Population Ecology of Polar Bears in Davis Strait, Canada and Greenland

Elizabeth Peacock
Department of Environment, Government of Nunavut, Igloolik, NU, X0A-0L0, Canada
Mitchell K. Taylor
Faculty of Science and Environmental Studies, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada

Jeffrey Laake
National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine
Fisheries Service, 7600 Sand Point Way, Seattle, WA, 98115, USA
Ian Stirling
Wildlife Research Division, Environment Canada, 5320122 St., Edmonton, AB, T6G 3S5, Canada and Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada

Corresponding author: Elizabeth Peacock, US Geological Survey, Alaska Science Center, 4210
University Drive, Anchorage, AK, 99508 USA (also present address); lpeacock@usgs.gov, fax: 907-786-7150

Running head: Davis Strait polar bears
Word count: Summary (316), main text $(6,990)$, acknowledgements (184), references $(1,736)$, tables and figure legends (233)

Number of references: 60

Number of tables: 3

Number of figures: 4

Summary

1. Until recently, the sea ice habitat of polar bears was understood to be variable, but environmental variability was considered to be cyclic or random, rather than progressive. Harvested populations were believed to be at levels where density effects were considered unimportant relative to harvest pressure. Because it is now apparent that polar bear demography can also be influenced by progressive change in the environment, and some populations have recovered to higher densities from historically lower numbers, a broader suite of factors should be considered in demographic studies and management.
2. We analyzed 35 years of capture and harvest data from the polar bear population in Davis Strait, including data from a new study (2005-2007), to quantify its current demography. We estimated the population size in 2007 to be $2,158 \pm 180$ (SE), a likely increase from the 1970s.
3. We detected variation in survival, recruitment and age-structure of polar bears from geographic sub-regions of Davis Strait. Survival and reproduction of bears in southern Davis Strait was greater than in the north, probably because of a concurrent dramatic increase in harp seals in Labrador. The most supported survival models contained a geographic variable and a temporal factor. Survival models, in which summer sea ice concentration or harp seal numbers was the single ecological co-variate, were not supported, in comparison to the more general models. Our estimates of declining harvest recovery rate of marked bears, and increasing total survival, suggest that the rate of harvest has declined over time.
4. Synthesis and applications. Low recruitment rates, average adult survival rates and high population density, in an environment of high prey density, but deteriorating and variable ice conditions, currently characterize the Davis Strait population of polar bears. Low
reproductive rates may reflect negative effects of higher densities or the worsening ice conditions. The current level of recorded harvest appears sustainable, but the population is no longer increasing.

Key-words: Arctic, harp seal, harvest, density effects, mark-recapture, population demography, sea ice, Ursus maritimus, wildlife management

Introduction

There has been a long history of demographic assessments of polar bear Ursus maritimus (Phipps 1774) populations (e.g. Stirling, Calvert \& Andriashek 1980; Taylor et al. 2009). A primary objective of these studies was to estimate sustainable harvest (Taylor et al. 1987), because hunting was considered to be the primary source of mortality of polar bears. Although regulation of harvest remains a vital tool for management (Amstrup et al. 2008), management for this species should consider all sources of risk. Threats to polar bears also include reduced sea ice due to climate warming (Stirling \& Derocher 1993). The availability of annual sea ice in the primary feeding areas of polar bears is of critical importance because polar bears largely require the ice as a platform from which to hunt their primary prey (Stirling \& Derocher 1993; Stirling, Lunn \& Iacozza 1999). Other considerations for polar bear population dynamics include densitydependent effects (Derocher \& Taylor 1994) and the abundance of their marine mammal prey (Stirling 2002).

Reductions in vital rates and habitat decline have been correlated in three populations of polar bears: Western Hudson Bay (Regehr et al. 2007) and the Northern (Stirling et al. In Press)

