numbers but rather there are bears further out in the ocean.
 A: Markus thanks for your comments and observations.
- vii) Q: Ludoric: The elders used to say that the populations were quite low in the past and have witnessed that there weren't many bears in the past as I am a hunter. I also support what my colleague Thomas is saying in that the bear population is not declining but rather is a lack of food and they are walking farther. It's not possible to stay in tents in the summers anymore as there are so many bears.
- viii) Q: Markus we heard in Whale Cove that in the 60's there were fewer bears and then in the 80's the numbers started to increase. Is this what you have seen as well?
 A: Ludoric: Yes I agree with what Whale Cove has said that we are now seeing more.
 Q: Robert is that around the time that Churchill closed their

Q: Robert – is that around the time that Churchill closed their dump?

A: Markus: the military was killing a lot of animals when they were in Churchill and the bears have had time to rebound and maybe that's why we are seeing more as there is now a quota system. Bert: the mid to late 80s hunters from Rankin would come down to Arviat and Churchill to harvest bears as there weren't many in the Rankin area. Even in the early 90s, Rankin wouldn't even fill their quota.

Ludoric – I remember this time well.

Rob Harmer/Markus – between 1890's and 1930's there were about 55K bears killed in Canada by whalers and explorers

were killing many bears. This is the time when Governments became concerned that the number of bears were declining. Ludoric – I can remember this lady from Rankin was speaking about the number of bears harvested and they were declining.

ix) Q: Jamie – When should we as people from communities expect to get our TAH's back? Can you take this back to the GN that we want to see our quota increase to where it was previously?

> A: Markus: The population estimate that we have now is stable. The Government's position now is that there is no increase in TAH as the population is stable. I can take that request back to my Director and see if there is a way to even out the credits and overharvests to get back to the original TAH. Bert – The NWMB is going to be doing a public hearing in the fall on the Polar Bear Mgmt Plan and your HTO will send someone to this meeting. This meeting will allow a discussion as to how the populations can be managed. I think it is worthwhile to start thinking about a workshop to discuss the Mgmt Plan as we are hearing from a lot of communities that public safety is a huge issue.

- Q: Gordy: During the 50/60s to the 90s, Tommy had noticed that the bear numbers were increasing and people were starting to get scared and wanted him to harvest it.
- xi) Q: Thomas: When you conduct your surveys, how far inland do you go and how do you decide that? We have seen bears about 120 miles inland at a caribou outfitting camp.
 A: Markus: That would have been good information to have so we could survey in those areas. When we discussed this initially during the consultation for the design this did not come up.
- xii) Q: Thomas we travel inland on quad and have seen bears and those bears aren't counted?
 A: Markus we have surveyed from between 80-120 km's inland. If there are any locations that you have during the summer months where you have seen bears that far inland. Can you please report those areas to the CO so we can search

that area for the next survey. That's important information to know as it would help us.

- xiii) Q: Ludoric: I have heard guide/people talking about seeing bears in a sports camp at a caribou camp 120 miles inland.
 A: Markus We hope to have a lot of this information for our next survey so that we can search better if we need to go inland.
- xiv) Q: Sam Garry in 2007 my grandfather mentioned that almost every night there was a polar bear encounter at a sports camp near Dianne River.
 Ludoric I have also witnessed that as I have helped the sports hunters for bears. I have also heard from my ancestors that some bears could be spending their entire life cycles in the ocean. They have even stated that the bear's eyes are red because they are so large.
- xv) Q: Raymond: In Whale Cove they said they are seeing a lot of seals. I am wondering if this is the same in Arviat?
 A: Sam Garry boating near Century Island we noticed a lot of seals. A lot more seals than we have seen.
 Ludoric there does seem to be a lot more seals.
- xvi) Q: Rob Can there be some sort of agreement that maybe bears are more comfortable around humans now. Do you guys feel that they might be too comfortable with us now due to them becoming conditioned and used too our deterrence efforts? Could that be a possibility as to why we are having more occurrences because they're becoming more bold and have lost their fear of humans?
 A: Ludoric: Nodding head. Gordy: I believe that it is more about finding food. I think the bears know that they can access food near the communities. Andy Derocher showed me a graph

as to when the bears started declining and it was around when we say more around the community and it occurred to me that they were looking for food near our communities.

Rob: What we think is that bears are coming up from Manitoba and they aren't scared of people anymore due to Manitoba's deterrence program; so when they get to Arviat or Whale Cove they aren't affected by rubber bullets, or bangers, etc. and aren't deterred anymore. Manitoba had a serious problem bear last year and notified us that this bear would be a problem for us, but fortunately that bear moved onto the ice before it got here.

xvii) Q: Ludoric: I have heard that because the garbage is now managed at Churchill that they are going after our dumps because the food is available there.
Robert Karetak: There was a workshop conducted on wildlife deterrents in Churchill and we want to have another workshop like that. If there was funding they thought they might hold a workshop in Arviat or Rankin. There was a final report issued on the workshop and I can forward that to you.

Nick: closing remarks. Nick thanked the GN for the presentation about the results, but he does not agree with the survey results and we need to conduct new surveys in the future. When it comes to animals, it's like every single result was never positive and constantly lowered and that impacts Inuit. To the Inuit this is not justified. If we did not have defense kills, our quotas would be fine. In the long run, I would like to see effective communication and build on our relationship between RWO/HTO and the GN. With powers and authorities we need to be able to manage our wildlife populations with the government. We need to continue and maintain the surveys as we want accurate numbers as we know that populations will stabilize. So we want the IQ and western science to work together.

Meeting adjourned at 22:00

Notes by Cheryl Wray

4. Chesterfield Inlet

Date: 7 July 2017 Time: 17:00 – 19:00

- Present: Rob Harmer, GN, Regional Manager Kivallig Markus Dyck, GN, Polar Bear Biologist II Harry Aggark, Chesterfield Inlet HTO Leonie Mimialik, Chesterfield Inlet HTO Patrick Putulik. Chesterfield Inlet HTO Jerome Misheralak, Chesterfield Inlet HTO Simon Aggark, Summer Student, Chesterfield Inlet GN Bert Dean, NTI Raymond Mercer, NTI Cheryl Wray, NTI Robert Karetak, NTI Nick Arnalukjuag- KWB Representative Jennifer Sammurtok – Interpreter Peter Kattegatsiak Sr. – COII, GN-DOE NO BAKER LAKE HTO BOARD MEMBERS PRESENT (travel arrangements were made for 2 members which did not show up for the meeting)
- a) M. Dyck welcomed everyone to the meeting, and also explained that the timing is likely not the best because many board members will be out on the land and a meeting during October would have been much better. However, the Minister thought this was a high priority to report back the results from the 2016 survey, and so we are here to do just that. M. Dyck presented the current status of the western Hudson Bay (WH) polar bear population, i.e., what is currently known from a scientific perspective. The presentation (attached in English and Inuktitut) included a background of the scientific findings up to 2015, why a new study is needed, what the basis was for the new aerial survey, how it was designed, what information was used to design it, how it was conducted, and what the results were of this study. The presentation also included the position of the GN on the current status of WH polar bears, i.e., that the population appears to be stable.
- b) Questions that arose from the presentation:
 - Q: Markus I am posing the same question to you as I have with other communities. In Whale Cove, they told us that in the fall time they would have a lot of bears in their community. What time of the year do the bears show up in your community? A: No comments.
 - ii) Q: Markus The COY's are not surviving into the first year and maybe hunters can help us understand why that is. Maybe the

males are killing the cubs or the mothers are not in good condition and killing off the weaker COY, or there are other reasons that local knowledge could help us understand. A: No comments.

Q: Jennifer Sammurtok: July 1st long weekend we saw a mother with 2 cubs on the Inlet. Also the elders have stated that bears are being fed in Churchill so they are not afraid anymore.
A: Rob/Markus: We have heard this is in every community where all of a sudden all the bears show up at once and where that didn't happen 15-20 years. We would like to gather more information from the communities as to why all of a sudden these bears show up at once.

Leona: in the spring time when the ice breaks we see them near the community.

Rob: During the spring time are they problematic or are they just moving through? Leonie: it is scary for us as the kids are out of school and we have to tell them to go home. Also the bears are walking down the roads.

Leona: Because the community is on a point, the bears are coming from all directions.

Markus: Is there a time frame when the bears weren't problematic?

Leonie: Previously we were able to go camp.

Harry: In the mid 60's we would be able to camp on the islands without seeing bears.

Rob: do you find that there is a difference in the bears now – are they less fearful then they used to be?

Leonie: they are not scared anymore and approach the communities. Previously if a dog was barking, the bear would get scared and run, but that doesn't happen anymore. We have a camp not far from here and we can't even go there to eat anymore because of the bears. The bear was hiding and watching them so we had to leave and go back to town.

 iv) Q: Harry Aggark: I know the reason why we have low populations in August is because they are south in Manitoba. We see them in the fall time when the ice starts to freeze. Also we have both the WHB and FB populations here so that is why we see more bears.

- v) Q: Harry: so you stated that Ontario has done their studies but you don't know what those numbers are yet?A: Markus: Yes I haven't seen that data yet.
- vi) Q: Harry: It might be best to do WHB and FB surveys at the same time, as they move around at the same time.A: Markus: Yes it makes sense. The issue is I have been the only biologist for the GN right now, and there at times competing resources and priorities.
- vii) Q: Jerome Misheralak: It might be more effective if you have a team working from the south and another working from the north conducting the surveys.

A: Markus: explained how the work was done in WH and why.

viii) Q: Harry Aggark: Are you collaring bears still?A: Markus: We haven't collared in 6 years.Rob: people have expressed that they don't want bears collared anymore.

Markus: There is ECCC and Universities that are still collaring and tagging bears.

Harry: We know that there was a bear collared near Manitoba and then saw a bear at Ungava Bay that had a collar.

Harry: I don't support collaring as it causes a lot of damage to the bears neck.

Rob: We have pulled back on collaring on bears because of that reason.

Harry: We are not really concerned about where they move but rather if there numbers are increasing or decreasing.

ix) Q: Rob: Do you guys tell Peter whenever you see a bear even if it isn't problematic.

A: Jennifer: yes, he is always notified.

x) Q: Leonie: Why did you not survey between Rankin and Chester?

A: Markus: It's considered a different population (Foxe Basin).

xi) Q: Jennifer: Why are you not surveying bears north of the boundary line?

A: Rob – we know that bears move beyond each management zone. Different population/management zones are created through tracking and previous surveys that the bears occupy.A: Leonie: I understand what you are saying but I know that bears are moving between zones.

Markus: I totally believe that bears are moving between areas. Leonie/Jennifer: We don't understand why Foxe Basin/WHB aren't surveyed together?

Rob: With these surveys it's about time and money. Markus is the only biologist currently and we don't have time and money to do every management zone or population on a consistent schedule . Markus has to request funds from other interested partners which takes time. We also want to survey areas every so many years which makes sense. We don't want to survey an area every 15 years or every year; by doing that it wouldn't be productive to gather consistent data.

xii) Q: Jerome Misheralak: Do you survey the area into Baker Lake for bears, I know a bear was there last year? We know when we go to that area to hunt caribou that we see bears.
A: Rob: We know that Baker Lake isn't a natural habitat for bears so we don't include that area for bear surveys. Baker Lake has had two occurrences where polar bears were sighted and killed as a result of defence kills. One of these was last summer just east of Baker Lake in Cross Bay.
Markus: That might be important information for us to know if there are more bears going inland so that we can include this

area on our next Foxe Basin survey. Rob: Do you regularly report your sightings to the CO so that's he can let Markus know.

A: Peter Kattegatsiak: To elaborate for Leonie, the Foxe Basin inclues different communities like Coral Harbour, Repulse Bay, Kimmirut, etc. They are different subpopulations. And Markus cannot survey everywhere at once.

xiii) Q: Harry – would it possible to conduct surveys once in August and then again in September or October?
A: Markus: We have talked to other communities about this as well. I think what we could do is look at a coastal survey and get information from the communities as to when a good time to do survey. We could potentially do a survey in

September/October. Manitoba does coastal surveys in the spring and fall and I think that this would be a good idea for Nunavut. Coastal surveys would be good to tell us what bears are near the communities but we may miss females in dens or already on the ice.

xiv) Q: Jerome Misheralak: I think it's a good idea to do surveys in WHB and then FB at the same time.
A: Markus: We need a lot of money and manpower to do that. We don't want to confuse the populations. But if we just wanted to look at how many bears are near the communities, then that might be possible.

Bert Dean: NWMB is going to have a public hearing on the Management Plan in the fall, I think it's very important that these issues be brought up at those hearings. Even working in Parks Canada as they manage Wager Bay and could help with surveys.

xv) Q: Harry Aggark: My question is about the survival of the COYs.

A: It's something that we have observed on our surveys. We are noticing that cubs aren't surviving and maybe males are eating cubs.

Bert Dean: They are still handling bears in Wapusk and has anyone asked whether they are still drugging cubs?

A: Markus: I would have to look further into that, but the ECCC capture programme has been relatively small in recent years in Manitoba.

- xvi) Q: Leonie when is that Polar Bear Mgmt Plan meeting?
 A: Bert they haven't decided yet but as soon as NWMB does know, they will let the HTOs know.
- xvii) Q: Leonie: When the public hearing happens is there the possibility to have an elder, youth and middle age?
 A: Bert: The reason why the public hearings were delayed is that NWMB would only fund 6 representatives in each region. Baffin has 13 seats and they were upset that all communities weren't invited so Baffin boycotted and Kivalliq supported them.

End of meeting: 19:20

Notes taken by C. Wray

bDDJ <u>sa</u> ^{Sc} AP^{ta} Cod Cos^c Building Nunavul Together Nunavul luqatigingniq Bàtir le Nunavul^c ensemble

> 「 っ い く く ぐ ∩ っ ん か め ら っ c Minister of Environment Ministaat Avatiliqiyitkut Ministre de l'Environnement

ረበለሲ 22, 2017

Cope イタC
 ΔbイペタンCシェクちつう
 コュタ・F シレマティン・マイマック ちんしゃって
 ハいゃちょうく
 ハいゃちょうく
 ハロシント
 ストレック
 スト

לס⊳° אסכישי:

 $b^{b}/h^{b}\sigma^{2}L^{c}\rho^{c}$

b2C.2J_pa_^{Sc} A7^{ta}C^{*}C<0^cC^{Sc} Building Nunavut Together Nunavutiuqatigiingniq Bâtir le Nunavut ensemble

> 「つ[、]C << Cへんちゅう Minister of Environment Ministaat Avatiliqiyitkut Ministre de l'Environnement

 $\Delta A L - D P C D + T^{c} < D - ^{b} O (D D D O D C - A^{b} > b < 4^{L} D O + 2 P^{c} A^{b} > C < L - b^{1} d^{b} C D - D^{b} < D^{c} O - A^{b} - A^{$

√ \ልbር፞ኈ, ୮σ⁴ር

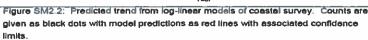
Nunavut Tunngavik Timingat Titiqqilvia 280, Kangiqhiniq NU XOC 0G0 Canada

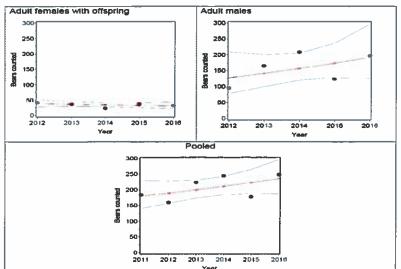
2) \mathcal{D}^{a} አስትር የብረር እስለ \mathcal{D}^{a} እስለ $\mathcal{D}^$

A. ⊳₅b⊳чь∽с

Վ⊳Հր٦։

www.tunngavik.com


RECEIVED NOV 2 3 2017

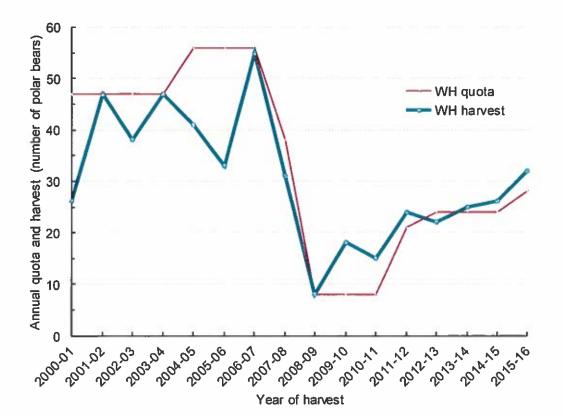

ف≪∆∟≪ 24, 2017

ወቂዎና ጋግኒል፥ በጦኒና በብጭቴቴኦሮ 280, ቴግሞታታጭ ወቂዎና X0C 060 ይቂር Nunavut Tunngavik Timingat Titiqqilvia 280, Kangiqhinlq NU XOC 0G0 Canada Nunavut Tunngavik Incorporated P.O. Box 280, Rankin Inlet NU XOC 0G0 Canada

☎ (867) 645-5400
 Ø 1-888-236-5400
 凰 (867) 645-3451

C<୧σናኣ∆°ฉኈ bLቦታ⊳∩՟_ጋቦና.

ᆁᠵᡄᠺᠽᢑ


Δ.ΔΔ^c '6D2L55'6' («۴L) ____ ۴۵D2Lo ۴

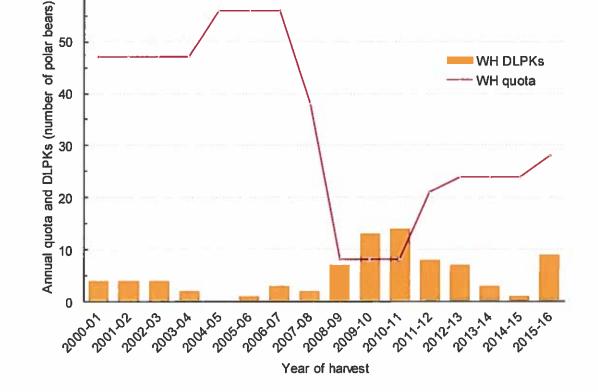
B. פרספרעולג ⊳נףאינ

⊲⊳_‹/>⊳⊀‹ ∧<u>م</u>, ∕⊲ሁ‹հ≁Ր‹

C⁶daσ በበናና/Lσ⁵6 1 Δζ⁶d 5, በበናና/Lσ<2/3 (e), Δα≫^LΓ < $\Delta \Delta \Phi \Delta \Phi \Delta \Phi A = \Delta$ ΔοΔς ″ac≥°σ°°° *√[⊥]*

 Δ ሬ°σ d ላ/ አርና አስት በ እስከ የ እስከ ለ እ 2001-01-F& <</ (<</>
(<</p>
(<</p>
4
4
(
4
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4
(
4</p 2010-11), 직사누ር፣ምንቦ፣ በቦኦበፖሬ፣ክር፣ 30–ም ላ፣ሩሀ୮୭ ଏ፣ሩሀມ፣ በዮ_ጋሀ (ርዕቦላዖ፣ 1). Lሲፈጋጐዀ Δፊኣናሮቦላጮበርኦሮኦናምኒ ኒኖዉ ዉ°ዾጮርኦኆዉጮጋው TAH 56" (NWMB 2007). ᠳ᠋ᠴ᠋ᠻᡆᡃᠣᢂ᠆ σ_σΔc άζωςδηματικής τη από τη από

 $Cd\Gamma d \subseteq \mathcal{A}^{\circ}$ כd \mathcal{A}° \mathcal{A}° \mathcal{A}° \mathcal{A}° \mathcal{A}° \mathcal{A}° \mathcal{A}° \mathcal{A}° \mathcal{A}° 2000-2001-For 2015-2016-Jor. (۸۶>۲L៩%: ٩/シ>٢/Lo∿L ៤ናናJF ๔๛๛๛๛๛๛


ወ**ግ እንግ በ** እስከ እ በበ⁰₽₽₽ር 280, ₽₽₽₽ሮ ወጭ .pa % X0C 0G0 baC

Nunavut Tunngavik Timingat Titiggilvia 280, Kangighinig NU XOC 0G0 Canada

Nunavut Tunngavik Incorporated P.O. Box 280, Rankin Inlet NU-X0C 0G0 Canada

a (867) 645-5400 Ø 1-888-236-5400 8 (867) 645-3451

ወልዎና ጋዮኒኒልቱ በጦኒና በበጭቴቴውር 280, ቴዮሎቲታታጭ ወልዎና X0C 060 ክልር Nunavut Tunngavik Timingat Titiqqilvia 280, Kangiqhiniq NU XOC 0G0 Canada Nunavut Tunngavik Incorporated P.O. Box 280, Rankin Inlet NU XOC 0G0 Canada ☎ (867) 645-5400
Ø 1-888-236-5400
♣ (867) 645-3451

60

Ρీరిఎది ఉద్ చ్ దేవింగా దికి సార్జు, TAH–J' ది ఉంటి సింగ్ రిలింగ్ సింగా సింగ

∆ביבי ⊲אַבלי∩בי.

reports)

المه، Cdrdsu http://www.gov.nu.ca/environnement/information/wildlife-research

ወፊዎና ጋግንሁል፣ በበንሆና በበ%6%6>ር 280, 6%ቦ%ሮታታ% _____ XOC 0G0 baC

Nunavut Tunngavik Timingat Titiqqilvia 280, Kangiqhiniq NU XOC OGO Canada

Nunavut Tunngavik Incorporated P.O. Box 280, Rankin Inlet NU XOC 0G0 Canada

a (867) 645-5400 Ø 1-888-236-5400 鼻 (867) 645-3451

NWMB. 2007 በበኈbኈ GN-ውጔና ለኦረር: ርፖኮታናላጭ ለኈሁኈኳናረላው ዹኈጔናርኮቶኈንጔና TAH ፚረLሮኮንርኮና

የሥላላሪ

<- ۵۹∿۲⊳۵ O^{+} ۵۵۵ کمر کم

NN5⁶⁰25⁶⁰. GDON AND'

<mark>௳</mark>^L°თ∿სთ^₅ ᠫᡥ᠋᠋ᢣ᠘᠕᠆᠕᠆᠆᠘ᠴ᠘᠋᠆᠆᠘ᠴ᠘ ⊲ኄነ⊾ሥየት የፈምራ የ ρ»dጋΔ°ฉΔι ΔισωΔιοσγισγι αιτρι γ>νλισιι σνισιαρισκα αιτρια $\Delta \Delta C$

(DLPKs) WH-Г ሳይንም የኖሩና ወሳር የም 2015-2016- Jo. http://www.gov.nu.ca/environnement/information/wildlife-research-reports)

כאראקיאיי 2. ארי איילאר איין איילאר איין איילאס דער איין איילא (אר) איין דער אייע

₽ኖᡩᡄᠮ ϷLᢣᡄ᠋ᡅᢣᡝᢣᢦᢩᡗ᠖∩Lት∿ᡗᡃᡗᠴ ᠴል≦∧ᡅ 24, 2017

⊲۹۳۵۲۵۰ ⊂<۹۵۵۲:

ᡆᠴ᠘᠋ᡗ᠂᠕ᡗᢣᠳᡐᡗᢈ

ͻϽ~ንϽϘ;ϲϷϞͳϟͽϥ

Pペ⁻−⁻Γ ⊳L≺−⁻ν⁻√√ ⊳DL≻^{*}Γ⁻C

᠑᠈ᠬᢞ᠍ᡩᠲ᠈ᠴ᠌ᢂᢂ᠉ᢣ᠈ᡩᠴ᠆ᢣ᠋᠘ᡆ᠋᠋ᠯ᠆ᢞᠴᡆ᠂ᢞᡅ᠖ᢣ᠑᠈ᢣᡏ᠑ᠺᡩ᠈ᢣ᠋᠋ᠫ᠉ᡝ᠒ᠺ ᠈ᡆ᠌ᡥᠣ᠈ᠴᢞ᠋᠘ᡃᢣᡅ᠘ᢞᡅ᠈ᡄ᠌ᠺᡥᡉᢑᠯᢛᢑ᠈ᠬᢣ᠘᠘᠈ᡔ᠆᠑᠊ᡃᡄᡄ᠘᠈ᡆ᠆ᡗᢞᡗ᠕ᡁ ᠂ᠳᢣ᠈ᡆ᠈ᡆ᠈ᡆ᠈ᡆ᠈ᡆ᠕᠕᠘᠉ᠧᠺ᠋ᠫᢂ ᠈᠘ᡥᠣᡥᢂᡣᡏᠴᢧ᠕᠒ᠴᢞᠺᠫ᠕

1. $\Delta - 4 d^{\circ} r^{\circ} d^{\perp} L$ $\Im G^{\circ} C D d^{\circ}$

₽ᢟ᠆᠋᠋ᠮ ᠌᠌᠌᠌ᢂ᠆᠆᠘᠆᠕᠆᠕᠆᠕᠆᠕᠆᠕᠆᠕᠆᠕᠆᠕᠆᠕᠆᠕᠆᠕᠆᠕᠆᠕᠆᠕ $PACG^{H}I' CH^{H}ZAG^{-} CAP^{H}L^{O} CAP^{H}L^{O} CH^{H}Z^{O} CH^{H}L^{O} C$ Pridade 2020 and 2020 ρ«·<u></u>-ィ >L<-,>ነ<</p> $\forall \mathsf{AC} \triangleright \mathsf{B} \mathsf{BC} \mathsf{CL}^* \sigma \mathsf{B} \mathsf{CL}^* \sigma \mathsf{CL}^* \sigma \mathsf{B} \mathsf{CL}^* \sigma \mathsf{B} \mathsf{CL}^* \sigma \mathsf{B} \mathsf{C$ C^{+}

ΡΡΡς 웹διάδος, ΥδυβδίγΕυς ΟΕυδαώ αροιγσρας Γυγώς αυγγδαιργγευς αυστασώ Λ'ταρίω]. Οίδα σαριγ υζενό αιτό σαριγ ρετάτας αροιγγδιάς δρεγγραφίες αυγγραφίες αυστασώς σαριγ αυστασώς αροιγγραφίες του αυστασώς σαριγ αυγγραφίες αυστασώς στο διατάτας αυγγραφίες αυγραφίες αυγγραφίες αυγγραφίες αυγραφίες αυγγραφίες αυγρ

ΡP
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

 4^{1} $4^{$ $(P \ll F) = (P \ll F) + (P \iff F) + (P \ll F) + (P \iff$ $\Delta / L \supset C D^{1} D$ $\Delta ^{2} O^{2} P \ll T D O^{2}$. $/ C B^{2} C D^{2} O^{2} A^{2} O^{2} O^$ Δ are all Againstance Cluda System Argin and Crare Argin and $\Delta c \triangleright \label{eq:lagrange} \Delta c \bullet \label{eq:$ 44225%CD€15 442 C<44 D≥46 600 C<66 4420</p> $4^{-1} - 4$ $\forall P \subset (\forall \forall v \in W) \subset P (\forall v \in V) \subset P (\forall v \in W) \cap P (\forall v \in W) \subset P (\forall v \in W) \cap P (\forall v \in$

ΠΠϚʹͽϹϷϲϷͽϟϹϟͼͺϹʹ϶ͿϫϧϧͺϿϲϿͱϹͺϷϹϟϲϧϞ;ϟϥͼͺϥϷϲͼϟϡͽϔͼϛͺϷϥϲϧͼ ᠕ᢞ᠋᠋ᡏᢣ᠋ᢄᡣᡄ᠈ᡩ᠘ᡩᠴ᠖᠆᠘ᡧᡄᡅᢣᡏ᠆᠘ᡄᢂ᠖᠕ᢤ᠆ᠴᢉᡰ ¹ የወቅ የበረት የሚያስት የ $\Delta c \triangleright \sigma d^{(b)} \Delta^{c} \wedge C^{(c)} \wedge$ Λ^{0} WCLA®CDAC_C DD% 34. C<dd &&%CC \5%CDCDSS J5+D<_A C<da%

1. Δ \neg $d\sigma$ ρ ⁶ $b\rho$ /⁶ ζ ⁶ d^{L} $d\rho$ -⁶ $d\rho$ ⁶ $d\rho$ ⁶ $d\rho$

2.1 << < r low defined and the set of the

P<-T $PL + c_h^{+} + 4^{\circ} + b + b + c^{-} +$

$2.2 \Delta \text{ or } C \text{ or } A a \text{ or } C A - L A C B or <math>A + L C B$

Ρ«<- Γ ΡL<- λ¹<4< βΠL>³<ΔL²αΔ¹β<</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><td

 $2.3 \, \text{derivence} \, \text{derivence}$

Λ^LLLDD[&] DPLDFLd[&]jogs C⁴d Δs)⁶D^K ⁶DPLs⁶^C d^Ls d³de/d⁶D^LLD^K D⁶⁶²L²LC C⁴dD⁴a⁶ Δsδ^c ⁶DPL⁵D⁶^C²D²D²C CL⁶dd as ⁶DPL⁶CLC aD⁶d^c PC⁶¹L³C C⁴ds³ ⁴DCDa²d⁶D²C⁶ Δs⁵ DL²CLP²d⁵ dD²C²D²d⁵. as⁶C⁶C⁶LC adD⁶a⁶²d⁶ aDdD⁶a⁶ A²⁶C⁶LC saD⁵ CLD⁵ PC⁶CD¹C 2⁴d⁴S⁵ CLD³C⁶⁶C⁶C³C. $\Delta \mathcal{A} L \supseteq C D \prec C D \land C D \prec C D \land C D \prec C D \land C D$

$2.4 \Delta \mathcal{A} L \square CD \mathcal{A}^{c} L^{e} \sigma \square CT \square \square \Delta^{c} (\mathcal{A} \mathcal{F}^{b})^{\mathrm{sb}} (D \mathcal{C}^{b})^{\mathrm{c}} \Gamma^{b} \mathcal{F}^{e} \square^{c}$

Ρ«፦<Γ ΡL<</p>
Ρ«፦<Γ ΡL<</p>
Αυ
Α

P«~c+Γ PL</br>

P<<-F</td>
PL
<

 $\sqrt{2}$ 2M:1F $\sqrt{3}$ $\sqrt{3}$

᠌ᠫᠣ᠊ᢣᢗ᠌ᢂ᠋᠆᠕ᠴ᠘᠋ᡗ᠂᠖᠔᠆᠘ᢣ᠋ᠫᡃ᠖ᢞᡥ᠋ᢩᢁᠺ

 $P \mathscr{C}^{-1} \Gamma \to L \mathcal{C}^{-1} \mathcal{C}^{-1} \mathcal{C}^{-1} \to O \mathcal{C}^{-1} \mathcal{C}^{-1} \mathcal{C}^{-1} \to O \mathcal{C}^{-1} \mathcal{C}^{-1} \mathcal{C}^{-1} \to O \mathcal{C}^{-$

3d@ad@CD=56C bn=00 43ad=23ad=500 <math>3d@ad@CD=300 a=200 a=20

P<-cif PL</br>

P<-cif PL</td>
P

C
A

C
A

C
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
B

A
A

A
B

A
B

A
B

A
B

A
B

A
B

A
B

A
B

A
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B</

Ρ<<p>Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε
Ε

C^c−LD√ ⊲⊃∆°∝२[™]CD⊃∩° L°σ⊃<°d°ഛ.

3.1 ⊲୮೭∿⅃⌒⊲٬ℂ⊳⊃ሁ פט־גײַג געיגעיגעיגעיגעיגעיגעיגעיגעיע שאיר 45

$2. \ \land^{L} \land \lor^{C} \ \vartriangleright^{ib} \lor^{C} \ \neg^{ib} \lor^{C} \ \neg^{L} \ \neg^{id} \lor^{c} \lor^{C}$

Ρ<</p>

Ρ<</p>

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
<

ϷΡϷϚ ϹʹʹϹͺͺϤϚͺϷʹϧͿϭͺϤͿϲ, ϤʹϞͿϭͺϫϷϤϚͺʹϐϷϷϞϪϭϫϷͺϞϚͺͺϤͰͺͺͺϤϹͺͰϭͺϫϾͼͺϐϷϷϞϪϭϫϷͺϞ ϫϿϫϪʹϐϹϷϔϹϿϹͼͺϐϚϒϷϭϫϹϐϫͺϤʹϞͿϧϿϪϚͺϤϞͺͺͺϤʹͼϿϪϚͺͺϺϹʹϐϹϷͼϷͽͺϹϐϲ ϫϿϫϪʹϐϹϷϔϹϿϹͿͼͺϐϭϫϿͼϛͺͺϤʹͽϿʹϭϚͺϹϹͿͼϤϤϿͺͺϹͿϭͼϐϹϷϐͼϭϲʹͽϹͿͼ ϤʹϔϹϷϲʹϳͻϹͿͼ

Δε^ν^Γ Δ/L₂CP⁴)⁵^ν¹⁴ ⁴^ν¹⁴⁴⁵^{ν²⁴</sub> ^{4^ν¹} ⁴^ν¹ ²^{ν²⁴</sub> ^{2^{ν²⁴} ^{2^{ν²⁴}</sub> ^{2^{ν²⁴}</sub> ^{2^{ν²⁴}</sub> ^{2^{ν²⁴}</sub> ^{2^{ν²⁴}</sub> ^{2^{ν²⁴}</sub> ^{2^{ν²⁴</sub></sub> ^{2^{ν²⁴}</sub> ^{2^{ν²⁴</sub></sub> ^{2^{ν⁴⁴</sub></sub> ^{2^{ν⁴⁴</sub></sub> ^{2^{ν⁴⁴</sub></sub>}}}}}}}}}}}}}}}}}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

ϫϿϫϪϞϒ·ͶϤϞϤʹϐͱϿ· ϹϹϷͿϤ ϤϷϫ·ͶϷϷϞ· ʹϧϿϽΔ°ϫʹϻ ͶΡϹϷϟϹϝϚͽႱϹ ϧϹͿϧϷϟϤ;ͼʹ;ϧϷ;Ϳϥ;ϿϹͺϫϿϽΔ°ϫϪ·. ϔϿͼϤͿ· ϪϟϹͿϧϷʹϚͿϫϤϲ· ΛϪʹϧϲϟϤ;ϿϳϚ Ϥ;ϷϷϲϟϤ;ϿͶͽϿ ʹϧϿʹϻ ϹϹϷͿϤ ͼϪʹͽϹϾ· ϤϽʹͽϹϷͼϤͽϹͽϹϲ

¹ Wenzel, G. (2008). Inuit TEK and the sport-hunt. In G. Wenzel, *Sometimes hunting can seem like business: Polar bear sport hunting in Nunavut* (pp. 21-31). Edmonton, AB: CCI Press.

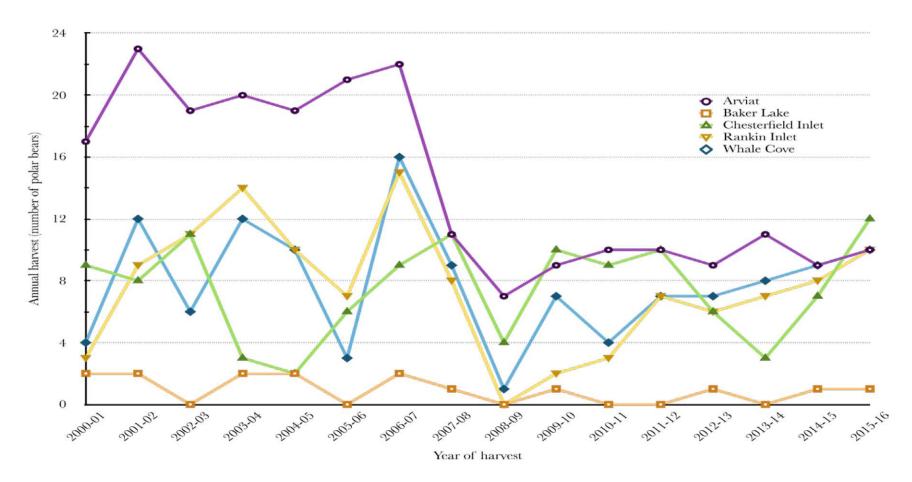
² Tyrrell, M. (2009). Guiding, opportunity, identity: The multiple roles of the Arviat polar bear conservation hunt. In M.M.R. Freeman and L. Foote (Eds.), *Inuit, polar bears, and sustainable use: Local, national, and international perspectives* (pp. 25-38). Edmonton, AB: CCI Press.

$3.4 \, \mathrm{dF}^{\mathrm{s}}$

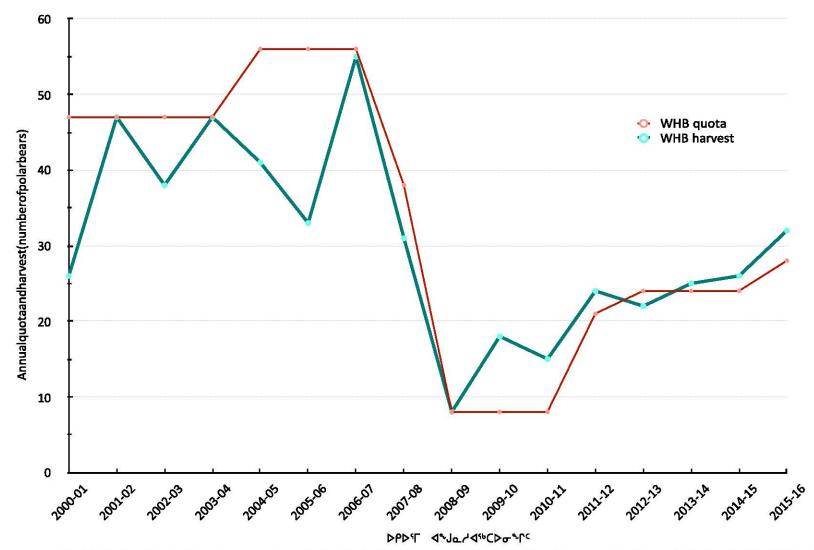
Ρ<<p>Ρ<</p>
Γ
Ε
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α
Α

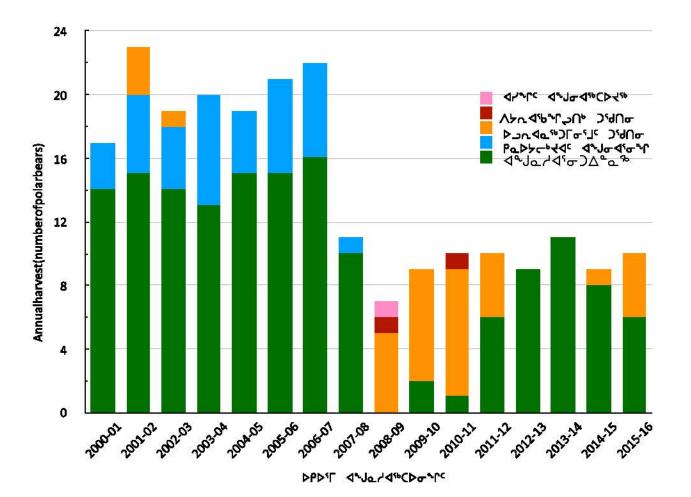
3.5 idualatel and the part range of the plane right and the plane and t

C'dd L&Lbd ΔαδιΓ L&Δδιφ ΓΡΟLαdΔδσ Ραδιθιθίε Οςδιλως
Λ«'σσδλως δαδι σίλημας λαριάς διαδιάς δ

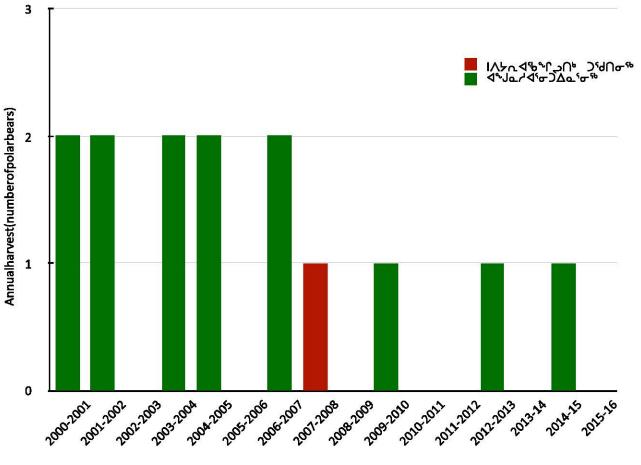


Rob Harmer, Kivalliq Regional Manager, GN DoE presentation at KWB AGM, October 18, 2017

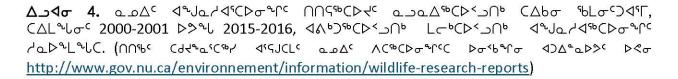

	2000	2001	2001	2002	2002	2003	2003	2004	2004	2005	2005	2006	2006	52007	2007	2008	200820	09	2009	2010	2010	2011	2011	2012	2012	2013	201
ব্য৵ব	17	17 0	23	23 0	19	19 0	20	20 0	19	19 0	21	21 0	22	21 1	11	11 0	7 7 0		9	9 0	10	9 1	10	10 0	9	9 0	11
∿⊳ে°⊃⊲®	2	2 0	2	2 0	0	0	2	1	2	2 0	0	0 0	2	2 0	1	1 0	0		1	0	0	0	0	0 0	1	0 1	0
∆ل⊃⊂۲٬⊀۵	9	0 9	8	1 7	11	2 9	3	1 2	2	0 2	6	2 4	9	1 8	11	2 9	4 4		10	0 10	9	0 9	10	0 10	6	0 6	3
ᡖᢌ᠋ᡗᠮᡄᡃᠣ᠊᠋ᡃᢦ	3	3 0	9	9 0	11	11 0	14	13	10	10 0	7	7 0	15	15 0	8	8 0	0		2	2 0	3	3 0	7	7 0	6	6 0	7
∩₽ናיּל⊲ך	4	4 0	12	12 0	6	6 0	12	12 0	10	10 0	3	3 0	16	16 0	9	9 0	1 1 0		7	7 0	4	3	7	7 0	7	7 0	8

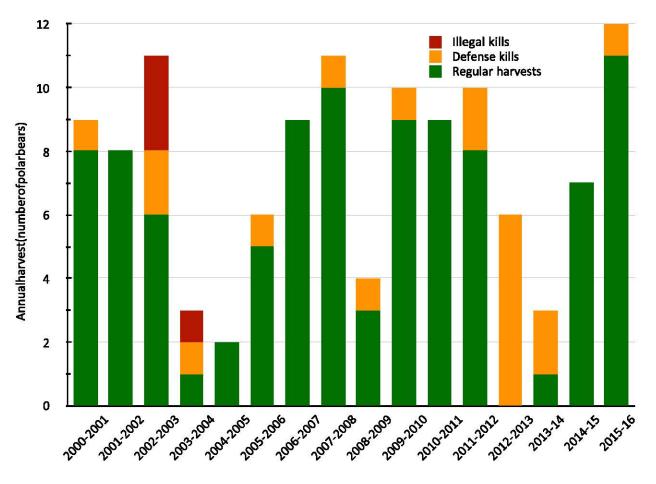

	2000	2001	2001	2002	20022	2003	2003	2004	2004	2005	2005	52006	2006	2007	2007	2008	2008	2009	2009	2010	2010	2011	2011	2012	2012	2013 2
		14		15	R.	14		13		15		15		16		10		0		2		1		6		9
۹٬۷۹۲	17	3	23	5	19	4	20	7	19	4	21	6	22	6	11	1	7 1	0	9	0	10 ²	0	10	0	9	0 1
		0		3		1		0		0		0		0		0		5		7		8		4		0
		2		2	<u>(2</u>	0		2		2		0		2		0		0	V2	1	A.	0		0		1
֍L安℃Ͻ⊲Ⴊ	2	0	2	0	0	0	2	0	2	0	0	0	2	0	1 3	0	0	0	1	0	0	0	0	0	1	0
		0		0		0		0)		0		0		0		0		0.		0		0		0		0
		8		8		6	2	1		2		5		9		10		3		9		9		8		0
∆لے⊂ل≀⊀له	9	0	8	0	11 ⁴	0	3 5	0	2	0	6	0	9	0	11	0	4	0	10	0	9	0	10	0	6	0
		1		0		2		1		0		1		0		1		1		1		0		2		6
		1		9		11		13		10		7		13		5		0		2		0		7		5
ᡃ᠋ᡖ᠋ᢩᡷᡗᡃᠬᠧᡃᠣ᠋᠋ᠮᡃ	3	0	9	0	11	0	14	0	10	0	7	0	15 6	0	8	2	0	0	2	0	3	0	7	0	6	0
		2		0		0		1		0		0		1		1		0		0		3		0		1
		3		11		5		12		10		3		8		4		0		0		1		5		7
୲୴୳୶	4	0	12	0	6	0	12	0	10	0	3	0	16	6	9	5	1	0	7	2	4	0	7	0	7	0
		1		1		1		0		0		0		2		0		1		5		3		2		0