Comment [ESP1]: Expected publication date April 2011. Ecological Applications.
and population size (Regehr et al. 2007). Polar bear populations in Hudson Bay, Davis Strait, Foxe Basin and Baffin Bay (Fig. 1) have a seasonal-ice ecology (Amstrup, Marcot \& Douglas 2008), where ice melts completely so that the bears must spend autumn months ashore. Another prediction in a scenario of climate warming is the increased duration that bears must spend on land during the increasing open water period (Stirling \& Derocher 1993; Stirling \& Parkinson 2006). In Western Hudson Bay, the number of bears defined as 'problems' on land has increased (Stirling \& Parkinson 2006) and in Foxe Basin, the number of defense kills has increased (Peacock et al. 2010). Concurrently, some populations of polar bears have increased in density, from earlier over-exploitation in response to harvest restrictions in effect since the 1960s (Prestrud \& Stirling 1994; Derocher 2005; Amstrup, Stirling \& Lentfer 1986); more abundant populations in poor-ice years or whose individuals are in poorer condition, likely exacerbate human-bear interactions. Thus density, harvest levels, environmental change and their interactions are important to consider for understanding polar bear population ecology; this broader perspective is also warranted for harvest management.

The abundance, demography and status of polar bears in the Davis Strait population have not been assessed since the 1970s (Stirling \& Kiliaan 1980; Stirling, Calvert \& Andriashek 1980). In recent years, local people throughout Davis Strait reported seeing more bears during all seasons (Kotierk 2009a; A. Simpson, J. Merkurasuk, Torngat Mountains National Park, personal observations). Their conclusion that the population was increasing was supported by anecdotal scientific observations (Stirling \& Parkinson 2006). A relatively low harvest, and a large increase in the abundance of harp seals (Pagophilus groenlandicus), which are a particularly important prey species for Davis Strait polar bears (Iverson, Stirling \& Lang 2006), were suggested as factors which have contributed to an increase in polar bear abundance (Stirling \& Parkinson
2006). In addition, after a period of generally cool temperatures during which the sea ice was relatively stable (Skinner et al. 1998), the overall amount of sea ice declined and the breakup date became progressively earlier (Stirling \& Parkinson 2006; See Appendix, Fig. S1 in Supporting Information).

We conducted a new capture study of polar bears in Davis Strait from 2005-2007. We pooled polar bear mark-recapture and harvest recovery data from 1974 through 2009 and estimated current rates of reproduction, survival and population abundance, and population growth rate. To examine survival rates in an ecological context, we considered the effects of geography, and time series effects of harp seal abundance and ice conditions on annual survival, and how the rates have changed over time. We further discuss the impacts of harvest rate and population density. Finally, we discuss management of abundant populations of polar bears that may be experiencing increased stress from both density effects and habitat decline.

Materials and methods

STUDY AREA

Polar bears in Davis Strait are distributed between Canada and Greenland, from Cape Dyer on eastern Baffin Island (66° N) south to northern Newfoundland (Fig. 1; Taylor et al. 2001). During winter and spring, Davis Strait polar bears occur on approximately $420,000 \mathrm{~km}^{2}$ of sea ice (Taylor \& Lee 1995), in Davis Strait proper, the Labrador Sea, and west to Ungava Bay and eastern Hudson Strait, in Nunavut and Québec (Taylor et al. 2001). Using cluster analysis of polar bear movements from satellite telemetry, Taylor et al. (2001) concluded that the boundary between the Davis Strait and Baffin Bay populations was distinct, and movements between Davis Strait and Foxe Basin were sufficiently infrequent to constitute a demographic
discontinuity satisfactory for subpopulation management purposes. From August through midNovember, the area is ice-free and polar bears concentrate on offshore islands and coastal strips of land along the Canadian coast. This concentration provides research access to the entire population.

New genetic analyses using clustering methods (Obbard et al. 2010) suggest matingfidelity of polar bears to geographic sub-regions: Southern Davis Strait, south of Hudson Strait (SD); central Davis Strait, south of Cumberland Sound on Baffin Island (CD); and Northern Davis Strait (ND) on Baffin Island, north of Cumberland Sound (Fig. 1). Similar to the conclusions of previous studies (Taylor \& Lee 1995; Taylor et al. 2001), we do not suggest that these sub-regions are demographically independent or genetically divergent. Also, marked individuals, in the current study, moved among these sub-regions (Fig. 2). However, the subregions differ in that: 1) the harp seal increase has occurred largely in SD (DFO 2010), and harp seals constitute a significantly larger part of polar bear diet in SD compared to the more northerly sub-regions (Iverson, Stirling \& Lang 2006); 2) harvest regimes in SD differ from those in CD and ND; and 3) any exchange between polar bears in Davis Strait and Baffin Bay is more likely to occur in ND than in other sub-regions of Davis Strait. Thus, we felt there were sufficient ecological reasons to also evaluate whether demography varied within these sub-regions.

CAPTURE AND RECAPTURE DATA

From August to October 2005-2007, we searched for, captured and marked polar bears on the coastline and offshore islands of Davis Strait. We also conducted inland transects several times a day, because polar bears can be found further inland (e.g. Taylor et al. 2005). We found very few bears inland throughout Davis Strait, likely because the steep terrain along the coast.

We captured polar bears from a Bell 206L helicopter (in compliance with Québec Certificat de bon soin au animaux, CPA-Faune: 05-00-21, 06-00-08 and 07-00-08). Every bear observed was captured, providing that it was safe to do so. Bears were immobilized with Pneudarts (dependent young) or Palmer cap-chur darts (subadults and adults) with the drug Zoletil ${ }^{\circledR}$ at $5 \mathrm{mg} / \mathrm{kg}$ (Stirling, Spencer \& Andriashek 1989). Each immobilized bear was given a unique number (ear tags and lip tattoo). Additional data collected for the purposes of this study included numbers from recaptured bears, a field age, family status, sex, location and date of capture. A premolar tooth was collected to determine age from cementum layers (Calvert \& Ramsay 1998).

We combined this new capture information with similar data collected in Davis Strait since 1974. Between 1974 and 1979, capture work for the purpose of population inventory was conducted on the spring sea ice over various subsets of the Davis Strait subpopulation area (I. Stirling, unpublished data; Stirling, Calvert \& Andriashek 1980; Stirling \& Kiliaan 1980). Capture data were also collected in both the spring and fall (1991-1994 and 1997-1999) for satellite-telemetry studies (I. Stirling, unpublished data; Taylor et al. 2001). Incidental captures occurred throughout the study period (Government of Newfoundland and Labrador, unpublished data).

HARVEST AND RECOVERY DATA

We compiled polar bear harvest data from Davis Strait from Greenland, Québec, Nunavut (prior to 1999, the Northwest Territories) and Newfoundland and Labrador, 1974-2009. Officers recorded identification numbers, sex and location of bears harvested by hunters. We assume all harvested bears with tags were reported, because the harvest is monitored and reporting has occurred for several decades (Prestud \& Stirling 1994). It is expected that hunters neither
preferentially shoot nor avoid tagged animals, because the ear tags are not visible at a distance. Any violation of this assumption would negatively bias estimates of natural survival. We used all harvest recovery events of bears marked in Davis Strait, including those marked in Davis Strait but harvested in neighboring populations. The Burnham (1993) survival estimation model incorporates reported recoveries from a broader geographic area than the marking study area (Cooch \& White 2007).

MARK-RECAPTURE-RECOVERY ANALYSIS

We estimated capture (p), harvest recovery (r), and survival (S) probability of marked individuals using the model of Burnham (1993), which combines live recaptures and dead recoveries of marked animals. We constructed user-specified submodels for each parameter using environmental covariates, and sex and age-class groupings in the RMark interface (Laake \& Rexstad 2007) using R (R Development Core Team 2008). Via RMark, we ran models in MARK (White \& Burnham 1999). We built capture histories with all initial captures (19742007), and included recapture events during the period during which capture effort was systematic and most bears were available for capture (2005-2007), so as to not bias estimates of p and subsequently S, with years of unsystematic effort (1974-2004; Taylor et al. 2005). Harvest recoveries of marked individuals were included from April 1974-October 2009 (2 years post the last marking period).

We evaluated models where the fidelity parameter (F) was allowed to be estimated with no constraints, to vary by geography, or was fixed at 1 . When F is fixed at 1 , all alive bears are assumed to be in the surveyed area during each capture occasion. Between occasions bears can move out of the survey and be harvested, but if they survive it is assumed they move back into
the survey prior to the next capture occasion. We fit submodels for S, r, and p with various groupings of sex and age-classes. For S, we modeled five age-classes: cubs-of-the-year (COY); yearlings (1 year old); subadults (2-4 years old); adults (5-20); and senescent adults (≥ 21). Bears were assigned age-classes (ageclass) based on: 1) known age (captured as COY or yearling); 2) age derived from tooth in the laboratory; or 3) age-class deduced in the field. We are unaware of any systematic bias in terms of which bears have or do not have laboratory ages. Preliminary analyses suggested that S and r varied between sexes only for independent bears (>2 years old); this effect is identified by the model term non-juv:male. Preliminary models, in which capture probabilities of unencumbered and encumbered adult females were estimated separately, were not supported. Therefore, we modeled p with three sex-age groups: 1) adult females and dependent young (femandyoung); 2) subadult males and females (subadult); and 3) adult males. We also built submodels for p to allow for time variation between 2005, and 2006 and 2007 combined (time); in preliminary modeling we found little difference in p between 2006 and 2007. Capture probability was fixed at zero for 1974-2004 (see above). We built submodels for S, p, and r to examine whether variation in model parameters could be explained by the three geographic sub-regions (Geo); bears were assigned to a sub-region by location of their first capture.