 $11 \Lambda \flat_{\Lambda} 4 \& \uparrow_{2} \Lambda) 5 \& \uparrow_{2} \Lambda \flat_{1} A \land 4 \& \uparrow_{2} \Lambda \flat_{2} A \land 4 \& \uparrow_{2} \Lambda) 5 \& \uparrow_{2} \Lambda \flat_{2} \Lambda) 5 \& \uparrow_{2} \Lambda \flat_{2} \Lambda) 5 \& \uparrow_{2} \Lambda \flat_{2} \Lambda \flat_{2} \Lambda) 5 \& \uparrow_{2} \Lambda) 5 \& \uparrow_{2} \Lambda \flat_{2} \Lambda) 5 \& \uparrow_{2} \Lambda) 5 \& \downarrow_{2} \Lambda) 5 \& \uparrow_{2} \Lambda) 5 \& \downarrow_{2} \Lambda) 5 \& \downarrow$

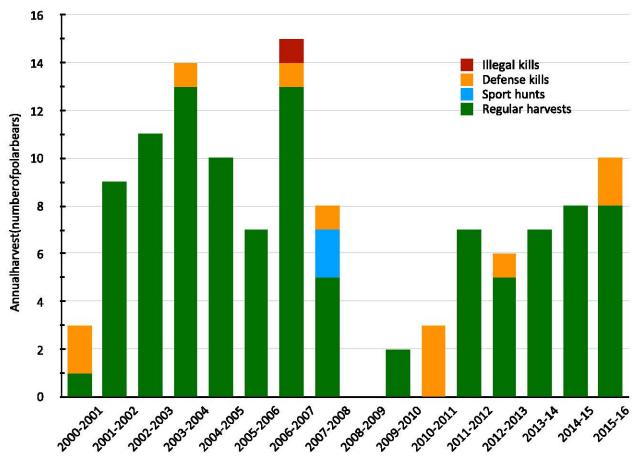


 Δ_{2} **4.** 4ⁱ GJCLⁱ α₂Δⁱ 4ⁱ Jσ4ⁱ CPK, CΔLⁱ 2000-2001 PPⁱ 2015-2016, P^c -ⁱ Δ₂ α -ⁱ Δ₂ 4ⁱ CPⁱ (αρⁱ CPⁱ, CΔLⁱ 2000-2001 PPⁱ 2015-2016, P^c -ⁱ Δ₂ α -ⁱ Δ₂ 4ⁱ CPⁱ (αρⁱ CPⁱ) (αρⁱ) (αρ

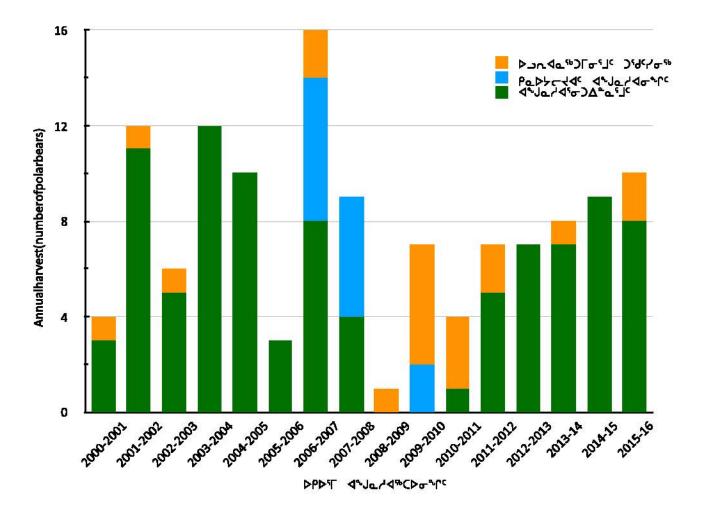




Δ_4σ 3. $a=\Delta^{c}$ $4^{h}Jadd^{t}CP\sigma^{c}$ $\Pi\Pi\Gamma^{P}CPd^{c}$ $a=a\Delta^{P}CP^{c}=\Pi^{h}$ $C\Delta b\sigma$ $4^{t}A^{d}\sigma$, CΔL%Lσ^c 2000-2001 PP%L 2015-2016, $4A^{h}D^{P}CP^{c}=\Pi^{h}$ $L^{-h}CP^{c}=\Pi^{h}$ $4^{h}Jadd^{P}CP\sigma^{C}$ $daP^{L}C.$ (ΠΠ%^c Cd%a^tC^hd $4^{t}GP^{c}$ $a=\Delta^{c}$ $\land C^{h}CP\sigma^{t}C$ P $\sigma^{t}B^{t}\sigma$ $dD\Delta^{e}aP^{t}P^{c}$ http://www.gov.nu.ca/environnement/information/wildlife-research-reports)



১৬৮১. ব৯৭৫৭৯৫৯ এ৯৫



₽₽₽\$**₽** ₫∿J&₽4₫%€₽Ⴋ%₽°

۵۵۵ م.۲۵ م.۲۵ م.۲۵ م.۲۵

Δ_4σ 7. <u>α</u>ρΔ^c 4⁶Jα/4⁶CÞσ⁶C^c ΠΠϚ⁶CÞ⁴^c <u>α</u>ραΔ⁶CÞ⁴ Ω^h CΔbσ ΠΡϚ⁶√4⁶Γ, CΔL⁶Uσ^c 2000-2001 Þ⁵⁶ 2015-2016, 4Δ⁶D⁶CP⁴ Δ^h L⁻⁶CP⁴ Δ^h 4⁶Jα/4⁶CÞσ⁶C^c /<u>α</u>P⁶L⁶UC. (ΠΠ⁶b^c Cd⁴⁶α⁵C⁶/ 4⁶GJCL^c <u>α</u>ρΔ^c ΛC⁶CÞσ⁶C⁶/ Φ⁶C⁶/ 4D⁶α⁵/ Φ⁶/ Δ⁶ http://www.gov.nu.ca/environnement/information/wildlife-research-reports)

۵[∟]۸_۲ 17, 2017 ا&ف

ĊᠳϤ⁻Ϲ ἐᢣ^ϧ Δ^ϲᆉ《ϷϹϷ₋Ϸ⁵ϽϽ[;] ͻϫϿ^ϛ ϷʹLϞϲ_ϲϷ⁵ϞϤ^ͽΓ[,]Ϲ ϗΠLϷ^ͽΓ[,] Δ[,] Δ[,]¹ ລ Δ[,]¹ ລ XOA OHO

ντοι: Γ6,89ς Γαλλυτας σαδς δΓήανλιζου. Οιλολίδας ους σοαναιρίου ντοι Τονγάδο Γαλλομαιο σασταιρίου ντοι σοαναιρίου

ርኇ፝፞፞፞፞፞፞፞℃ጏ,

 4° $C R^{\circ} \Gamma^{\circ} LP^{\circ} A d = P^{\circ} P^{\circ} LO^{\circ} A^{\circ}$, $\dot{C}^{\circ} d = A^{\circ} \Gamma^{\circ} A^{\circ} D^{\circ} A^{\circ} A^{\circ}$

 ΟΡĊ
 L
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ

1-c)56

أር୮ በራቦ፦ላሬ እንጋታነትና ላኈሁላ፣ኄኈኈር ጋኈሁራኈሁ, ለልናካራኊታናዮኑ ለኖጐልበናፖሁፖላነታና LPየልኑ ቆላንሒኣ

www.makivik.org

O Head Office • Siège social C.P. 179 Kuujjuaq QC JOM 1C0 Tél. (819) 964-2925 Fax (819) 964-2613 O Montréal 1111, boul. D' Frederik-Philips 3° étage St-Laurent QC H4M 2X6 Tél. (514) 745-8880 Fax (514) 745-3700 O Québec 555, Grand-Allée E. Québec QC G1R 2J5 Tél. (418) 522-2224 Fax (418) 522-2636

ڝڝ۵[®]ۥ ۲۶% NWMB-d^c ڝڝ۵[®] ۲L⁴^c TEK-d⁶ ڝڝ۵[®] ۲L⁴ σ[®] ۲ أح[®] ۲ أح[®] ۲ أح[®] ۵ أح² 1 أح²

 $\begin{array}{l} \label{eq:2.1} DPr < A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A C < & A$

ʿﯨﻟナᆇᡅᡏᡃ በႶፍᡄϷናልና ᡧᠫ< 20, 2017F, ĊϽᠳ Lbᡆ᠋ᠨᠲ, ᡏᠣᡃᢗᡗᡃᢣᢂᡧᢁᡣᡄᡅᠥᡝ᠋ᠴᡏ ᠕ᡃ᠋᠘᠊᠈᠘ᡄᢂ

ዻ/ነ>[™]<<፦<<<>> ጋራ/ነ>[™] >> ጋራ/ነ>[™] >> ጋራ/ነ>[™]

وأدلاه الم

∩∩ናኘልካ 1379 ∆ኄጏጔር, ዾዸዏና X0A 0H0

ር ውው ሳናን ፊየላ መር ም ወዲ የምንትም ወዲያ ኮ ኮር የ ወዲ የምንትም በበናናል፣ 1379

NOV 2 3 2017

Environment and Environnement et Climate Change Canada Changement climatique Canada

*

 $\Delta C^{+}JO^{+}AC^{-}BDA^{+}O^{+}JO^{+}BPA^{+}O^{+}DC^{-}AC^{+}AC^{+}DO^{+}O^{+}C^{+}AC^{+}DO^{$

ϤϞͺͻ, NWMB-d^c ℔ϷϟͺͰϚ, ϤϽ[®]ϹϷϟͺϤϐ[®]Ͻ^c ϷͺͺͰϭͻ ∩ՈϚ[®]ϹϷϟͺͰϚ[®] ϥͺϭΔ[®]dCF II ϲͺϧϲ ϹϷ[®]ϟϐ·Ϲʹϭ·ʹͿ^c ϤʹϹͺϧϷϟͽ^c ϷͺͰϟͽ[®] (CITES), ϷʹϽͶϹͻͿ ϥͽϪ^c, Λ[®]ϧͺϤϐ[®]Ͻ^c ϭϷʹ;ϽϹϧ^{*} Ϳϲͺϧ ΛϞ^ͼͺϷͶ^ϧϞϭ^{*}. ϤϷϷͺͼʹϭ·ʹͿ^c ϤʹϞͿϥϲϟ[®] ϭ[®] ϤϹϟϭ^{*}ϒ^{*} ͽ^c WH-Ϳ^c ϤϹϟϭ^{*}ϒ^c ͼͺϞϷͶ^ͽϭ² ΔϧϟϽϐ^{*}Ͻ^c ϲϭϟͺͻϭ ϭϷʹ;ϨͶϐʹϭ·ʹͿ^c ϲϲϧϧ ϟϚΔͶ·Ͷϲ[®]ϒ^cϽ[®] Ϥ^{*}ϲϷͰϥϥϤ[®]Ͻͽ^c ϷͺͰϟϭ^{*}. ϥϭϟͺͻϭ ϤϽ[®]ϹϷϟͺϤϐ[®]Ͻ^c ΛΓϤ[®]ϧ[®]Ϻ^{*}ϥ^c ϽϭϧϷϭ^{*}Ϳ^c CITES-ϭ^{*}ϼ⁻ ϭϷʹ;Ͻ^c Ϸϧ^{*} ΛϞ^{*}αϷͶ^{*}Ϟσ^{*}.

*᠆᠆᠆᠆*ᡐᡃᡕ

Apple Hopsood.

Γσ'CÞ[<] Ͻ'ϲϤ, ϷͼϹΓ ϷʹͰϟϲ_ϹϭʹͿ· ΛϷ·ϽϚ ᡏ᠋ᢦᢀᢕᡄᡅᠣ᠉᠂ᡩ᠋᠘ᠴ᠈᠘᠊ᢩᠵ᠂ᠺ᠕ᢣ᠉᠆ᠵᡄ᠋ᠵ᠆ᡆᠵ᠋ᢢᢧ᠖ᡆᢕ᠋

ל⊲ז, ⊽? ୰ଡ଼୵୷୰୷୰୷୰୷ לפיקרשקריית, ארשיקראייייי

۲۰>۰-H⊲<>°

血のタロ ドレイー ヘトマイロ トロトックロ Nunavunmi Anngutighatigut Aulapkaijitkut Katimajiat Nunavut Wildlife Management Board

√∩⊦∧⊾ 20, 2017

ፖርቲንን ላ አልኮር። Γσነርንሆ ላዊበርሲኑ ሀዊደኅሪ ወቂዎና

Γσ[\]C \ልbĊ^{\$}:

1. ዾ፝፟፟፟፟፟፟፟፟፟፟ レלכת אילפי ۵ לרכ שאריי

2. ጋየቦሃኦበርና ኦLላሮ ሌላደሮ አላደሮ እንግግ የ

> ∩∩5b*d** 1379 △5b→△5, 血 つや「XOA 0H0 ☎ (867) 975-7300 温 (888) 421-9832

Titiqqap Turaarvia 1379 Iqaluit, NU XOA OHO (867) 975-7300 (888) 421-9832 Box 1379 1 Iqaluit, NU XOA 0H0 (867) 975-7300 (888) 421-9832

ለናፈበታ ጋናፈር⊳ኖርንና.

- Δ/LJCD+% ΔLb Λ%υ⁶α%υσ β%⁶σD< C/D5%
 Δ/LJCD+% ΔLb Λ%υ⁶α%υσ β%⁶σD
- $\Delta \Gamma Z^{2} < C \Delta^{2}$
- > 2005 ΛΛ% ΟΡΥΖΥΔΛΥΛΟΥ (ΟΡΥΖΥΔΛΥΛΟΥ) ΦΡ Lo 2017-2018 Areast. 4. $\Delta \subseteq \Gamma \subset D^{1} \times C^{1} \to D^{1} \to D$ ᠈ᡃ᠋ᠣ᠆ᡩ᠊᠕᠘᠊᠕ᢗ᠋᠋᠄ᢣᠴ᠕ᢗ᠋᠋᠋ᠮᠫᡗ᠄᠋ᡈᠣ᠘᠋᠋᠋ᠴ᠋᠕ᢗᠮᢐᠫᡗ᠄᠋ᡅᠴ᠘ᡱᠣ᠘᠋ᠴ᠕ᡷᡊ᠘᠋᠘ᢂᡷ᠙᠍᠘᠊᠉ᡩᡠ᠄
- ンはCPペン ĹみうくC. 3. ליףי>רי בלי אישבאיכאשבי>י, בבעי ארשאראי בפריס אישבאי<יסס ג'יעי ለኈሁ፝፞፝፝፝፝፝፝፝ዹኈ፞፞፞፝ レኇ ନେଇ ନ୍ରାନ୍ ନ୍

«الے Πες، «المان المان الم

- ውፈዎናГ ላጋር 'dን `ቦ ውህና/ የና ለግግ መንግ ለህልሥር እው የ ለበላ የ መንግ እን የ ለ 1.5% እስል של של איר של איר של איר של איר של איר של ש

<u>ዉጋዉ</u>Δኪላ⁶bσ⁶ጋJ, ዾ፝Lረሮኪዖ⁶ረማ Δ*ረ*Lሮኦዖበ⁶ሁ:

ےمבל∩^ے^< ⊳⊂∿₽^ے∩^ہ ללביס~לסי.

 $\Delta = \Delta^{\circ} \Delta^{\circ}$

የኖሩርኮና ርላኮኑናላላኄር ዉወልና ለኮዀቦሮኖሩር ላቦላኈቦና.

Γ⁶ኣΡኣJሳና ፈጋፈል፣/፻፵ጋላና 18%Γ⁶ ΔΔΔኣናርኆናጥሊላ⁶Γና የΔΔ⁶ጋላናምዮና. Γ⁶ኣΡኣJሳና Ľ⁶ኖም <u>ሥናኅረLጋላ^የዛር.</u> የረላታ ሀዲዮේ ወቂዎናር-ለርኪነልጐር ላዊበርኪትና ኦናክናረዚው ኦሪታኒጋጋበታ \wedge Δ° Δ° σ° \wedge° \wedge° ᡣ᠋᠋᠈ᠳᡐᡐ᠘ᡩ᠂᠕᠄ᠺ᠘ᠴ᠆᠕ᡃᡭ᠋ᢖ᠋᠋᠈ᡩᡁ᠋᠄᠋ᠴ᠆᠆᠆᠘᠆᠘᠘᠘ᢄ᠆ᠴ᠙᠆᠕ᡔᢤ᠋᠈᠘ᠴ᠘ᢣᢩ᠆᠋ᠴ᠄ᢣ᠘᠘ ^ነႦσቦኑ∿ቦ°σ ∧ርነьናጋσ⊍ Ĺσ σቦ⊲σ የ≪ъс< ርለኦኑ፣√⊲ъυር ⊲ч∟ጋ ⊲ΓናጋኈΓ, ⊲ч∟ጋ 2) «ለ∿ቦና

በበናና/Lላታ ኦታቴታ /ጶታናበ°ታ (2018-2019) ለ∿ሆዲ∿ሁታ የ≪∽ኦ< ር/ኦና‹ፈ∿ሁር உታናታ አበናጋቦና ፈላጐቦርና ፈንፈሥርኦታናΓь.

 Δ ው Δ አ' ር Γ ላና ነው በር ነው በር

 Δ^{L} Δ^{R} Δ^{R

עכ°יסי אכאדי,

David Cului

bDDJJ<u>22</u> Building Nunavul Together Nunavul luqatigingniq Bàtir le Nunavul ensemble

> 「 っ い く く ぐ ∩ っ ん か め ら っ c Minister of Environment Ministaat Avatiliqiyitkut Ministre de l'Environnement

ረበለሲ 22, 2017

Cope イタC
 ΔbイペタンCシェクかつジ
 コュタ・F シレマール・マイマック レート・アー
 ハいゃかっくらく 1379
 ムちょうく、コュタ・ XOA 0H0

לס⊳° אסכישי:

 $b^{b}/h^{b}\sigma^{2}L^{c}\rho^{c}$

b2C.2J_pa_^{Sc} A7^{ta}C^{*}C<0^cC^{Sc} Building Nunavut Together Nunavutiuqatigiingniq Bâtir le Nunavut ensemble

> 「つ[、]C << Cへんちゅう Minister of Environment Ministaat Avatiliqiyitkut Ministre de l'Environnement

 $\Delta A L - D P C D + T^{c} < D - ^{b} O (D D D O D C - A^{b} > b < 4^{L} D O + 2 P^{c} A^{b} > C < L - b^{1} d^{b} C D - D^{b} < D^{c} O - A^{b} - A^{$

√ \ልbር፞ኈ, ୮σ⁴ር

UU2014 1318 ∆۴۵_ک۲, ۵۲۵ × XOA OHO 🕿 (867) 975-7300 🖳 (888) 421-9832

Titiggap Turaarvia 1379 Igaluit, NU XOA OHO **7** (867) 975-7300 A (888) 421-9832

Box 1379 Igaluit, NU XOA OHD **2** (867) 975-7300 📇 (888) 421-9832

ርΔbσ bበLσናΓ, ዾLላርኪኦናላፍ ላናዸርኦናጋና Lν2°σ፦ Δ/LσϷ2ሰ°σ፦. ィ֎ዮሮዀ ΔLΔናጋዀ Ĺ፝፞፞፞፞ዸዾዾኇዀσ Ϥ&·ϽʹͱͿͰϭ·ͺϤʹϞͿϥͺϻϹϷͿͽͺϥʹϽϭϷͺͺΔζͿϲϲϷϨϚͺϹʹϨϭͺͺϥͺϼͼϧͼϧͺͺͺͺͿͺϲʹϽϥͺͺΔϲͺͽϧͺϿϲ*ͺ*Ͽͼϒ

Þ&& /በኑለኪ 12, 2017, ርΔb& ወኪይናΓ ÞLረርኪንናረፍ bበLንዮና (ÞLረርኪንናረፍ D&&:>*፦ bበLንና) δ^ωυαίδια βΛΙσήρησι Δίδοησι, βΛΙλί βΙαδία Σάγκαι Δ*ΑΓαρμ*ία (Σάγκαι) αφώρι ᠴ᠌ᡆᢀ᠋᠋ᡏ᠕ᠵᡅᡃ᠋᠕ᢣ᠋᠋ᡁ᠄᠘ᡩ᠕ᡊᠴᡭ᠊᠕᠅ᠴᡗ᠋᠄᠘ᡁ᠋ᢕ᠘ᡁ᠘᠈ᢕ᠘᠋᠕᠃ᢕ᠘ ΔϲՐϲϷረレኛ ጋኣናልናክናረላናσናጋና ዉΔά2ሰና ΔϲՐϲϷረレ୭ና ϷdϼჼႱ በበጮbϼና.

<u>ለ՟ጋሀ: የወሬምባታባህር ወቅምም ወዋምር እናትረራ የሀገንታራ ጎጋሪ ምምም ምምምም ምምምም</u> C7Dንነረፈንቦር ወግረው

 $\Lambda \subset \Lambda^{5}b \Omega^{6}b \Delta$:

PUL72

76960 A2976 Δ \mathcal{A} Ե∩L≻∿Րና ⊲чL⊃ ՃԿ∖∩Խ ⊲∿Ja~^b∩^c ⊲^LL⊃ *⊲∿*Ja~[™]∩° *⊲*[⊥]L⊃ $\cap \Gamma^{\circ} \cap C$ HAR JUS ف∧همک ک<> >⊊∆⊲⁰ ۲۰٫۱٬۵۲۹ Achapa debage debage ᠋᠋ᠫ᠈᠋ᡗᡊ᠆᠋᠈᠘᠂᠘ᠺ ∆ናረ≪⊳ርኈ ∆ኁ∖∩ኑ ⊲ኄነ⊾ሥስና <u>442</u> <u>5664</u>, <u>666</u>, <u>6666</u>, <u>6666</u>, <u>6666</u>, <u>6666</u>, <u>6666</u>, <u>6666</u>, <u>6666</u>, <u>6666</u>, <u></u> ᠔ᢥ᠋ᡗ᠅ᢕᡧᠴ᠘᠉᠃᠘᠉ <u>44L</u> **L**PLASTAS daine per HDase alls der 0° L 22 ⊂∆، چوکزچو ۲۲⊃ مه D5Verb 7ch6pcvc p6a J°6466° JLJ JDC72 مەرمەركە <2>>2> ئارىمەرمەر ୯° ଅମ୍ବେଠଠାଡ଼ ୭ବେଦ רכיזס^{גו}ך ארלכיראילסי IUCN סטרתאי אסאאלי ٥٦٢٢٩٩ J<u>∿</u>J⁶ √25° √2 J<u></u> 205° <u>0</u>5°

0°0 0°0 0°40°

7C+- 2c4+ Δሩትሬኦሮ_ው ቴሬትራው የሬት የአስት የ לכליםישיי 6שר ריףפם ADP dense √∠⊳< ⊲/ን≻ናσ∿Ⴑσ⋼ ₽୮ϧϲ **ba**CL

ወፈ እር ጋቍቦዎ ሀይ በርታቦሪ

Ղ՝Հ՝Հ՝ ∢եհներ

ረ<u>∩י</u>∧_ת 25. 2017

പര്പംപ് ഘടപ്പ

4645 4 186C

Nunavunmi Anngutighatigut Aulapkaijitkut Katimajiat Nunavut Wildlife Management Board

*«ግዮቴበሶህሰ*ና, ርΔ°ዉ Δ/L⊂ϷϨ^ϲ LϷ∿υጋΔ°ዉሊ«ቴb[™]ዮናጋჼ» ጋ₽υ/««ናምህው ዉ°⊂««ጋΔ°ዉ» «ግዮንበ»υ Γσ°CϷ< Ϸ««⇒°ថ« «ግዮናርϷ°ዮ<« «ዛሬ» Ϸሬታ«« - ሬሮ»» «ጋናጋው» በሮϷንበ»bσናው Ϸ« ውዉ*୭ናΓ «ግዮቴበሶህሰ*« - ጋσ/«<ር ዮህናሮ«ሩΓ» Δ/LሮϷንሞ».

Ρ⁵υ⁻σ⁶ bΛL²^c Δ/LσΡΡΛ⁵υ^c ΔLΔ^c²υ_P⁵D⁶ ΔDPL^c_J Cd⁶α⁶bΛ⁶_Jσ P⁶dσ¹d² ά. (Λρ⁴)σ 2018-⁵Pu⁻ΓP⁴Γ⁴Γ⁶ Λδ⁶Δ^c⁵bσ⁴C², Λ²J /²P³σ⁶Λ⁶σ Δδ⁵²U² Δ⁴D² Δ²D² 2018-2019) ¹Lσ Λ⁵υ⁶α⁵υσ P⁶C² C/P⁵³⁴⁴⁵U² α⁵⁵³⁴U² b⁴²⁵⁵⁴U² Δσ²D² Δ²D² Δ²D²

Δ/LՐኑ[™] αΓ΄ μ⁵σ[™] 4[™]L³ Ν[−]³[™]C⁴ α[−]C⁴

 $d\dot{\cap}$ Cdrb» Arrivanus denrais "Jhiaibhrais adàràs Annsirles denrais 2016 Anus Petros Crossidates in the construction of th

3. **גיטכאל אָבאאיטיוכאסיירי אלישר אַביט**לישי:

 \dot{P}_{c} \dot{P}_{c}

ርL⁶dϿ⁶ሁ Λ⁵bCPላϿ⁶ Δ⁵bϿ⁶σ, ϷLϞϲϲλ⁵ϞϤ⁶ ΛC⁶b⁶bΔἐ⁵², ν⁵⁶υδ⁴σ⁴ δ⁵bCP⁶ δ⁵δ⁵ δ⁵bCP⁶

S . .

ϷͰϞϲͺϧϞϞϭͼ ΔϟͰႱϿϭϞϿͼ ΔΪϷ ϭͺϫϷϧϿͼ ϟϿͽ·ϞͶϥͼͼϲϥϲϞϫϭϷ ϷͼϷϲϷͶϧͼ ϷͶϲϭϲϷ ϭʹϒͼϷͶϳϤϹϷ;ϭʹϿϲ Λ;ϷϹϷϞϿͼ Λ·Ͽϲͼ ϭ;ϞϲϷϟ ϷͼϷϲͳϷϟϷϭϭ;Ͽͼ ϷͶͰϳͼ ϹͱϭϞϪͼϫͽ ϭϲϧϷϪϳ;Ͽͼ ϞϿͼʹϞͶͼϲϲͶͼϟϭϷϚ ϷͼϷϲϷͶϧͼ ϷͶϲϭ;Ϳͼ ϭϪͼϨͶϭϷ ϪϿͼϭͼϹͽ Λ;ϷϹϷϟͼ Ϸ;ϷϲϷͶϧϭͼ ϹϲͼϿϲͼ ϷϞϿͼϟϭͼϿ ϭϧϹϷϟͼ Ϸ;ϷϲϷͶϧϭͼ ϹϲͼϿϲͼ ϷϞϿͼϟϭͼ

 $\Delta^{b}d\Pi^{b}T^{b}C\Delta^{c}\sigma^{c}$ $\Delta^{b}d\Pi^{b}T^{c}$ $\Delta^{b}d\Pi^{b}T^{c}$ $\Delta^{b}d\Pi^{b}T^{c}$

Soud Stable

1 SPSFLCdcs Sborba	25P~155 ALACD56	- 1:30 P2^6 3:30 P5_bd
- UPPLING - PITOU		- 1.30 67 10 3,30 8

bበLነ ረ በናላው <mark>b</mark> Lቦንናላጭ	Γ ϷϞϷϞϷϹͼ ለልፍኣፍ
1. ኄ⊳۶₀₽۵JŲc ⊲۲٦ רכ־۲۵۵ע ב־۲۵	15 Fact
2. የየΓኑንσጭ ላኑLጋ ላኈዮንበጜናም አበLነላበናኣም	5 ୮୦.୯
3.	15 Γዉ ^{ርኣ}
4. ሲዛሬውናጋላ፣ሩና ጋኣ፣ል፣bናሥላ፣ው፣ጋና bLቦንኈዮና ኦdላ ወሏዎና ለናሊዛልንሁና ላዊበናሊትና	30 Fash
5. ለኈሪዾጘዾና ዸ፞፞ዹዾንኈ፟፟፟፟፟፟፟፟፟፟ዾዾኯ፟ዄዾጞዀ፟ዀ፟ዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀ	15 ר <i>ב</i> יי
6.	<u>ع</u> م ۲۵۰
7. የህናር የ የበትአላት ላጊን በጋር የየምንረት	10 Fa ^{cs}

5390 ⊳ئەدےە مےم∆ەd^c: 423-158-2642#

ϷͶͼϽϲͼ

۷٫۶۶ همودېکه محدد۵٫۵ مومه ۷٫۶۷ ᡧ᠋ᢞᠲᢗᡄ᠂᠕ᡷ᠋ᠯᡦ᠋ᡃᠲᡄᠺᠵᡄ᠘᠘᠘ רא⊳אילס∿רכ סדסע

28000-0-0-0000 Diperson Diperson

ወዋልሲ pravic pursion Nunavunmi Anngutighatigut Aulapkaijitkut Katimajiat Nunavut Wildlife Management Board

Tammaotailinahuarniriit anngutighat atughugit Inuit gaujimajatugangillu ilihimaniillu ilitguhiannin Conserving wildlife through the application of Inuit Qaujimajatuqangit and scientific knowledge

Þウマ 6 2017

م⊃4 م⊂⊘ ረርኦር թጋሲዮ በይፈ **Γσ¹⊂ ל ነል⊳ር**ግ **ℾ**毋՝⊂ ⊲≪∩൳൨ℊ**՝**⅃^c **⊲~**L4ª₽₽ ےمے⊳د ⊃⊷ړو، <u>44</u> 472° <- C 4 5' JC $\triangleleft \triangleleft \cap \Gamma' \mathsf{ba} \subset \Gamma$ ULJ JULI **∟^ር/ና ⊲%**\ናታ% $\nabla^{\prime} = \nabla^{\prime} = \nabla^{\prime$ **₽**,<<></ ⊲Նๅ∽ՀշՀան,⊳ ℅ℾ௳ℴℷ℈ ⊲Նզ∿⊃⊂ս≻,Նշ

՟՟՟ ممە لىكلىك

ノビーー ダビャキ **₽**,<<**₽**,< ₽**≪-**~° ĎLל⊂ת²'ל⊲^c ⊲'L ∆L∩' ⊲`J⊾⁄''ጋ⊂ռዖ°

CODE d'La **₽,4<₽C.** 4.5.6.6.

⅃ℰ℩℄⅌℈ℂⅆℽ℩

10' 2-1-10 ୰୳⋖⋗**Ċ**∙ ⊅⋖⊂∿≻ິ ႱႶႱჁႽႾჿ

J൨J ⊲ԿL Ճ൨⁺ Ո⊳բ

Ֆ⊳ծՐ۶շ թՍՐ۶Չ೯

 $\Lambda \subset \mathfrak{n} \otimes \mathfrak{n}$

. الد ۲۰

᠘ᢣᠡᢀ᠌ᠵ᠋ᠵᢑ᠘᠆᠘᠕ᡬᢣ

~~~~~

740CD.P.C. ⊲Ն]a.୯'⊃⊂ռչ'd⊆

Ċ' &-JŻ&- ⊲L

7196000% Ardsha

**௳**∙ຉ**൳**Կ Ֆ⊳չլ էեն՟

هه دم

>ናልፈት ነገሪት

740Ce ∆հ∩• ⊲ՆյոՀ•⊃⊂ռծ՟ ന്റെ പ്ര

**⊲∿୮ィ%ḃ% ⊲୳L ⊲⊳**∟ና∕≯

۳۶-۲۲۵ <u>۱</u>۵۲,۵۳

ዸ፟፞ዹ⊳ኯጜኈበናለትና

۰۸۵م۲ ک

∩∩<sup>6</sup>b<sup>6</sup>d<sup>6</sup> 1379 ۵٬۹۵۵٬ ۵۹۵ کو ۵٬۷ (867) 975-7300 (888) 421-9832

Titiqqap Turaarvia 1379 Igaluit, NU XOA OHO 🖀 (867) 975-7300 且 (888) 421-9832

ﯜ₽ኖሎኒፐፋሪ ₽UFi4ULዉሪ ግዋ፟ዾ ነዋር ישראנאמיפט PUFy.L4c אשעמים אשעקינ

فد ۱٬۲۵۶ ۵٬۹۵۷ ۵٬۹۵۰ ۵٬۱۲۵ ۵٬۱۲۵ ۵٬۱۲۵ ۵٬۱۲۵ ۵٬۱۲۵ ۵٬۱۲۵ ۵٬۱۲۵ ۵٬۱۲۵ ۵٬۱۲۵ ۵٬۱۲۵ ۵٬۱۲۵ ۵٬۱۲۵ ۵٬۱۲۵ ۵٬

Box 1379 Igaluit, NU XOA OHD 2 (867) 975-7300 🚇 (888) 421-9832

bnlo bic Dn'd bt/cDD bltchitd'd bnlatter  $\Delta$ bit, Ard Dn 2:34 D bltc dl dl dl ctrle bltchitd dl ctrle dt ctrle

Sec.

1. ۵٬۲۲۶ איטרי ארא אראסיט איטרי איטיאר. איטיאר איטרי איטיאר איטרי איטיאר איטאיטיער איטיער איטיער איטיער איטאער איטיער איטיער איטיער איטיער איטיער איטי

2. בינ'רי ∆אנאסיר איטירחטי אישן ביאסריני באסר ג≪ניטי איטירחטי אישן ביאסריני

3. ∆∟⊳σ⊲°⊃ິ∮⊾⊳ሃኄ°∩⊂⊳σኁՐິ⊳ኄ⊾⊲°⊃∩∽ጋՐ҄ൎൔഺ∿σჼ厂

ĎĹᡃᡳᡄᡅ᠋᠈ᠮᡃᡧᡃᠡᡠ ᢂᡔᡄ᠋᠋ᠺᡝᢣᡃ᠘ᡅ᠋᠋᠋᠈ᡃᢑᢄᡔᢐᠫ᠉᠋᠕᠙᠅ᡧ᠌ᠴᠥ᠋ᡏ᠋᠖ᡯ᠋ᡗ᠄ᢣᠿᠥ ᠫᡃᡲ᠋ᡗᡃᡟᡣᠳ᠈᠋᠋᠊ᠲ᠋ᠴ᠂ᠦᡅ᠈ᡃᠻᠬᡃᡪᠳ᠈ᠻᠡᡃᡆᠣ᠂ᠺ᠙᠅᠋ᡟᢛᡆᠳᡐᡃ᠋᠋ᠬᢪ᠈ᡆ᠋᠋᠋ᡘ᠆ᡆᡗᠮ᠖᠘ᡶᡃ᠋᠋ᡃ᠘ᡃᠧ᠋ᠬᡘ᠄ᢣᠿᡡ ᠘ᡄ᠌᠌ᠦᡆ᠉ᠫᠴ᠋ᡗ᠂ᠣᡄ᠆᠋᠈ᠳᡄ᠅ᠣ᠌᠌ᡔᢣ᠋᠋ᡆ᠆᠋᠕᠘ᡃ᠘᠅᠘ᡔᡆᡐᠫᡗ᠙᠊᠋ᢁ᠆᠋ᡬ᠋᠘ᡃᡶᡄᡅ᠈᠄ᢣᡆᡃᡠ ᠖᠒᠘᠈᠋᠋ᡗ᠆ᠴ᠋ᡗ᠙ᡆᡃᡠ᠘ᡄᢂᢣ᠋ᡃᡆᡆ᠋ᠺ᠋ᡶ᠋ᡬᢕ.᠘᠘᠋᠘᠋᠋᠘᠋ᡢᡰ᠋ᠶᢂᡄᢂ᠋ᠺ᠋ᡗ᠉ᢗ᠋᠋ᡄᡄ᠖ᠺ᠘ᠦᢂᡃᠮ ᢀ᠋᠘᠘᠈᠋ᡗ

4. ⊲**/**°Ր<sup>c</sup> ∧'<del>ל</del>∩<sup>c</sup>

المالي حض ∆°2≪⊳⊂⊳ь∆⊷<u></u>~⊃~ \_مم>**۲ ۲۲۲ م**ین ۲۵۰ م

Jourd Ruhal

 $\Pi \cap S^{\circ} \supset$ 

୵ঌ₽₫₽₽₽¢৸ ር∽ሮዋና .⊳ነ⊃ና≪ 13 2017 / ምና ንታ ና 5 ⊳ና .ລና ነ dና .ba∿a⊳ና /ምና ህን∿ሁ Lሮኅ.ጋJ.

<u>∆ᠵ᠆᠋ᠳ</u>᠂ᠺ᠆ᡔ᠋᠆᠖᠆ᡧᡄᠴ᠘᠋᠆᠆᠘ᠴᢙᡄ ᡣᡣᡪ᠋᠋᠋᠋ᡥᡝ᠋᠘ᡃᡅ᠌᠌᠆᠆ᢆᡔᢣ, ᡆ᠋ᢗ᠘ ᠖ᢣ᠈ᡃ᠋᠖᠘ᡔᢦ᠋᠍᠋᠋ᢁᠳ᠘᠆᠋ᠵ᠖ᢤᡄᠴᡕ᠋ᡬ᠘ᢣᡄᡅ᠈᠋ᠶᡧᡆᠰᠴ᠁ CAbo

b∩Lσ<sup>®</sup> \_<sup>®</sup>b⊂⊳<sup>®</sup>⊃<sup>®</sup> 3:25 ⊳<sup>\*</sup> \_<sup>\*</sup>d<sup>\*</sup>.

<u>كلاحمكة برحمه والمحمية بالمحاد كلمكان كالمحالية المحمية المحم</u> 34-J<sup>c</sup>. ⊃itb' }/\* (l≪L'd \_a\_>[-<<</li> bל/በCDDd%<ና, CDLΔ~``LΔ``ዉσd``D`` LলU``በJF ΔলCኪንD/Lug ^`U``ዉ``Ug  $\Delta / L \subset D \subset D^{*} \cap C \subset D^{*} \cup J \cup D \subset C \subset D^{*} \cup J \cup D \subset D^{*} \cup D^{*} \cup$  $\forall P \in C$ 

**⊲ን≻ የ**-ך0-, ∨4c

Dùb' ٢٠٠, <>> C << >> Dùb' ٢٠٠, <>> C << >> C << >>

 $< D \subset \Delta^{U} D^{C}, < D \subset \mathcal{D} \to D \cup \mathcal{D}, \quad D \cap \mathcal{D} \to \mathcal{D} \to \mathcal{D}$ 

۲۵۶° ۵۵° ۵۲'۲۵ ( ۵۵° ۲۵° C ۵۵° C

יר׳ יֹי׳, חחק™ח, ⊿יחי ⊲׳טפיי⊃רתזיפי;

**רסה סגרכיאס, טטצ, ט סיטסי סגרגאס:** 

HΔ▷ ፈሰሩ, በበና°በ ኄLσ℃ጋላΓ ላኄነፈሥጋርኊሥሪና;

**୵**∟⊳< ⊲∕?**°**<⁺⊂⊲**♂**∿৮, ba⊂Γ; ⊲<sup>ݛ</sup>L;

<" ds>c, >^rc~u <<r b<, out << Pour b</r>

### 

- Ldc Phyce ⊴የል⊴ና, በበናኈበ⊳ь∆∘ፈኈጋኈ ⊲ንነፈሥጋ⊢ኪሥራ৮, ⊲የል⊴ና
- bcΔC<sup>\*</sup> C<sup>\*</sup><sup>D</sup><sup>\*</sup> በበናኈቢ ⊲ኄነ⊾ሥጋ⊂ኪትነሪ Ե∿Րና⇔ታℾ
- Ե°ר°לים Γ ⊲⊳ם״⊃⊂υγ₁ק` פילפ⊳⊂״
- <sup>ֈ</sup>՟⊲∆୭հ⁼

- خام واهام በበና∾ቢ በዖናናላ⊲Γ ⊲∿J⊾ሥጋዖር-ኪዖነፊና
- dn<sup>1</sup> t<sup>in1</sup>
- በዖናናላ⊲Γ ⊲ъ̀ታ⊾ሥጋር ሲትሌር ∆ኮ/⊲⊳ርኈ
- ጋሲቴነ ት/ጐ ຉ๔୭° Ⴑ≪ႱԿℰ, ∧๓๓๙๙ ⊲«Ո๓๓չነሪ
- ዘ∆⊳ռ ⊲ԿՆ<sup>∞</sup>
- أب ∿ حال ∆Կ⊇⊂ԵԿԻГ ⊲ՆJa,≁⊇⊂ռ,⊁ժԲ ՈՈհԿ≁ԵԲ
- \_\_\_ຯ° ⊃•∿\ልካ ∩୮∿ኒ
- >° ∩̂\* \_\_\_> ጋ-ንፈልኑ በГንህ
- \_\_\_<sup>©</sup> ጋ•ንኒልካ በΓንኒ
- <▷< Δ\*\*\L▷<sup>C</sup> \_\_\_୭° ጋ•∿**ኒል**ካ በΓ∿ኒ

### **۹۲٬۲۰ Δ۲⊳۴۵/۵۳ ۵۵**%

ታΔነት ସଂዖ⊲2<sup>™</sup>

 לסך לערי 

\_\_\_\_\_\_Δ۲

> ጋ በ ለ ላ ነ •

<u>∆ኈ</u>₽ዋ⊽ን<sub>°</sub>∪<sub>c</sub>





# NWMB PRE-HEARING **TELECONFERENCE**

∽میکل ک۲۹۵ ک ዹ**ட**ኑና/ዋ⊳< **ሃ**ቃዋ⊲ጋና ⊳ዄ፞ዾ⊳በኑታና ዞጋ**୮**ሞ<sub>ም</sub> **⊲**∆<∧<sup>6</sup>, ▷'⊃< 3, 2017

· በኖረፋወჅ ግሬ ሚጋን JQ

⊲⊳∟ና₣ኦ, ዸ፟፞⊾⊳ኦሮჀኑና ⊲ᡃ՟∟•ልሮჀኑ-ጋ ∆<u>a</u>^ŕ/L<del>\</del><sup>®</sup> ÞL<del>\</del>⊂<u>a</u>}•d<sup>c</sup> ⊲⊳c<sub></sub>⊆<sub></sub><sup>C</sup>}~<sub>b</sub>•<sub>b</sub>•<sub>b</sub>•

⊲⊳֊֊ՙ՚ֈես

լար





# NWMB PRE-HEARING TELECONFERENCE



⊲⊳֊<u>֊</u>֎∩⊂⊳<sub>֊</sub>⊳»⊃ℾי ዾLלኆኊኦናל⊲ჼምና ל<∩ኑLኊ 25−୮ ചച∝∆۶%ለL⊀ℾי የለምי ⊳ዔ⊳ለጜናም⊲ናL∿Ⴑ⊂ ዾዄ፞ዹ⊳∩ነኇ ԵበL∩ישרי.

## 

⊲⊳֊ናłትኒሲჼ ▷ጜ<▷ችጋች. ሏለLዮ֊ጋዮ ⊲⊳֊σ՞ዦና ለኦሲ⊲ጋጏዻናኇኁዮር ርժኣ⊳ጋՈኑ ዖዹነሪ፝፝ኯ፟፟፟ ጋኣ፞ኇጜሲፈ፟ጜች, ነ⊳Lጚኆሲቶናፈነሪና ይጚዦዺዾ፝፝፝፝፝፝ኯ፝፝፝፝ ዾኈጕ፞ጜ፞፞፞፞፝፝፝፝፝፝፝፝፝፝ጜኯ፟ዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀ ዾጏዻኇ 2018 ኇ₽ዻችርውለLቃና ለ⊳ዹኄሁአሲዻኁዮር ጋኣፍለዻናኇጜችበኍጏዮና. bበLልነ በJንውለLቃች ርካሪፈም ዾኍጏናኇ.

## 

ڬؗڶ؇ڂٮڬۥۥۥ؇ڝ؆؞ػڐڔۻ؇ۥڔ؞ڮ؞ڮ؞ؼ؞؇؞؇؞ڡ؞ۻڔ؞ڮ؞ڔ؇ڝ؞ۻڔ؞ڮ؞ڔ؇ڝ؞ۻڔ؇ڽ ڔۿڝٵ؞ – ٧٦ڝڮ٦ۥ ؆ڔڗٮڟٮڔڗڮؠڔ؞؋ڡؗٙۨۨۨڗڶ؆ۑڡ؞ڮ؞ڔڝٳ؞



### Ͻ៶ʹʹʹͶϲϟϫͺϫϐ·ϹϚϧʹʹLϹͺႱͺͼͿͺ·ϭ

<Ի֊ Ճ֊ՆԻՙ(൧൨֍ՙ Ͻ֊Նል՚) ՃԵ‹՚֎ጋՃՀԻ֎ጋ֎ ጋሲԵ՝ Ճ/ԼՐ՚ኦՆԺ՝ ለ›ռՎጋ`Լՙ Ճ/Լ/՚ԻռՎ/Չ՟⅃Ժ ൧൨൳Ի‹՞ Ի<ՆՙԸՈ՞൨Ր՞ ԵՈԼՈՙ՚‹՚ՆՆՉ֎՞Ո՟⅃J. ՎለռՀԻ֎ጋ֎ ՚ֈ֎ԺՎՐ ጋՆ֎Ոՙ՚/ԼՀԻՆԸ՚ ԻՆ֎ጋԺ⅃ Ճ/ՀՎՐ ጋՆ՞Ոՙ՚ՀՎՀԾ՟ռՀՆԵՐՀ֎ՙՙ֍ ՉՐ՚Ժ֍ՙՀՃ ՉՆՆԵՙԸԺՉՆԸ ൧൨൳ԻՙԺ.ԻՆ֍֎ጋԺ⅃ ൧൨൳ԻՙԺ ጋՆ֎Ոՙ՚ֈ֎ՙ ՀՀՆՐՉ՟ՀԸ ՟ՀԻՈԺ՝ ՀՀՆՈ՚ ՎՐ՚Ժ֍ՙՠՠ

ላነት በሚያስት የሚያስት የሚያ

ለነላበቦ-೨ՐԲ ሁ֎Lጋጜነኇ ለኦሲ⊲ጜግሮንՐԲ Δ/L/Ϸሲ೨Ոኑ. ϷLላኆሲጓኘላና Ϸጜሲ⊲ኈጋ/L୧ና CLነԲጐσ bሏCT ΔኈbኈጋΔኦፕላ⊴ና ጋኣኇጜኈՈና೨Րና, ՎL೨ ኣኈዮናጋና

ĠJԺ 10-15. ÞL쑧~ሊትናላጎቴና Ćናፖናኄ ⊲ጋ∆°ฉ໊ґL⊀ና C∆L°∿Ⴑና 2012 (CdചႱ ÞL쑧~ሊትናላላጎቴና ⊲Þ௨ናፖራናፓና ዉചዉ∆ንÞՈ∿Ⴑና) Lናንቝ ፞ቝ፟ጏበነኣ፞ኑ ዾር፞፞፞፝ኀዸ፟ኑ ቴዮՐ໊ጋႱ∧ዮՐ ላ፟፟፟፟፟፟፟፟፟፝፝ ላ፟፝፝፞ አቀም ርሏ። ьLՐንÞԺ∿LC, C∆ьσጔ bዉCГ Δኈ፝Cኈ፟ጋሏትናላላጎቴና bL௨Þ₠LC ΔፖሬፖኮሲላጜናኇናΓኑ LኆႱ๙₽ን°ቈኈ፝ጋኇነ

# NWMB PRE-HEARING TELECONFERENCE



Page 3 of 6



# NWMB PRE-HEARING TELECONFERENCE



ΛϧϞ<sup>®</sup><-<¬<<br/>
<sup>©</sup> CLDΓ<sup>®</sup>L, <<br/>
<sup>©</sup> CLDΓ<sup>®</sup>L, <<br/>
<sup>©</sup> CLDΓ<sup>®</sup>L, <br/>
<sup>©</sup> CLDΓ<sup>®</sup>L, <br/>
<sup>©</sup> C<sup>®</sup>L<sup>®</sup>L<br/>
<sup>©</sup> C<sup>®</sup>L<br/>
<sup>©</sup>C<br/>

## <u>ΔϲϷσϤͽϽϲ ϤϧϤͽϹϷϤϧϧϲ Ϸ<ϧϤ;Ͻ;Ͻϯ</u>

<▷፫ Δ•∿ሁ▷ና (ጋ፦∿ሁልኑ) </>
</>
ላለሲሬ▷°ጋ° Δﺩ▷ታላ°ጋና ΔﺩՐን▷ንሲላጜናታላጊ∿Ⴑር </
</
</
<p>

▷°<>> Δ₂ጋኄ▷ጋኄ▷

<>~ \Delta^^\P^ (``\&') a\_aAnde>~``` CL'dd d`Ja#``Cent'd bNL}`` AtLJN' d'`'. d>`enft'ta`L`iC a`Fo` dP`cFd``Or'?

## 

Pre-Hearing Teleconference Western Hudson Bay Polar Bear October 3<sup>rd</sup>, 2017



൧൨൳ഀ൳.

ڟڔ، ۥ؞ ۲؞ڗۻ٦؞٦؞ ٢٥٧٦٢ ، ۲۵٩٦٩ ، ۲۵٩٩ ، ۲۵۹۵ ، ۲۵۹۵ ، ۲۵۹۵ ، ۲۵۹۵ ، ۲۵۹۵ ، ۲۵۹۵ ، ۲۵۹۵ ، ۲۵۹۵ ، ۲۵۹۵ ، ۲۵۹۵ ، ۲۵

# NWMB PRE-HEARING TELECONFERENCE



Page 5 of 6



# NWMB PRE-HEARING TELECONFERENCE



>ילב>∩ילי b∩Lσ יש שילכ שילים.

۵٬۵۵۵ میکر ۵۵۵ مرکم ۵۲۵ 🖀 (867) 975-7300 昌 (888) 421-9832

Titiqqap Turaarvia 1379 Igaluit, NU XOA OHO **2** (867) 975-7300 县 (888) 421-9832

Box 1379 Igaluit, NU XOA OHO 2 (867) 975-7300 421-9832

▷ዲኇ ቨ∩ኑ∧ኪ 12, 2017, ርΔbኇ ▷Lጚሮኪትናጚሩና b፝ጏፈናጋነሳና b∩Lምኄኇ (IC003-2017), b∩Lትና bL⊂▷ኄC b≪L°d<sup>c</sup>  $\forall$ DLACA49215

### ֍⊿Ճ۲ԼԺ∿Ն

C1>5°t⊲~UC a\_a∆°.

# 

۷-ت۲: ۲۹-۳، ۲۹-۳۰ ماد۲۹، بود الله بود ۱۹۹۵ محکدل ۲۹ مارسه ۱۹۹۹ محکد ۲۹ مارسه ۱۹۹۹ میک ۱۹۹۸ میک ۱۹۹۸ میک ۲۹ مارس

רכיזש״ך ⊳דגבעדעק.

ΛσηθηιδΔ:

Tammagtailinahuarniriit anngutighat atuqhugit Inuit qaujimajatuqangillu ilihimaniillu ilitquhiannin Conserving wildlife through the application of Inuit Qaujimajatugangit and scientific knowledge

∆יג∩י ⊲*י*טבליחׂ<sup>c</sup> ⊲יL⊃ ՙᲮԼԺ՟Ͻⅆ℉ ⅆՙህ℄ⅈℎՐ ⅆՎ⅃⅃ <'σ ⊲'L\* <u>הלפי</u>ריי **⊴∿64%™ ⊴4L⊃ ⊴⊅⊂67**⊁ ୵୳୶⊳⊂∻

לכלי*די⊃*, 5לס- ,9⊽⊳,, ۲σ1٬⊂∿٫۶ ۵۶٬۶۲۵۰ ۲۰۵۰ ୵≪·୷୰∩୳୳୳ L≪L+d° L&⊃<<Γ

ביץ פרכי רפי זעכא/scc

σ• L•/CΔ<sup>L</sup> 🔄 JĠδ~

متعدمه وكبهجو

7**Ç**+⊂ ⊲<sub>c</sub>4 ୵୳୶⊳⊂∾ ₽**≪**-**~°**Γ ⊳Lל⊂תא<sup>ָ</sup> ۵חLא^ר<sup>ַ</sup>

/~~~~L\*P<a. ۲<u>۳٬۵٬۷</u>٬۳۵۲ مولاد ماد ماده ماده ماده ماده از ماده ماده ا <b</p><<p>>b<<p><b</p> لحلوم وحر

<u>ک د د میں کہ کر ۲۵۹ ک</u> Ն≪L•d° \_\_\_≫°Г

י∧⊳م∆ ۲<>

∆ີ<<?>℃

**۵**-۳ ۹-۵۳ **⊲∿**Ե⊀%Ե% \_\_\_>՟ **Ͻ"**Նል՝ ՈՐՆԼ՟

⊃^Ր~∿L-∆ᠲ<

<u></u>
Եዮና∻σ<sup>∞</sup>Γ ⊲ንህፈሥሰና ⊲<sup>⊥</sup>∟∍

∆ີ′≪⊳⊂ໍ ⊳≪໔ ໑ຉຬ൨൳ഀ഻ഀ

>524 7666

ገ⊲ሪሀ ኤ.ፕ.

୵୳୶⊳⊂∾

⊳⊆`⊃∧ռ 20. 2017

יםה' זעל

ASY@DCª



ᠴᡆᢀ᠋ᢉ᠋ᢄ᠘ᢣᡄᡅᢣ᠋᠈ᢣᡆ᠖᠋᠘᠘ᢣ᠅ᡣ᠋ Nunavunmi Anngutighatigut Aulapkaijitkut Katimajiat Nunavut Wildlife Management Board

 $dP^{C}CPP^{*}\Delta L^{*}PLtcn^{*}td^{c}d^{r}Dn^{*}Lc^{C}C^{c}\Delta L^{r}5.6.16, 5.6.17(b), 5.3.3(a), d^{L} 5.3.3(c) Pdd$   $DaP^{T}d^{r}Dn^{t}Dn^{c}d^{L} CL\Delta^{c}DJ L^{*}aPP^{*}br bLJ/Pt^{*} \Lambda^{t}CP^{*}Jr DdA^{*}a^{r}b^{*} d^{L}b^{t}D^{c},$   $d\Gamma/Pnd^{t}C^{r}\Lambda^{*}L^{t}Dr^{*}(6) aD^{c}dA^{c}D^{r}Ltr bN^{c}Dr^{r}dt^{*}CC^{c}d^{U}ar^{*}CPr^{t}Lr DaP^{T}DaC^{t}Uttt'$  $aLr Lr A^{*}Lra^{*}Lr Pe^{c}C^{c}CP^{t}td^{*}CC ACb^{*}Dr^{*}, dL^{*}bPCPt^{c}a\Gamma^{L}*dA^{c}D^{r}Ltr bN^{c}Dr^{r}dt^{*}CC^{c}d^{U}ar^{*}CPr^{t}AL^{r}dA^{c}D^{r}Ltr bN^{c}Dr^{r}dt^{*}CC^{c}d^{U}ar^{*}CPr^{t}AL^{r}dA^{c}Dr^{r}dt^{*}CPr^{t}dt^{*}dA^{c}Dr^{r}dt^{*}dt^{*}CPr^{t}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}dt^{*}$ 

 $\mathcal{A}_{\mathcal{C}} = \mathcal{A}_{\mathcal{C}} \otimes \mathcal{A}_{\mathcal{C}} \otimes$ 

#### Cd⁺ഘኼ∩Րํーンም የነd൲Ĺምነ ቈ௨ና∩ናłምና⅃ና உ⊃உ∆ን⊳Րነና:

**ἀ೭૯٬೧೯૪৫ ἡ ΛϹ锡ἐ،Ὁ Ϸ≪ϭ ϳϞͻϭϥ 9 ϤϞͺͻ 10, 2018, ϹΔϷϭ ϷϞዮ;Ϯϭ·ͼ, ϫϫϷ·Ϛ Ϸ≪ϭ ϒϭ·Ϲ;Ϫ· ϽϞϓϚͼ ϤϞͺͻ ϧ**ΛͰϗ;ͺ ἀͺϲ·Ϛ;Ϛϭͼ ϧͺϒϧϷͺͼʹϽͼ· Ϸ·ͺͻ·ϭ· ϷϚͺͻ·ϭ· ϷϚʹϲ; ϷͺϲͺϞ;Ϟϭ· Ϸͽ·Ϟ 5Ϳ· ϷϞͽϞϭ·. ΛϹϧϥϤϧʹϚ; ϷͺͰϞϲϧϞ;Ϟϭ· ϤϽͼ;ϒ;ϚϷϫͽ·ϭ· Ϸϭϫϧϲ 7:00Γ· Ϸͽʹϧ 9:00 Ϸ·ͽ·ϭ.

ארנאֹי ⊲וּרָשיבי⊃י ש׳עיכ⊳חסי, סת׳לחיזסי, ⊲ינש סזידטחסי חוּישרי וּלרָי (10) וּיעירי וּפּיּרִיּד שב≫יד א≺יסידי בניחיזסישי. וּיעאיי סאַיכאני⊃י אשש׳ע וּפּירייד אַנזרתאי אחנאירי.

Ϸ϶ϫͺͺΩΠ<sup>%</sup>ϷΩJና, ϷLϞϲϫϞϞϞϤʹͺʹͽΔ<sup>%</sup>ἀϟ϶ʹ Δϲ·ϞʹͺΛϲϲϞʹϠʹϞϭ· ϷʹϞ϶ʹ·ϭ· ΩΓʹἀΩϓϒͼ· Ͻσϯϭϓ ΩΩϚʹϟLϞϭ·Ϸϭ·ϐϭ·ͺϤϞϿϿΔϞϨϿͶϭ· ΩΠ<sup>%</sup>Ϸϭ· ϷϷ·ϞͶϭ·ϷϭϿʹϞ Ϥ**ϫ**Ͱϲ϶ͼϿͼͳ϶Λϲϫ<sup>ֈ</sup>ϪʹϞϾ Ϥ**ϫ**Ωϲϫ<sup>ϳ</sup> ϽʹϟϚϷͶʹϞϾͺͺͺͺͺϹͶϚʹϟʹͰϿ Ͽϲ;ϲ <u>ΩϝʹϓͼϭʹϞϭͺ5:00 Ϸ·ͽϞϞϭʹ (ΔʹϐϿϪϲʹϯʹϔʹϞͿͻʹϞϽϿʹ) ϷϫͺͽϪϞΛϫ 24, 2017</u>. ΛϹʹϐϫϤʹϐʹϭ·ϒϲ ϽϼϲϷʹϹϷͰϯʹ Ͻϭ;ʹͻϭͺϹϷʹϲϗϹϤϲʹ.

Dorbin all a borthin individual to a state of the set of the set

ለነ<mark>፟</mark> እነት ውስፈንድት ጋነናናነት ውናው, ⊲በ ኈ⊳ትՐ⊴ና∕⊳ነ ⊳̀Lל⊂ሲትና⊀⊴ና ኈናነ⊳ነታና ⊲∟ነ⊳ሥነል∿ሁና ⊳<«... ▷ኈናልՐ...Րና Ե∩Lትና ፈናΓው<sup>™</sup>.

イーィア David Slinkel

Ċ৵৺᠂৴▷৺৸ ᠘ᡩᠡ᠙▷ᢗ▷৳᠘⁺ᡅᠮϽᢪ ▷᠙ઌ ᠴᡅᢟ᠋ᡗ᠋ᢄᡶᠯᡊᡅ᠈ᠮᠯᡏ᠖᠘ᡅ᠈ᡩᡗᠮ

∠כרכ⊳גרג<sub>כ</sub> (3)

ለJL೨σ ጋኣናናኣb°σ፣ው ለናጋሹ ጋσረσ® ኦኖዲኃ°ở ለσ® ኦσቴሪው ኦኖዲኃ°ở LcႱ፣ው 4ጋንጋው የየdcLው ሲርናበናረσ፤ነ, ላሰ ቴኦኦቴናፖኦ ኦLላሮሲኦናላና:

# 

స్ సినిసింగా సినిసి సినిసింగా స సినిసింగా సినిసి సినిసింగా సినిసింగా సినిసి స

# 

**షెడ్టర్స్ స్టార్ట్ స్ స్టార్ట్ స్టా స్టార్ట్ స్టా** 

# JULYUNDS.

ఎస్టోఫ్ ఎరాంగా స్థానించి సింది సింది 20, 2017 దికి అడిస్ స్ట్రికి సింది సింది

ንነየበናን ንንያህን ወደ እስ አካባናር ወደ ምሳር ምሳሌ ምሳሌ ወደ እስ አካባናር በትም ወደ አካባላም ወር አካባላም ወር እስ አካባላም ወር እስ አካባላም እስ



# مەدەمۇر חחקיילגל ספאפגיפכפחסישי

ل∿وح⊳م

2589c 

SPPQesp

የpre. 20 ዓብም አምር የሆኑ የምር የሀገን የ

# ۵-2-64%

Sibrus Signa Stores Sto

6%650050 Sepurate State C PULLAD

# Ubdydap

Airup and porcupade purpor

# 

دا∿مە⊲

2645050g

# **⊲⊳**∟<sup>c</sup>∩<sub>σ</sub><sup>c</sup>」<sup>c</sup> ⊳≪<sub>σ</sub> «Λ<sup>%</sup> μ<sup>e</sup> c c l b 5 t d < " a a a c s b t b σ % μ<sup>e</sup> a c

# L> 9, 2005

 $\Delta^{\circ} \wedge J^{\prime} \cap \Lambda^{\circ} \supset \Lambda^{\circ} \supset \Lambda^{\circ} \cap \Lambda^{\circ} \cap \Lambda^{\circ} \cap \Lambda^{\circ} \cap \Lambda^{\circ} \supset \Lambda^{\circ} \cap \Omega^{\circ} \cap \Lambda^{\circ} \cap \Lambda^{\circ} \cap \Lambda^{\circ} \cap \Lambda^{\circ} \cap \Omega^{\circ} \cap \Omega^{\circ$  $\mathsf{DDG}^{\mathsf{S}}\mathcal{A} \mathsf{L}^{\mathsf{C}} \mathsf{DP}\mathcal{A} \mathsf{L}^{\mathsf{S}} \mathsf{C} \mathsf{D} \mathsf{D} \mathsf{D}^{\mathsf{G}} \mathsf{L}^{\mathsf{G}}, \ \dot{\mathsf{a}}^{\mathsf{L}} \mathsf{L}^{\mathsf{G}} \mathsf{D}^{\mathsf{G}} \mathsf{L}^{\mathsf{G}}, \ \dot{\mathsf{a}}^{\mathsf{C}} \mathsf{L}^{\mathsf{G}} \mathsf{D}^{\mathsf{G}} \mathsf{D}^{\mathsf{G$  $\Delta / L^{b} \mathcal{A}^{b} / \mathcal{D}^{c} \mathcal{D}^{c} \mathcal{A}^{c} \mathcal{A}^{c} \mathcal{A}^{b} \mathcal{A}^{c} \mathcal{A}^{c} \mathcal{A}^{b} \mathcal{A}^{c} \mathcal{A}^{c$ 

# AJC°PC

## CONTRACT NO INC

# ႶႶႽჼჄႱႻჅႱ

# LPV2020

| 1.0     | Ͻ <u>Ϸ</u> <sup>~</sup> Γ <sup>&lt;</sup> /5 <sup>™</sup> Δ <sup>4</sup> LΓ≻Ϸ <sup>~</sup> L <sup>*</sup> UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.0     | Ubcp4r4c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4  |
| 3.0     | ۱۹۹۵ کو                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5  |
| 4.0     | 48°2Loubod of 140000 de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6  |
| 5.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|         | 5.1 JP%rc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6  |
|         | 5.2 SD2+++1 455 450 DC/P2 5.2 SD2+++1 5.2 SD2+++10.2 SD2+++10             | 7  |
|         | 5.3 Job CDb Las 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7  |
|         | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|         | 5.5 bnspr a broke a brock-is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|         | 5.6 oftop of Prillic/JuseCDter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9  |
|         | 5.7 PD'4CD4° DDP'5"< <cd0°10° dc<="" td=""><td>10</td></cd0°10°>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 |
|         | 5.8 style="text-align: center; color: black; black; center; center</td <td>10</td> | 10 |
| 6.0     | ᠌᠋ᡔᠳᢣᠣ᠋᠊᠋ᢛ᠂ᡋ᠋ᡭᡔ᠋ᢛ᠂᠋᠖ᡃᢣ᠋᠋ᡗ᠋ᠺ᠋ᢣᢂ᠋ᡔᡄ᠋ᠴ᠋ᢄ᠂᠋᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 |
| 7.0     | ئەككىئومۇر ھەرد∪مۇرى:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 |
| 8.0     | ᠕ᡷ᠋᠋᠋᠋ᢨᡆᢞᠾᠣ᠊ᢗᢣ᠋᠌ᢂᢣᡲᢣᠯᡏ᠂ᡆᠴ᠘᠋᠋ᡗ᠄᠋ᡖᡃᢣ᠌ᢂᡔ᠋ᢌᢉᢪᠴᢩᢄ᠁᠁᠁᠁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15 |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|         | ∠Lನ™ 1. ∧∿b°a∿bo C∠D>>℃ a_aac ᠬb℃Do∿nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|         | /Lನೆ 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|         | ∠೭ನೂ 3. ಇಲಿಇಿರ್ವರ್ ಕರನಾಗಿ ನ್ನಾ ಅಂದಿ⊂೧೯೧ರ್ ೨೯ ನಿಂಗಿ ಗ್ರಾ ಗ್ರಾ ಗ್ರಾ ಗ್ರಾ ಗ್ರಾ ಗ್ರಾ ಗ್ರಾ ಗ್ರಾ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|         | רבאש 4. בפראס אטבאסרתאשל באטראליסישי ברטשי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| dcCCepU | רעיש 5. דירת אדי די די (אפררת אישי, אדי די ד                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 |
|         | ÞLᢣᡄᠬᢧ᠈ᢣᡧᢦᡃᡆᢩᠣ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |

# <u>חחקיילעל כראסיט אירפטיט גאיראסי געראילע גער געראיגע גער געראיגע גער געראיגע גער געראיגע גער געראיגע גער גער גער</u>

# <u>በበና%ረLታ% 1.0</u>

# DP&rc/Sbass ALLPYD&L&LC

- 1.2 α.Δ<sup>C</sup> Δ<sup>D</sup><sup>C</sup>CD<sup>C</sup><sup>C</sup> C<sup>V</sup>/J<sup>V</sup>U ΛΛΓ<sup>S<sup>V</sup>/L<sup>4</sup>J<sup>C</sup> DP/DL<sup>S</sup><sup>D</sup><sup>C</sup>CDΛσ<sup>S</sup>J<sup>C</sup> Dd<sup>A</sup><sup>V</sup>J<sup>O</sup><sup>C</sup>, Λ<sup>V</sup>U<sup>A</sup><sup>A</sup><sup>V</sup>Uσ C<sup>V</sup>D<sup>V</sup>/d<sup>S</sup> α.Δ<sup>C</sup>, P<sup>V</sup>Jσ<sup>V</sup>Uσ<sup>L</sup>Uσ C<sup>Δ</sup>D<sup>D</sup><sup>A</sup><sup>C</sup><sup>S</sup><sup>C</sup><sup>C</sup><sup>C</sup></sub> α.Δα<sup>S<sup>V</sup>/L<sup>4</sup></sup>ΛD<sup>C</sup> Δα<sup>A</sup><sup>V</sup>J<sup>C</sup> Δ<sup>C</sup><sup>C</sup><sup>O</sup><sup>C</sup></sub> α.Δα<sup>S<sup>V</sup>/L<sup>4</sup></sup>ΛD<sup>C</sup> Δα<sup>A</sup><sup>V</sup>J<sup>C</sup> Δ<sup>C</sup>C<sup>S</sup><sup>O</sup><sup>C</sup></sub> Δ<sup>C</sup>D<sup>A</sup><sup>V</sup>/L<sup>4</sup></sub> DP<sup>V</sup>DL<sup>S</sup><sup>D</sup><sup>C</sup>CDΛσ<sup>S</sup>J<sup>C</sup> Δ<sup>C</sup>Δσ<sup>D</sup><sup>C</sup> Δ<sup>C</sup><sup>A</sup><sup>S</sup><sup>D</sup><sup>C</sup></sub> Δ<sup>C</sup><sup>C</sup><sup>C</sup><sup>C</sup></sub> DP<sup>V</sup>DL<sup>S</sup><sup>D</sup><sup>C</sup>CDΛσ<sup>S</sup>J<sup>C</sup> Δ<sup>C</sup><sup>A</sup><sup>D</sup><sup>C</sup></sub> Δ<sup>C</sup><sup>A</sup><sup>C</sup><sup>C</sup></sub> Δ<sup>C</sup><sup>A</sup><sup>V</sup><sup>C</sup></sub> Δ<sup>C</sup><sup>C</sup><sup>C</sup><sup>C</sup><sup>C</sup></sub> DP<sup>V</sup>DL<sup>S</sup><sup>V</sup><sup>C</sup></sub> Δ<sup>C</sup><sup>C</sup><sup>C</sup><sup>C</sup></sub> Δ<sup>C</sup><sup>C</sup><sup>C</sup><sup>C</sup><sup>C</sup></sub> DP<sup>V</sup>DL<sup>S</sup><sup>V</sup><sup>C</sup></sub> Δ<sup>C</sup><sup>C</sup><sup>C</sup></sub> Δ<sup>C</sup><sup>C</sup><sup>C</sup></sub> DP<sup>V</sup>DL<sup>S</sup><sup>V</sup><sup>C</sup></sub> Δ<sup>C</sup><sup>C</sup><sup>C</sup></sub> Δ<sup>C</sup><sup>C</sup><sup>C</sup></sub></sup>

- 1.5 "ϷϞϷͽͰʹ϶ͻσ ϤʹህϨʹϲϲϤϨʹϭϾͽ" ϽϷʹϐϷʹϷͼʹϐϷϟϚϷϛͼϭϷ ϛͼͻϭϷ ϤʹϞͿϒϷϨͼϫͽϽϭϷ ϷϿϷϭʹϷՈϚՈՐϤͼʹϒϾͻϭ ϫϿϹϒϷϨϭϷ ϽϚʹϲϒϷϒͰͺϟʹ ϤϹϭ. ϹϹͼϫ "ϷϞϷͼͰʹ϶ͻϭ ϤʹϞϨʹϲϲϤϨʹͼϭͼͽ" ϽͼϞႱϐʹϐϷʹϿϹϷϿͼͽ ΔϿΔϚ ʹϐϷϷͰϫϽϔϐϒϾϭͽ, ϚϷϿͼ ΔϲͰϹϒϷϷϟϭϷ ʹϐϿΔϲϨʹϲϤϭϲϫϷϭʹϾϫϲ, ϤϹͿϨͽʹϚϲϤϽΔͼϫϲϤʹϐϐʹϭϔϾϭϷ ϷϿϷϭʹϷϚϲϤϽΔͼϫϲϤʹϐͽʹϾͼϷϫ. ϹϹͼϫ "ϷϞϷͼͰʹͻϭ ϤʹϞͿϨʹϲϤϨʹͼϭͼ ϲϲϒϤϐϧϭͽ ΔϲϤϚϷϲϤϽΔͼϫϲϤͽϬͼϾϷͼϫ. ϹϹͼϫ "ϷϞϷͼͰʹͻϭ ϤʹϞϨͼϲϤϨʹͼϭͼ ϲϲϒϤϐϧϭͽ ΔϲϤϲϷϷϲͿϫ
- 1.6 " $bn^{c} a^{c} a^{b} b b^{c} a^{b} n c b c'$ "  $n^{b} a^{b} c c b b^{b} c a^{a} a^{c} a^{c} a^{b} b^{b} c a^{b} b^{c} a^{b} c a^{c} a^{$
- 1.7 " $\delta \delta \$

- 1.8 "4/\*>74/\*>74/\*>74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74/\*74
- 1.10 రోష ΛΛና‰γLર‰ ϽΡγΡLધδϤΟΡΛσίμϤ ૧૪૯૬%/૭% ΡϞͿσʹႱσ αΔσασίμ ϤʹϒϤϦΛΪΟΡΣΡͽγLϞϭͽ Λʹ·Ϥͼʹ·Ϳϭ ϹϒϷϧίϞϤʹ, ϤϽϲΡĹϣͻσϿ ͼϷΓϳϨϥϷϹϷͽϐϭϭϤϤϲϿϳͻϭ ϤʹϔϾϷϚϤϤϿϭϿ ϼϥϷΓ ϷϲϞϲϥϷϳϞϤϐϐͽϤ
- 1.11 LCP4CC 40°CD5224CC CC40 ANGV2L40 DP20L60CDA51 42756CD556  $2^{2}$
- 1.12 Codd  $\Omega_{0}^{0}$  Codd  $\Omega_{0}^{0}$

# <u> በበና%ታይታ% 2.0</u>

# UPCD4L4c

- 2.1 2.1 4
  4
  CONTREPORT CONTREPORT

- 2.4  $a\_a\Delta^{\circ}/\sigma^{\circ} < \Delta^{\circ}/\sigma^{\circ} < \Delta^{\circ}/\sigma^{\circ} < \Delta^{\circ}/\sigma^{\circ}/\sigma^{\circ} < \Delta^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/\sigma^{\circ}/$

- 2.6  $\Gamma P^{\circ} \sigma^{\circ} c'^{\circ} d^{\circ} \Delta D^{\circ} c'^{\circ} d D^{\circ} c'^{\circ} d D^{\circ} c'^{\circ} \Delta D^{\circ} \Delta D^{\circ} A C C C \sigma^{\circ} c'^{\circ} d D^{\circ} c'^{\circ} d D^{\circ} d D$
- 2.8  $a \supseteq a \Delta^{6} d^{6} (b D D d^{5} d^{6} d^{6$

# <u>∩∩5507Lov6 3.0</u>

- 3.1 LC+JJ DQP DQC'55'J' 4°16'DI), 4U27'JCL' 460'DCL' 460'ADA22'CL' 460'S ACC'S ACC'S
- ii) TAH, ἀCˤϷ΅Ր·Ͻ· Δ/ϲ·ϲϚͽϡͺ· Ϸͺ«Ͽͼϭ· TAH Lϲυϡͺ ἀιφρι/ͽϲϷϲϷϫ ϷLϞϲͺϷ;ϞϤͽϤͽ. ἐνάϤ LϲυΔ Ϥϡͺ·ͼϲϷϲϷϫνLϲͼν
  bLϞϲͺϷ;ϞϤͽϤͽ. ἐνάϤ LϲυΔ Ϥϡͺ·ͼϲϷϫνμες Ϸ
  (ἰς, ϥϛἰςἰςἰ, ͽνϷηΓ ϷηΓικανο, Ακτανο, Ακ

- 3.3 AULADCLA8d JP/2%/16/004%>6 AJ%/6/LCC50/2 Codoro LC60 ለ<<p>CCL & CONTRACTOR CONTRACTO
- $a^{\circ}$  DU/  $a^{\circ}\sigma a^{\circ}$  DU/ Dafo.

# **∩**∩5<sup>™</sup>/Lσ<sup>™</sup> 4.0

# مم*ەي،ب*۲۵م، مىرمەر مىرمەر مەرمەر بەركەر مەركەركەر

- 4.1 বৃষ্ঠবিকলে বঞ্চ বিশ্বসমূহ বিশ্ববিদ্যালয় বিশ্ববিদ্যা বিশ্ববিদ্য বিদ্য বিশ্ববিদ্য বিশ্ববিদ্য বিশ্ববিদ্য বিদ্য বিদ্য বিদ্য ব 4>Π/Laltoris, ΛidsFuistor /GΔiso DidCD+&σisc. Δ&Dirlonsbto Δidalbornic  $PU^{O} = P_{O} = P_{$  $\wedge \flat \mathsf{P}^{\mathsf{e}_{\mathsf{v}}} \mathsf{P}^{\mathsf{e}_{\mathsf{v}}}} \mathsf{P}^{\mathsf{e}_{\mathsf{v}}} \mathsf{P}^{$  $\mathsf{DDGW}_{\mathsf{C}} = \mathsf{CD}_{\mathsf{C}} = \mathsf{$ ANCDerror Toc.
- 455%CD0455600 44L3 48ACA266 ALL6250400 3000 3000 300 חחישייכאילחרנייריסי. חחקייכאילחרני אסיטרמיטוני אראיטוני מראיטונאס בישיכאיפייסשי LJLCDJJ& 4867LJ64 DL4CL266 A4L5D6370. 440CL266 D50D5450DAP450450 4867L060 DL40220 DCAL506020 dispocorle

 $\forall \sigma \forall b C D Z L^{c} \supset d \Gamma d \forall d \Delta c a L^{b} Z \cap d P D \supset \sigma d \forall C D Z^{a} a b^{c} D c a a b^{b} \cap C^{a} D c.$ 

# NN982Lorb 5.0

# LCLAC

# 5.1 DP%pc

5.1.2

5.1.1

"454J5b550 0.05% 0.05% 0.05% 0.05% 454J5 Debter 454J5b560. Prad to L5250

م،خانهم مفعانه که کرد.

# 5.1.3 "Ls?や dsらし ) Psbs>sb a 5b dsらし 2-0b Dvし の · Prdの ~

5.1.4 "'ర్రిలిల్లిందా' ఎరికర్లింగి ఇత్రింగ్ రెడ్డిల్లింగి, నిష్ణింగ్ నిగిర్లింగి నిరిగింగా స్థాని సింగా స్థాని వరర్గింగా స్థాని స్థాని స్థాని స్థాని స్థాని సింగా స్థాని సింగా స్థాని సింగా స్థాని సింగా స్థాని సింగా స్థాని స సంగా స్థాని సింగా స్థాని సింగా స్థాని సింగా స్థాని సింగా స్థాని సింగా సింగా సింగా సింగా సింగా సింగా సింగా సింగా

# 5.2 معد ۵۰۵ مربط مربط ۲۵ کو ۲۵ می ۲۵ می کو ۲۵ کو ۲

- 5.2.1 Ρλαιηγρί αυαΔοασοφορί του ΔεαΔηρείε, αρεσίτευτ, ρλαιοί ρυηγρί αραστο αυτορογίτου αυαδοσοφορί του αραστοτικου αυτορογίτευ αυτοροφορί το αυτορογίτου αυτορογίται αυτορογίται αυτοροφορία το αυτοροφορί αυτορογία αυτορογία το αυτορογία αυτοροφορί το αυτοροφορί αυτορογία αυτορογία αυτορογία αυτορογία αυτοροφορί το αυτοροφορί αυτορογία αυτο στα αυτορογία αυτο στα α
- 5.2.2 ద్వాసార్గి సంగార్ సింగా సినిమి సినిమా సిని సినిమా సిన స సినిమా సిని సినిమా సినిమా సినిమా సినిమా సిని సిన సిని సిని సినిమా సినిమా సినిమా సినిమా సినిమా సినిమా సిన సినిమా సిని సిని సిన సినిమా సిని సినిమా సినిమా సినిమా సినిమా సిని

# 5.3 ANCPCACLO

- 5.3.1 PaJA°as duly rocsise of cs:
  - (a)  $\Box = \nabla \Delta^{e} \Delta^{e}$

# 5.4 Autor anscio disortion

- 5.4.2 విలడాలిఎరాషస్ గంటిండి సాస్ గరాగరికి ప్రదాశాలు ప్రదాశాలు సింగాలు సి

## 

ትጅትሮ የሚያገር የትግር የሚያገር የሚያገ

5.5.3 రెష్ట్రించింది సింగా సి

bneccisbone (WH)

5.5.2 σర్.5.2 ర్లిష్ స్ట్రింట్ రాంట్లు రాంట్ల

64

64

| مەم                                             | TAH    | PUCOLO |
|-------------------------------------------------|--------|--------|
| <b>⊲</b> ₅%⊲ <sub>c</sub>                       | 20 + 2 | 22     |
| ∆- ے−ل١٠٢                                       | 1 + 2  | 3      |
| <br>∩₽ <b>Ϛ</b> Ϟ⋞⊲ <sup>₅</sup>                | 12 + 2 | 14     |
| ხ°Ր <sup>sb</sup> Ċσ <sup>-sb</sup>             | 12 + 2 | 14     |
| <sup>s</sup> bLσ <sup>sb</sup> ⊃⊲ <sup>sb</sup> | 2+1    | 3      |
| ისებოთკი კი კ  | 47 + 9 | 56     |
| ما√∿لد ∨⊀₀تورېدې                                | TAH    | PUcolo |
| ĹơჂ়                                            | 8      | 8      |
| ۵۵۵۵۵۵۵۰۵ و ۵                                   | 8      | 8      |

ההישפיר>לי לבער (64) כוביירי עירישירשי כלאלאלא (N=1400)

# ᠆ᡐᡃᢧ᠙ᡃ᠆᠆᠋᠊᠋ᡐᡐᡉ᠋᠊ᠬᡃ᠉

 $\Lambda$ ርቴዮ<br/>
«ጉ<< 4ጋ።<br/>
ርኮሪ<br/>
ላጋ።<br/>
ርኮሪ<br/>
ላግ።<br/>
አንግሮ<br/>
ሪኮሪ<br/>
አንግሮ<br/>
አንግ

# 

ᠻᡃ᠍᠊᠍᠍᠍᠆᠋ᠬᡄ᠆᠋ᡘᡃ᠋ᡬᡶᠴᡄ᠊᠋᠋᠆ᠴᡄ, ᡅ᠘ᢣ᠘ᢣ᠋ᠻᢦᡃ᠋ᢐ᠆᠋᠋᠋᠋᠋᠅ᢣ᠘᠆᠋᠉᠆᠅᠘᠆᠅᠘᠆᠅᠘᠆᠅᠘᠘᠂᠋᠕᠆᠅᠘᠘᠂᠋᠕᠘᠂᠅᠘᠘᠂᠋᠕᠘᠂᠋᠕᠘

5.5.5 d  $D^{b}CP/L^{a}C^{c} \sigma A^{a}UC^{c} \Delta CP + a^{a}C^{c} d$ ₫᠙ᡣᡄᡣᢣᡃᠣᢨᠴᡄ. ᡤᡃᡆᡆ ᡅ᠋ᡣᢛᡣᡄᢂᢞ ᠳᡧᢛ᠋ᡶᡄ᠋ᡬ᠅᠘ᡷᢛᢕᢄ᠈᠋ᠳᢗ᠖ᡬ᠋ᡬ᠘ᡔ᠋ᢤ᠘᠆᠉᠘᠆᠉᠆᠆᠆᠆

م.عم∆هط۲۶۲ Prish Prisk (>14%), >«جغ و Lers nnshe 2.2.1.

JPZQ6665124. CL°Q JP566056 C644 NNS%2K4 JPZPLS6CPN5515 

Priger a Jac ASCD K Deg 5.6.1-F (a,b,c, del ) ASDYndsbelnisjer,  $a^{}$ 

\$45.00

\$30.00

\$40.00

\$100.00

5.6 aparisLric/24000000

√-2°°°

(a)

(c)

(d)

5.6.2

(a)

(b)

(c)

5.6.1  $Ddd b \Pi^{sb} \ell^{sb} C D^{sb} C^{s} \sigma d^{sb} C L \Delta^{e} \sigma^{c} \Delta^{e} D^{b} C D^{c} \sigma^{c}$ 

5000 ADAD C504-50CD7L00PC, AC560<C;

 $\Lambda \subset \Lambda^{\circ} \Lambda^{\circ} \to \Lambda^$ 

⊲، د ۲ می ۵ م م م م م م م م م م

۲۵∩°۲°50℃ σδ°°60'00:

(b) ∠>∩⊲σ σ&°°∪Ċ™, ∧C™

CLLGOCAS ANDER CLGSC

ϼͼϲ<sup>ͺ</sup>ͳϷϭϲͺϤϷϲϹϷϲ;ϿͶϧϿͺϭϨͽϿ;ϞͳͼϫϒϷϞϲͺϷΓϟϲϓϧϧͼͽϲͺϹͳϽͳ;ϚͺϤͽϽͽϹϷϞϿͼ

- a°⊅°CD4⊅°:
  - (a)
  - ישיע שישכשייעדעדי: (b)
  - (c) ap duc Dilitro.

(d) ▷イ⊲~し\_o<sup>c</sup>:

- Prin Laic dia in druc pare: (d)
- σδααυίς άγρς; αιτο (e)
- (f) ALAC DYOCDYONDC VADAUCC DLYODANDC

CLIΓΓΛΔ™ ΔΔ°σς ΔΔC JidCD4 Λ' ΜCD16CiσΔ > TAH-LAD4 - Dac or 6.1  $\dot{\mathbb{C}}^{\mathsf{b}}\mathsf{d} = \mathsf{b}^{\mathsf{c}} = \mathsf{d}^{\mathsf{b}}\mathsf{d} = \mathsf{d}^{\mathsf{b}}$ JsdiA&-⊂⊲σ™ %b^PDA><< TAH-F™, σ&™ÜĊ™™ JJJK%55% C™dd\_ on to the transformed to the ALPYDACDJA dicjest TAH-"P D. AC"DIDE TPLOCDE  $\mathsf{A} \mathsf{U} \mathsf{C} \mathsf{D} \sigma^{\mathsf{h}} \sigma^{\mathsf{h} \sigma^{\mathsf{h}} \sigma^{\mathsf{h}} \sigma^{\mathsf{h}}$ 

# 

# ⊴⊃%חיחסי סמיינכש אחישרי זטילקים שחכשסין

# NN5507LJ€ 6.0

# 5.8.1 dencabed deporter of blacasis Leocobadiosis and to both 47-0004674 Coder UNG026 JANDER

480c~2>d 5.6.5 «δυγήρεα σαλγίτα», το 1 Προρεφρεσεύσ σισισίο συστορος σαυσιατο ᠔᠘ᢞᠦ᠊ᢦ᠋᠋ᢁ᠋᠆᠕᠅᠋᠕ᡩᠴᡆ᠋᠘᠆᠕᠆᠕᠅᠘ᡩᠴ᠘ᢣᠴ᠘ᡷ᠘᠕᠕᠆᠕᠈ᡔᠴ᠋ᢤᢄ

לייףילאפירטחישרי 6חישרי יטילישים ייחרדלי טילטביישור.

# ۹ می م ۲۵ از ز ۲ ک م م م ۲۵ ک ۲۵ ک ۲۰ ک ۲۰

PDG & DLYSG COCTOR

ح•ذ حا∿د عور 15 عولې

JOBPO LAGO LCOCDYR JOBS DO

5.7

5.7.1

5.8

5.6.4 \$DDDease represented a solution of the second of the second s  $\Delta \subset \mathsf{P}^{\circ} \mathsf{P} \subset \mathsf{P}^{\circ} \mathsf{P}$ 

 $\mathsf{CALA}^{\mathsf{e}}\sigma^{\mathsf{e}}\mathsf{L}\mathsf{D}^{\mathsf{e}}\mathsf{A}^{\mathsf{e}}\mathsf{C}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{e}}\mathsf{D}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}^{\mathsf{D$ ଏ≪∩<<p>∩
∿
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√  $\Box$ CC SOPSSE QUALTER SOLUTION OF SOLUTION SOLUTIA SOLUT ᠋᠄ᡃᠣ᠋᠋ᠴ᠋᠋᠋᠘ᢞᡆᢩ᠖᠕ᢣ᠋᠊᠘ᠬ᠋᠋ᡠ᠋᠋᠋ᠴᠦ,᠋ᠴ᠋᠋᠋᠉ᡃ᠋ᡖ᠖ᠺ᠋ᠬ᠋᠋ᡬ᠋᠋᠋ᠬ᠋᠋᠋᠋ᡬ᠋᠋᠋᠋᠋᠋ᠺ᠋᠋

᠔ᡣ᠋᠋ᡣᠮᡃᠵᢗ᠋ᠬ᠋᠋᠋᠋₽ᢣᡶᢣ᠋ᢣᡃ᠋ᡶᠴ᠋᠋᠋᠋᠋ᢑ᠄ᡃ᠋᠋᠔ᢣ᠋᠋᠋᠋᠋ᢣ᠆᠘᠋᠋᠋᠋᠈ᢣ᠋᠋᠋

 $\triangleright$ DP°& TA°2LTAVEC°DT° 10% (>49) D°UC& OPCD2Li voi DDA°a°  $\dot{a}$ 

- 6.3 6.3 4్ష్ దిగ్రండాగ్, న్రాండాన్ ప్రాంతాంత్రం, స్రాంతాంత్రం స్ట్రంగ్ గ్రాంత్రం స్ట్రంగ్ స్ట్రంగ్ స్ట్రండ్ స్ట్రంగ్ స్ట్రంగ్ స్ట్రంగ్ స్ట్రండ్ స్ట్రంగ్ స్ట్ స్ట్రంల్ స్ట్రంల్ స్ట్రీల్ స్ట్రీల్ స్ట్రిల్ స్ట్రంల్ స్ట్రిల్ స్ట్రిల్ స్ట్రిల్ స్ట్రిల్ స్ట్రిల్ స్ట్రిల్ స్ట్ స్ట్రంగ్ స్ట్రంగ్ స్ట్రంల్ స్ట్రిల్ స్ట్రిల్ స్ట్రిల్ స్ట్రిల్ స్ట్రిల్ స్ట్రిల్ స్ట్రిల్ స్ట్రిల్ స్ట్ర్ స్ట్ర స్ట్రిల్
- 6.5 ఎంగా సింగా సింగా

6.8

- PaJA°a™ agr°g%<< Jid%b<T> asiT> Dib-jd%>% ibgrg%<r  $P/d^{c} \cap c^{*} \cap c \to \cap^{(b)} \cap c \to \sigma^{(b)} \circ c^{*} \to \sigma^{(b)} \circ$ ם שם שלאיירע החקיירע אד 5.6.1-ך אחכשישיאכר, כים אחיילאאשיי

 $\mathsf{CL}^{\mathsf{b}}\mathsf{P}^{\mathsf{b}}\mathsf{C}\mathsf{P}^{\mathsf{a}}\mathsf{f}^{\mathsf{a}}\sigma^{\mathsf{b}}\mathsf{P}^{\mathsf{a}}\mathfrak{d}^{\mathsf{b}}\mathsf{D}^{\mathsf{c}}\mathfrak{d}^{\mathsf{b}}\mathsf{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{b}}\mathsf{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}}\mathfrak{d}^{\mathsf{c}}\mathfrak{d}^{\mathsf{c}}}$  $\side \below \$ ٥٤) ٥٢ حمر ٢٢ حمر ٢٠ حمر ٢٠ حمر ٢٠ حمر ٢٠ حمر ٢٠ حمر ٢٠ حمر ٢

# NN5%2L5%6 7.0

- $\Lambda \subset \Lambda \subset \Lambda \subset \Lambda$ 7.1  $\mathcal{T}_{\mathcal{T}} = \mathcal{T}_{\mathcal{T}} =$ ά\Δ°6°σσ δαρσσ Λ°6°α°6σ C205770 αραγοδασ 2005-Γραγ∞ (ΔL°6 J@962°&66<€)
- 7.2
- CONTRACTOR OF THE SECONDERSE ACTION OF DESCRIPTION OF THE SECONDERSE ACTION OF THE SECONDERSE AC 7.3 ﺩﺩﻩਖ਼ﻩ ﻩﻩﻩﻩﻩ ﻣﺪﯨﺪﯨﻦ ﻩﻩﻩﻩ ﺩﺩﺩﻩﻩ ﻣﻪﺩﻩ ﻣﺪﯨﺪﻩ ﺩﻩﻩ ﻣﯩﺪﻩ ﺩﻩ ﺩﻩﻩ ﺩﻩﻩ ﺩﻩﻩ ﺩﻩﻩ ﺩﻩﻩ ﺩﻩﻩ גע
- 7.4
- 7.5  $\texttt{DQ} PCD^{\text{C}} CD^{\text{C}} DCD^{\text{C}} DCD^{\text{C}} L4C^{\text{C}}, PDP^{\text{C}} D^{\text{C}} D$ عمفاتهم معذفه حاجه م عمد المحاد م معدف منهم مع معلفه المعلم معدفه المحمد معدفه المحمد معد المعلم والمحمد معلمه المحمد مع ∧רתי6חויישי כיזשי חחקייזנזי שאתשי שמאשי שמישי הסישי فلنزد مهنوسه بعدد المحد المح المحد المحد

- (b) ἰδοΔ
  (b) ἰδοΔ
  (c) ἰδοΔ
  (c) Δ
  (c) Δ
- (d) ΔΡΕΚΙδυΟΥΪΑΝΤΕΙΝ ΔΙΥΔΑΝΟΓΑΛΑΟ ΔΥΔΑΝΟΥΕΔΟΥΛΑΣΙΑΝΟ
   (d) ΔΡΕΚΙδυΟΥΙΑΝΤΕΙΝΟΥΛΑΝΟ ΔΥΔΑΝΟΥΛΑΝΟΥΛΑΝΟ
   (d) ΔΡΕΚΑΝΟΥΛΑΝΟΥΛΑΝΟΥΛΑΝΟΥΛΑΝΟ
   (d) ΔΡΕΚΑΝΟΥΛΑΝΟΥΛΑΝΟΥΛΑΝΟ
   (d) ΔΡΕΚΑΝΟΥΛΑΝΟΥΛΑΝΟ
   (d) ΔΡΕΚΑΝΟΥΛΑΝΟ
   (d) ΔΡΕΚΑΝΟΥΛΑΝΟ
   (d) ΔΡΕΚΑΝΟΥΛΑΝΟ
   (d) ΔΡΕΚΑΝΟΥΛΑΝΟ
   (d) ΔΡΕΚΑΝΟΥΛΑΝΟ
   (d) ΔΡΕΚΑΝΟ
   (d)

- - i) <PLn<na/~orju <<a>a</a>solution of the second se
  - ii) ᡝᢉᡃᠲᡣᡅᠺᡊᠺ᠋ᠺ᠘ᡄ᠋᠋᠘᠊ᡏ᠋ᠴ᠋᠋᠄ᡄᠴ᠋᠋ᠶᠥ᠋ᠺ᠄᠔ᡣ᠋ᢉᢣᢂᡔᢋ
    - iii) ⊲≀⊳ና∆∩ና∩с∆⊂L⊀LJና 'ፆ∿σσ™ ∧ዖኑ'σ™ጋ ഘ≞םσና. ⊲╙L⊃
- (b) ᠕ᡔ᠋᠋᠋ᠺ᠋᠄ᡋ᠋᠋ᠺ᠋ᡝ᠋᠋᠋ᠪᠻ᠋ᢉᡆ᠋ᡝᡃᢐᢗ᠋ᡝᠦᡏᡐᡃᢌᠵ ᢗ᠘ᡘ᠆᠋ᠳ᠂ᡆᢩ᠆ᠴ᠘ᢣᡃ᠕ᡔᢞ᠋᠋ᡆ᠋᠄ᡐ᠋᠋᠋ᡔᡄ᠘ᡔᢦ᠂᠍᠕᠆ᡘ᠉ᡃ᠖ ᠘ᠳᢉᢣᡏᠦ᠋᠂ᡆᢩ᠆ᠴ᠘ᡔ᠋ᡟ᠆<᠉ᡔᡄᢉ᠄᠋ᠫᠧ᠋ᠺ᠋ᠬᠺ᠘ᡆᢣᡃ᠋ᠴ᠋ᠬ᠉᠘ᠴᡱᠥ᠂ᡧ᠋ᠫᢛᢗᠵ᠋ᢦ᠉᠋ᠸ ᠈ᡃ᠘᠘᠆ᡔᢤ᠋ᡦᢄ᠋ᢤ᠆ᠺ᠅᠋ᡦ᠋᠅ᡩ᠆ᡷ᠘ᠴ᠋ᠺ᠋᠈᠆᠅᠕ᡆ᠋᠉᠋ᡔᠥ᠋ᠴᡆᠴ᠋᠅ᡔ᠋᠉᠋᠘ᡘ᠆ᠺ᠉᠋ᠶ᠋ᢧ᠖᠉᠆ᡘ᠉

- 7.10 రోలెడ్ సింగా స్టార్ సింగా స్టార్ స్టార్ సింగా సింగ సింగా సింగా
- 7.11  $\Delta \sigma$   $\Delta$

| AC iPUireら                                      |               |
|-------------------------------------------------|---------------|
| $\Delta^{b}\mathcal{C}^{sb}$                    |               |
| $d^{c}d^{c}d^{c}d^{c}d^{c}d^{c}d^{c}d^{c}$      |               |
| x                                               | ⊳-⊃⊲:         |
|                                                 |               |
| ∆∘⊦≪⊳⊂₅⊳                                        |               |
| ᠋᠂ᡃ᠋᠋᠔᠆᠉᠆᠙᠋᠕᠆᠉᠆᠙᠘᠆᠉᠆᠙                           |               |
| x                                               | ⊳ت⊲:          |
| PL 29                                           | 26 - 326 - 25 |
| $\nabla a A A A A A A A A A A A A A A A A A A $ |               |
|                                                 |               |
| Χ<br>ϟ <sup>ϳ</sup> Ͱ ϹϚϽΔσ <sup>ናϧ</sup>       | :⊳د ک         |
|                                                 |               |
| $\nabla P = \nabla P$                           |               |
| ᠔ᢥᡗᠬ᠌ᡄᡠ᠊᠖᠊ᡐᡃ᠋ᡆ᠘ᡃ᠆ᡔᡄ᠋ᠺᢣᢐᡆᡄ᠙᠋᠘᠋ᡏᢣᢑᡄ               |               |
| x<br>לי∿ לי⊎                                    | ⊳∟⊲:          |
|                                                 |               |
| $\Delta P \sim D \subset P$                     |               |
| ᡣ᠙ᡬᡃᢣᡧᢦ᠋ᡃᢛ᠂᠋ᠿ᠋ᢤᢣᡄ᠉᠑᠆ᡣᢣ᠉ᢅᠣᡄ᠕ᢄ᠉᠆ᠬ                 |               |
| v                                               |               |
| ×<br>٨٤ حرجره                                   | ⊳్⊃⊲:         |
|                                                 |               |
| ዋኖሩሲ ኦርም                                        |               |
|                                                 |               |
| X                                               | ⊳د⊃⊲:         |
| Déte dore                                       |               |
|                                                 |               |
| ᡐᢕᡄᠬᢣᡃᡆᠲᠣ                                       |               |
| ραδι σσ«Γς γαΓρανίς                             |               |
|                                                 |               |

חחקיילגדער 8.0 ∆∿רשיער פוילא אילקיל גראילער ערבייף ערבייאא

Х

⊳-רים:\_\_\_\_

הקייר אריי 1995 - אריי 1996 - אריינאלי 2018 - אריינאלי באליי אריי

i Merita da Suria. Arresto en Merito da Suria da Suria da Suria da Suria.

and the second s

Arritecto Streets Statute Constants

and the second second second

EARING THE ADDRESS OF AN AND

᠙ᡃᡄ᠋᠋ᢉᢣ᠋ᡷᠾᡄ᠋ᠫᢩ᠉᠋ᡶ᠖᠋ᠻ᠋ᡃᢐᢂᠺᡄᢄ᠉ᠫ᠉᠂ᡆ᠋᠆᠋᠉ᡶ᠋᠉᠆ᡧ᠖᠅᠆᠆ᡧ᠉᠆ᡘ᠅ᡧ᠅᠆ᡘ᠅᠋ᡘ᠅᠘᠅᠘᠅᠘᠅᠘᠅ ᡈᡄ᠋ᡃᡄ᠋ᠺᢞᡆ᠉᠋᠋᠋᠋᠋᠋᠆᠉᠂ᡩᢣ᠘ᢣᡷ᠈᠘ᢞ᠂ᡆᠴ᠔ᡬ᠂ᡆᠴᡆ᠘ᡃᡆᡗᠬ᠉ᡝ᠘ᢞ᠂ᡄ᠋᠕᠅᠋᠘᠅᠘᠅᠆ᡘ᠅᠘᠅᠘ ᠘ᢧᡲ᠋᠋᠉ᡄ᠋᠆ᡔ᠋᠕ᡃᠴ᠂᠋᠕᠊ᡶᡆ᠋᠋᠋ᢞ᠋᠋᠆᠅᠆᠆᠅᠆᠆᠅᠆ᠺ᠅᠆ᠺ᠉ᡩ᠆᠖᠂᠋᠋᠋ᠵ᠅᠆᠘ᢁ᠆᠅᠋᠘ᢁ᠆᠅᠋

Λ<sup></sup><sup>6</sup>L<sup>6</sup><sub>2</sub><sup>6</sup>L<sup>6</sup> C<sup>2</sup>D<sup>5</sup><sup>6</sup><sup>4</sup>C<sup>4</sup> C<sup>2</sup>C<sup>6</sup>C<sup>6</sup>D<sup>6</sup> C<sup>2</sup>C<sup>6</sup>D<sup>6</sup>

ACCCSBULKER 1.

 $\begin{array}{l} \label{eq:2.2} C\Delta L\Delta^{c} C(\hat{c}^{a}\sqrt{3}) d^{a} D(\hat{c} D e^{a}\sqrt{3}) d^{b} d^{c} d^{c} d^{a} De^{a}\sqrt{3} d^{b} d^{b} d^{c} d^{a} De^{a}\sqrt{3} d^{c} d^{a}\sqrt{3} d^{c}\sqrt{3} d^{a}\sqrt{3} d^$ 

# 

# ADCCOOSIC / asals

 $1) \Box \subset \Box^{\flat} \sigma \supset \Delta^{\diamond} \Box^{\flat} \qquad "A C \Box + D^{\diamond} \neg^{\flat} C \supset \delta \sigma^{\flat} \sigma^{\flat} \qquad \Box^{\flat} \Box \to \Box^{\flat} C \land d^{\flat} \sigma^{\flat} \sigma^$ 

# 2.30.2750CD0°6

# ACCCOPTTAR 5

# ACR4565056CD5L°UC.

# √℃℃℃<0.33-℃, 5℃</p>

# $b^{\prime}$

$$\begin{split} \dot{L}^{a} \Delta^{b} d^{c} & < \Delta^{b} \nabla^{b} \nabla$$

The state of the second states and the second states the second states and the second st

- 1) Leabde hore A Port ANSOCA Dot, ALL

- DQ\$F DQC6CP/L√F" Q°D'D'65"<<, J&°~UC'U ∧J~4"<>> DQC'F/GC 4 σδ°°UCT.
- 3. ٢٠٥٤ مەر مەرمە مەرمەنى مەرمەر مەرمەر مەرمەر مەرمەر ئەرىمەر ئەرىمەر ئەرىمەر ئەرىمە ئەركە ئ
- באישכאסיע אראאישירישיש טחיטרי יטיאלאיבאחסי.
- ᠂ᡠ᠋᠋ᠬ᠋᠋ᢄ᠆᠋᠋᠆᠅᠆ᠺᢄ᠖᠋᠘ᡩᠼ᠙᠋᠘᠘ᡩᡓᡄ᠋ᢌ᠘ᢕᢄᡔᢋᡄ᠄ᡷ᠋᠘ᢕᢄ שלאינטיטישיאי, איגטעעיטיב טריטרי יטיאלאיפייארכטטי פרשיאיטרי  $d \supset b \subset D < b \supset \sigma b$ .

LCP4는 የወጭ ለታሲታዮት ሲነጭርዮኆኒኈ፞ር ነጭየበርኦቴናርጭ>ና ቢወናው/Ler >Pr>Libic>Norile CLA°-De Libin'De NNSirles Contractor Center idea. Dolar ΠΠς%γLbbeσL9CD% DSbDγ%C%PC <</p>

# 

5.

 $\mathsf{A}\mathsf{F}\mathsf{P}^{\mathsf{a}\mathsf{b}}\mathsf{P}^{\mathsf{c}}\mathsf{d}\mathsf{d}^{\mathsf{c}}\mathsf{A}\mathsf{D}^{\mathsf{a}\mathsf{b}}\mathsf{P}^{\mathsf{c}}\mathsf{d}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d}^{\mathsf{c}}\mathsf{d$  $C\Delta L\Delta^{\circ}\sigma^{\circ}ba^{\circ}c C^{\circ}Q \Delta ccrppor ibidoadriporlation. Apoint adde adccorescention of the constraint and the constraint a$  $\Delta\dot{c}^{b}\dot{d}^{c}_{2}\cap^{b}. \ \Delta\mathcal{A}L\Gamma + 5b^{c}_{5}b^{c}C^{c}_{5} > 5b^{c}_{5} < \mathcal{A}\mathcal{A}D + 5b^{c}_{5} < \mathcal{A}\mathcal{A}\mathcal{A}D + 5b^{c}_{2} - 2b^{c}_{3} \Lambda + D^{a_{n}} P^{a_{n}} \sigma d \Delta^{c_{n}} \Delta L \Delta^{a_{n}} \sigma d \Delta^{c_{n}} d A C^{a_{n}} D^{a_{n}} P^{a_{n}} \Delta^{c_{n}} \Delta^{c_{n}} d A C^{a_{n}} D^{a_{n}} d A C^{a_{n}} D^{a_{n}} d A C^{a_{n}} D^{a_{n}} D^{a_{n}} d A C^{a_{n}} D^{a_{n}} D^{a_{n}$ ᠋᠄ᡃᠣ᠋ᠴ᠘ᢗᢂ᠋᠋ᡐ᠈ᡩ᠔᠘ᢘ᠋᠋ᠴᢄ᠆᠘᠘᠘ᢨᡆᢣᢉᢣᢂ᠋᠋᠆ᡷᡆ᠄᠋᠉ᠫᠶ᠋ᢧᢛ᠆ᡷ᠋᠉᠋ᠺ᠘᠘ᢞᡆ᠘᠘ᡔ᠋᠉ᢕ᠋ 3%- To digues ano care and care alle alle alle and care an এ৬୬২ଏর?°ഘ্রকে ३%-ক গেণেশুক্রিদেসিজে বেণিশুবের্ণসের্দেরে ৫৫০৫ বিশ্বের্ণ বিধিন্দ বিধনাৰ বিধিন্দ বিধনাৰ বিধনা ۵۲۵°0°, ۵۸۵'۵° ۵۵٬۷۵ مده ۲۰ ۵۵٬۵۰ ۵۵٬۰۰۰ ۵۵٬۰۰۰ ۵۵٬۵۰۰ ۵۵٬۰۰۰ ᠋᠄᠋ᡃ᠋᠋᠋ᡃᢣᡝᡬ᠋᠋᠋᠋᠋᠅᠋᠋᠋᠋᠋᠋᠋᠋ 

# 

Λ√°Ω<sup>™</sup>C⊂ĹΓσ<sup>™</sup> Λ√<sup>™</sup>δ<sup>™</sup><sup>™</sup>C)⊲<sup>™</sup><<sup>™</sup>. ΔLΔ⊂<sup>™</sup>L)⊲<sup>™</sup><<sup>™</sup>, Λ≻▷<sup>™</sup><sup>™</sup>C<sup>™</sup>C)⊲<sup>™</sup><<sup>™</sup> ⊲∩<sup>™</sup>CΔ<sup>™</sup>C)<sup>™</sup> CLΔ<sup>™</sup>D<sup>™</sup> ۵Lee که ۵۰۰ ۵۹ ۵۰۰ ۲۰ می ۲۰ می ۲۰ ۲۰ ۲۰ ۲۰ می 56°PPNNCP°°PD4%<C A>P4°250°PC, 456j04%D% 60520 4%J>P426000000

1999/2000-ך איכיך איטאסאאלי כאחיחאחיחאפאסי אאסטאים איכיד איטאסאאדי כאריאריחאפאסי איסטאיב.

# d) the C b de L the de L t

ϤϟϞϟϒϤႱϧϞϷϞͽͺͼϧϞϟϳ϶ϫͼͼϫϳϲͺϤϽ;ͽϹϷϭͽϽ;ͽͺϤϽͼϷϲϲͽϞͿϹϲͽͻϲͺ1996-Γ ΛΓϤͼσϳͼϿϭ, ϹΔϹϫͼͶϤͽͿϞͼϫϳϹͽϳϾϿͺϤϽͼϷϹϷϳϷϲϹͼϞͿϲϞϹͶϷʹϿϭͺͺͼϷϷϞϷϞϷϞϪϭͼͺϪϲϹϷϟͼͺϪϲϲϷϞ϶ϷϞϹϲͼϽͼ ϿϹͿͼͺͼϷͶϹϷϟϧϥͼͺϤϽͼϷϹϷϳϷϲϲͼϭϭͽϽͿͼ,ͺϤϲϹϿϽͼϧͺϹϪϹͺϹϹϫϫͺͺϥͼϷϲͶϤͼϞϹϷϐ϶ϭϲͼͽϽͼ

# ٥٩٩ כ٥ח٩٦٠٢ ٢٥ כ٥ח٩٦٠٦ ف٢٥٢ ٢٥ مومه عنه المعلمة ٢٥ همه م

# CAL&CP/LCና&UC. 44LAE ACABP&PP of a for Ardor Ardward Ardor Ardward Alberation and the argument of the argu

# 

# Jobdopy Contract

ᠺᡃᡷᢂ᠋ᢁ᠋᠆ᠬ᠆ᢐᡆᡄ᠘ᠳ᠘ᡣᢗᢂ᠋᠋ᠮ᠖ᡩᢄ᠅᠕᠋ᢗ᠉ᡩᡆ᠖᠖᠘᠘᠘᠘᠘᠘᠘᠘᠘ ᠫ᠋᠈ᡏᡆᢗᢂᠴᡆ᠘᠆᠘᠆ᢣᢂ᠆᠕ᡷ᠉ᡠᢩᢁᡩᡊᠫ᠋ᡗ᠄᠘ᡄ᠋᠋᠋ᡁᠮ᠋᠉᠂ᠺᠺᡄᠴᠥ᠋,᠋᠊ᢣ᠋ᠵᢣ᠈ᢣᡆᢞᢛᠳ᠋ᠴ

# **4℃**∩⊃°.

6.

7.

8.

 $\label{eq:solution} {}^{\mathrm{s}} \mathcal{A}^{\mathrm{s}} \mathcal{A}^{\mathrm{s}$ 

 $43^{5}\sigma^{5}b^{6}\Lambda^{2}P^{2}a^{5}D^{5}P^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^{5}\Lambda^{2}a^$ 

 $\Delta L\Delta^{c} c^{c} \sigma_{a} D^{s} C^{c} \sigma_{a} D^{s} \sigma^{c} C \Delta L^{a} D^{s} D^{s} 13/37.5 = 0.34666.$ 

⊲∩ీలద్ంం/⊲౧ీలండా కరింగింగా (12.33-పిరాగింరాం), రద⊥దింరాంటం రిళి దేంగింగా దేంగింగా దింగా ద దింగా దింగా

ᡧ᠋᠘᠘ᡄᡃ 2000/2001-ᠨ᠋᠋᠄ ᡃ᠋᠐ᠬ᠋᠊᠋ᡔᠶ᠋ᡗ᠄᠋᠋ᢧᡃᡝᡬᢓ<sup>ᢐ</sup>ᡅ᠋᠋᠋᠋ᡥ᠋ᠺᢗ᠌ᠵ᠋ᡦ᠅᠕᠋ᡬᢘ᠋᠘ᡬᢧᠧ᠕᠋ᠮ᠔ᠸᡅ᠋᠆ᠴᠥ

13-0.67 = 12.33- ህອና 2000/2001-Γ አσና የአልዮታ በጭር Δና ጋም/ 4 በጭር ግጭ.

గిళి్రాల్లి గార్గాల్లి కార్గాల్లి కార్గాల్లి కార్గాల్లి సింగాల్లి సింగాల్లు సిరాల్లు సింగాల్లు సిరాల్లు సిరాల్లు సిరాల్లు సింగాల్లు సిరాల్లు సిరాలల్లు సిరాల్లు సిరాల్లు సిరాల్లు సిరాల్లు సిరాల్లు సిరాల్లు సిరాల్లు సిరాల్లలు సిరాలల

 $2^{5}$  Laryer Large Large Ddays, 26 Ayytar 13-yrs are area large Larg

# ٩٠٤-٥٥خه ٢٥٩٥٥ ٨٢٥ ٨٢٥خ دد٥٩٩ ٩٠٠

# aLSOCDSB2D55000.

60500 505750 5000000

# $\delta^{\circ}$

∧ శించాగిం పగరాళించాం 0.67-రా తగిందరు ప్రశాస్త్రంగా తిందింది.
∧ శించాగిం పగరాళించింది.
∧ శించాలు తగించింది.
∧ శించాలు తగించింది.
> శించాలు తగించింది.
> శించాలు తగించి.
> శించాలు శించా శించాలు శించా శించాలు శి

**Ϸዹ Ϸንትሊናበ⊲ናͻͿ:** የቭσ∿ቦ°ഛና ΔለĽቦንቃኣና ⊲ጋጭርϷϲϹʹΔ°ϫናϷናርጭ>ና ጋናሪርϷϞና ⊲∩ႪርΔናጋና/⊲∩ႪϹϲϲ ናႦ∿ቦϷ∩∩ርϷ<ር LσL∩ርϷϞͽና ኣσና≪Δ°&ϷλĽϞϿና Λ۶Ϸ°∿ቦ°σσͿϿʹϿ. ΔĽ°ዉ ርĽ°ዉ ϽዖናႦႪϽႪ, ኣʹϲ·ናΓϷና

<sup>\$</sup>δΡλLΔ<sup>e</sup>Δ<sup>\$</sup>δε<sup>\$</sup>C<sup>\$</sup>C<sup>\$</sup>C<sup>\$</sup>C<sup>1</sup>C<sup>1</sup>A<sup>\$</sup> Δ<sup>\$</sup>Δ<sup>\$</sup>C<sup>1</sup>A<sup>\$</sup> Δ<sup>\$</sup>C<sup>1</sup>A<sup>\$</sup> Δ<sup>\$</sup>C<sup>4</sup><sup>\$</sup>C<sup>4</sup></sub> Δ<sup>\$</sup>C<sup>4</sup><sup>\$</sup>C<sup>4</sup><sup>\$</sup>C<sup>4</sup></sub> Δ<sup>\$</sup>C<sup>4</sup><sup>\$</sup>C<sup>4</sup><sup>\$</sup>C<sup>4</sup></sub> Δ<sup>\$</sup>C<sup>4</sup><sup>\$</sup>C<sup>4</sup></sub> Δ<sup>\$</sup>C<sup>4</sup><sup>\$</sup>C<sup>4</sup></sub> Δ<sup>\$</sup>C<sup>4</sup><sup>\$</sup>C<sup>4</sup></sub> Δ<sup>\$</sup>C<sup>4</sup><sup>\$</sup>C<sup>4</sup></sub> Δ<sup>\$</sup>C<sup>4</sup><sup>\$</sup>C<sup>4</sup></sub> Δ<sup>\$</sup>C<sup>4</sup><sup>\$</sup>C<sup>4</sup></sub> Δ<sup>\$</sup>C<sup>4</sup><sup>\$</sup>C<sup>4</sup></sub> Δ<sup>\$</sup>C<sup>4</sup><sup>\$</sup>C<sup>4</sup></sub> Δ<sup>\$</sup>C<sup>4</sup><sup>\$</sup>C<sup>4</sup></sub> Δ<sup>\$</sup>C<sup>4</sup></sub> Δ<sup></sup>

- = 30.05
- = 12.33/0.41025
- ᠕ᢣ᠋᠋ᠵᢣ᠋᠆᠘᠆᠋᠉᠆᠃᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆
- = sbydee\_seccierc ansecacoc/anseccc

$$\begin{split} & \mathsf{P}(\mathsf{r}'\mathsf{L})^{\mathsf{h}}, \ & \mathsf{d}^{\mathsf{h}}\mathsf{P}(\mathsf{P}(\mathsf{e}'\mathsf{L})^{\mathsf{h}}\mathsf{P}(\mathsf{e}'\mathsf{L})^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h}}\mathsf{L}^{\mathsf{h}}}\mathsf{L}^{\mathsf{h$$

<sup>μ<sup>sb</sup>dΔα<sup>c</sup>Π<sup>qe</sup><sup>4</sup><sup>Pe</sup>σ<sup>e</sup><sup>Δc</sup> Λ<sup>c</sup><sup>Δ</sup><sup>q</sup>CPσ<sup>4</sup>ν<sup>pc</sup> <sup>q</sup>Π<sup>sb<sup>sb</sup></sup>ΠCP<sup>gess</sup> <sup>sb<sup>c</sup><sup>Δ</sup><sup>2</sup>Δ<sup>e</sup><sup>α</sup>, L<sup>e</sup>Π b<sup>Δ</sup> (Monte Carlo) <sup>q</sup><sup>2<sup>b</sup></sup>CP<sup>qe</sup><sup>5<sup>b</sup></sup>. CΔL<sup>e</sup><sup>α</sup> d<sup>5<sup>b</sup></sup>CPσ<sup>s</sup><sup>b<sup>s</sup></sup><sup>1</sup><sup>2</sup> <sup>d</sup><sup>3</sup><sup>d</sup></sub><sup>2</sup><sup>s<sup>b</sup></sup><sup>2</sup><sup>d</sup><sup>2</sup><sup>b<sup>c</sup><sup>2</sup></sub><sup>2</sup><sup>s<sup>b</sup></sup>. CΔL<sup>e</sup><sup>α</sup> d<sup>5<sup>b</sup></sup>CPσ<sup>s</sup><sup>2</sup><sup>s<sup>b</sup></sup><sup>2</sup><sup>s<sup>b</sup></sup>. CΔL<sup>e</sup><sup>α</sup> d<sup>5<sup>b</sup></sup>CPσ<sup>s</sup><sup>2</sup><sup>s<sup>b</sup></sup><sup>2</sup><sup>s<sup>b</sup></sup>. CΔL<sup>e</sup><sup>α</sup> d<sup>5<sup>b</sup></sup>CPσ<sup>s</sup><sup>2</sup><sup>s<sup>b</sup></sup>. CΔL<sup>e</sup><sup>α</sup> d<sup>5<sup>b</sup></sup><sup>2</sup><sup>s<sup>b</sup></sup>. CΔd<sup>i<sup>s</sup><sup>2</sup></sup> d<sup>5<sup>b</sup></sup> d<sup>5<sup>b</sup></sup>. C<sup>5<sup>b</sup></sup> d<sup>5<sup>b</sup></sup> d<sup>5<sup>b</sup></sup> d<sup>5<sup>b</sup></sup> d<sup>5<sup>b</sup></sup>. C<sup>5<sup>b</sup></sup> d<sup>5<sup>b</sup></sup> d<sup>5<sup></sup></sup></sup></sup></sup>

άλΔση « Ε Θ κ το δ κ τ

<<<<>><<<<<>>
<</p>

<

# ⊲rsbsbcDsbccsD2c abb∩roc.

రీశిత నర్జినరాతిళించి. తెరిగింగి రిడిగిని ప్రారాశించి కారి సింగా సిరి సిరి సిరి స

# dD5egeUdid}\_j.

ΡϞύ·ϝ·ͼ<ʹ·ͽϪϲͿϹͰϧϧͺʹͽϷϫͺͺʹϧϧϞϷϧϿϿͼϧͺϲϿϫϿϹͺϫϿϲϟϷϟͼͺϤϹ;ͽϼͼϹϷϭϧϹϷϭͳϹͺϤϞ͵ϧͼ ϿϭϲϲϷ;ϷͶϣͼϧͺϲϽϿͼ·ͺϤϽ;ϿͼϼϿϤͼϧႱϲ;ͽͺϷϿϧͼ;ϧͶϲͶϷϤͼ;ϷͺϿϭ;ϷϹϫϭ; ϤϞϧϲͺϿϭϲϲͺϤϹ;;Ϸ;ϷϲϿ;ϲϹΓͽϤͼϧͺϲϿ;ϷͶϲϢϷͺϭͼϿϿϤ;ϷϲϲͽϒϹͺϤϹϯϿϤϣͼͺϤϧϤϧͼϧϲϽϤ; ϳϭϿϧͶϿͼͺϤϽϲϥ;Ϸ;ͼϹϷϧϲϥ;Ϸ;ͼϫϥϫϧϲϿϿϽͺϔϷϲϿϲϿϲ ϤϷϲͼͶϿͼ;ͳͼͺϤϧϧϲϤ;ϷϗͼϫͺͶͺϤϽϲ;ϧͶϹϷϿϿϽͺϹΓϤͼͽϲͶϥͽͺͼϿ;ϷͶϳͽϲͺϥ;Ϸϳͼ

# 

ΔLΔ' αλαγαγός, αΓλασίας Δ' σο Ρ' Παί ο Π' σα ασί θη Π' σα, αύ γο Ρ' σα ασί θη Γ' σ Ο' α Ο Ρ' σα ανά το Γ' σα ασί το Γ' σα το Γ' σα ασί το Γ' σα το Γ' σα ασί το Γ' σα

# ACCCOPULTO 4

ᠴᡆᡄᠲᠴᡄ᠂ᡆᠲᠴᠾᢝᠣᡲ᠋ᡄ᠘᠆ᢉᢦᠧᡃ

# ACCCOPULTO 2

م۵<sup>۲</sup>-۵۰ کو ۲۰۱۰ کو ۲۰۱۰ کو ۲۰۱۰ کو ۲۰۱۰ کو ۲۰۱۰ میلاد کو ۲۰۱۰ کو

÷



ACCENTICE A

and the strate has been a set of the

5 PL 140 3320

ANTER A LET ALTER AND ANTER MERINAL ANTERIA ALTER ALTER ANTER ANTER ANTER ANTER ANTER ANTER A

| 5 4 |              |   |  |
|-----|--------------|---|--|
|     | 2 ( s. )<br> |   |  |
|     |              |   |  |
|     | 100          |   |  |
|     |              | 3 |  |
|     |              |   |  |



# Western Hudson Bay Population

date: April, 7, 2004

Hadary Mako Cheiman Aqigiq Hizatars' and Trappors' Organization (Chestarfield Inlet)

ly la David Alagalak

Chairman Kivalliq Wildlife Board

x D Cleaner David Aksawnee

date: May 3, 2004

Chairman Baker Lake Hunters' and Trappers' Organization

A) . 476

date: May 5, 2004

Jack Angoo Chairp Issatik Hunters' and Trappers' Organization (Whale Cove)

Sataq Blick Peter Kritaclilak

Jale Marg 4, 2004

Peter Kritaolitak Chairman Arviai Hunters' and Trappers' Organization

date: 7/5/04.

x \_\_\_\_\_ da Icrome Tattuinee Chairman Agiceize Hunters' and Trappers' Organization (Rankin Inlef)

x Olayuk Akesuk Minister Department of Sustainable Development Government of the Nunavut Territory

# FILE

# Western Findson Bay Population

r "Arier, "Ardi". Sainte Datase Arie Stansor van Tagener Digenlanten (Da

No. of Concession, Name

A DOL & palline

And And States of Annual Annua

monthly income and import for interval

-----

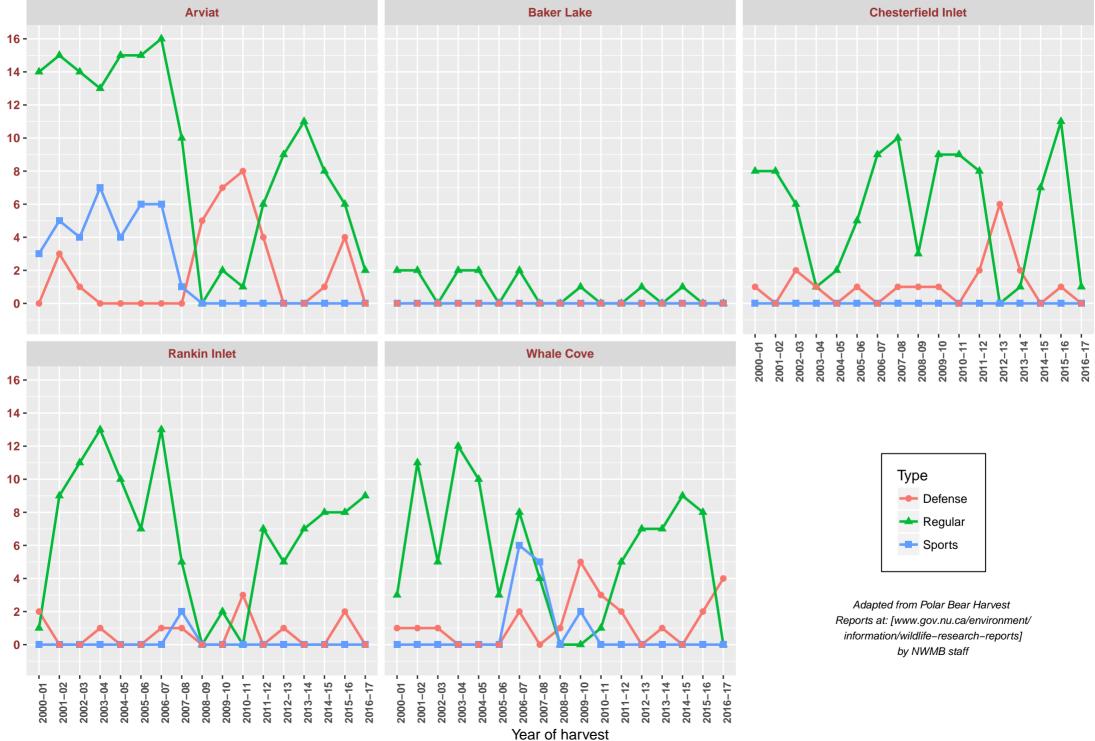
Same Same

and in the second

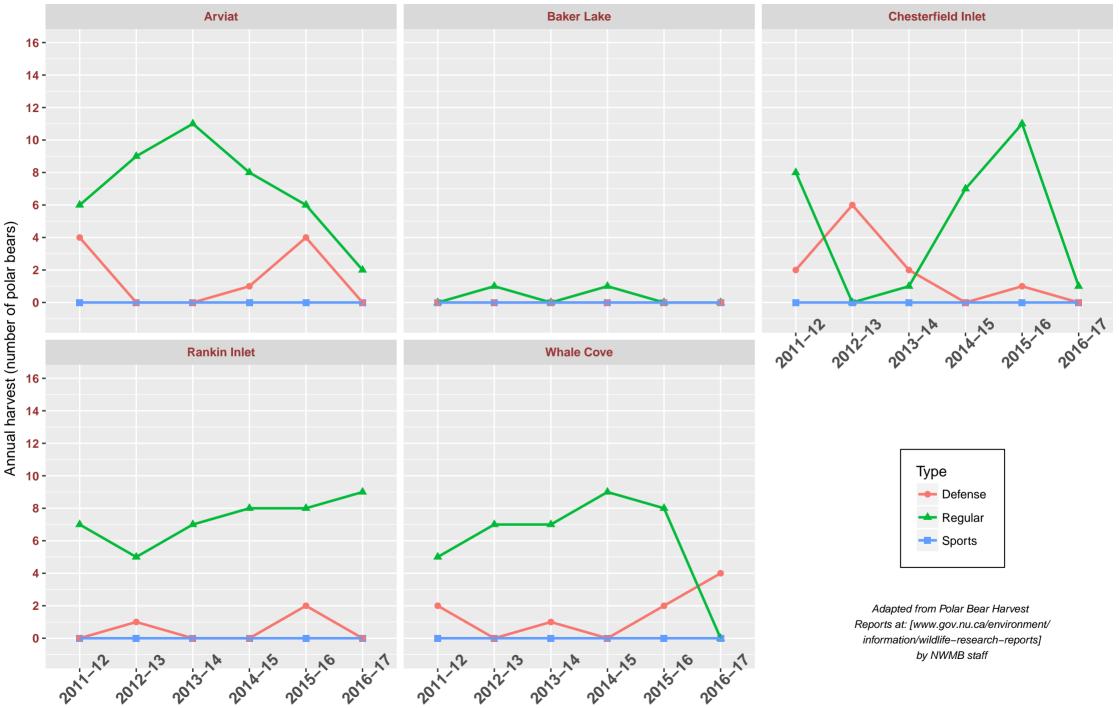
am <u>1/6/04</u> .

Pada United

survive library' nd Tologoy Countrylog (Reality hit))


Diseas Abreica Williams Diseases of Stransmith Diseases Diseases of Stransmith Diseases

# Section 8.0 Western Hudson Population Signature Block


| х                                                 | date:          |
|---------------------------------------------------|----------------|
| Peter Kritaqliluk                                 |                |
| Chairman                                          |                |
| Arviat Hunters' and Trappers' Organization        |                |
| x                                                 | date:          |
| x<br>David Aksawnee                               |                |
| Chairman                                          |                |
| Baker Lake Hunters' and Trappers' Organization    |                |
| x                                                 | date:          |
| Jimmy Krako                                       |                |
| Chairman                                          |                |
| Aqigiq Hunters' and Trappers' Organization (Chest | erfield Inlet) |
| right frances and righters organization (carry    |                |
| x                                                 | date:          |
| Jerome Tattuinee                                  |                |
| Chairman                                          |                |
| Aqiggiaq Hunters' and Trappers' Organization (Rat | nkin Inlet)    |
|                                                   |                |
| X                                                 | date:          |
| Jack Angoo                                        |                |
| Chairman                                          |                |
| Issatik Hunters' and Trappers' Organization (Whal | e Cove)        |
|                                                   |                |
| x                                                 | date:          |
| David Alagalak                                    |                |
| Chairman                                          |                |
| Kivalliq Wildlife Board                           |                |
| $\langle   \rho   \rangle$                        |                |
| x<br>Olavuk Akesuk                                | date:          |
|                                                   |                |
| Minister                                          |                |
| Deptartment of Environment                        |                |
| Government of the Nunavut Territory               |                |

Section 80. Section 8.0

# Community harvest records from the Western Hudson Bay Polar Bear sub–population from 2000–2001 to 2016–2017



# Community harvest records from the Western Hudson Bay Polar Bear sub–population from 2011–2012 to 2016–2017



Year of harvest