We included a factor timeperiod (1974-1978, 1979-1983, 1984-1988, 1989-1993, 1994-1998, 1999-2008) when building submodels for S and r to examine temporal variation. This time-binning variable would include variation that could not be explained solely by ecological temporal covariates (ice, harp), or by other factors for which there no data (e.g. changes in population density). We used the mean weekly estimate of total ice concentration in Davis Strait from 14 May to 15 October (Archives of the Canadian Ice Service, http://ice-
glaces.ec.gc.ca/) as the covariate ice (see Fig S1); this metric encompasses variation in the length of the ice-free season. The North Atlantic population of harp seals has increased over the last 30 years from 2.7 to 6.8 million (DFO 2010). We used this time series of seal abundance as the covariate, harp, in our submodels for S. The harp seal abundance time series is from whelping patches in the southern sub-region (SD) of Davis Strait. Seal numbers are not available in the other sub-regions of Davis Strait, although local knowledge suggests that the migratory harp seals have also been increasing in CD and ND (E. Peacock, minutes from meetings with Hunting and Trapping Organizations of Pangnirtung, Kimmirut and Iqaluit, Nunavut, January 2009). The variables ice and harp have explicit relationships with time; timeperiod encompasses changes in ice and harp. As a result, time and harp are not used in models together with timeperiod. As the explicit relationship between harp and geo is not known, these variables were used together in some models.

We used the median approach to calculate over-dispersion based on our most general model: S(timeperiod + ageclass * Sex)r(timeperiod + ageclass + nonjuv:male)p(femandyoung + suibadult + time $) F(1)$. We used the logit link function to link the estimated real and beta parameters for all submodels. We rated models using Akaike's Information Criterion (Burnham \& Anderson 2002) with correction for sample size (AICc), and provide model-averaged estimates for models with $\Delta \mathrm{AICc}<10$. We assessed model competitiveness (for the survival sub-models) for those models with $\Delta \mathrm{AICc}<2$, by also examining the associated reduction in deviance of each model with additional parameters, relative to the top model (Burnham and Anderson 2002; Arnold 2010).We used Wald’s statistic ($\beta / \mathrm{SE} ; \alpha=0.05$) as a guide for the relative importance of the ecological variables of interest (geo, timeperiod, harp and ice) in explaining variation in total survival (Faraway 2006: 122).

We calculated natural survival $\left(S_{N}\right)$ such that $\hat{S}_{N}=\hat{S}+(1-\hat{S}) \hat{r}$. The variance of S_{N} was calculated using the delta method (Seber 1982):

$$
\operatorname{vâr}\left(\hat{S}_{N}\right)=\operatorname{varr}(\hat{S})(1-\hat{r})^{2}+\operatorname{varr}(\hat{r})(1-\hat{S})^{2}+2 \operatorname{côv}(\hat{S}, \hat{r})(1-\hat{r})(1-\hat{S})
$$

We developed abundance estimates as per Taylor et al. (2002) and McDonald \& Amstrup (2001), where the number captured in (n) is divided by the estimated recapture probability (\hat{p}):
$\hat{N}=\frac{n}{\hat{p}}$ (this is the general model, but separate estimates partitioned n and p based on year, ageclass and sub-region). We estimated variance following Huggins (1989) and Borchers et al. (1998): $\operatorname{vâr}\left(\hat{N}_{i}\right)=\frac{n_{i}\left(1-\hat{p}_{i}\right)}{\hat{p}_{i}^{2}}+\frac{\hat{N}_{i}^{2}}{\hat{p}_{i}^{2}} \operatorname{var}\left(\hat{p}_{i}\right)$. We provided abundance estimates for the three geographic sub-regions of Davis Strait, as p varied among these sub-regions. Total estimated population size was the sum of estimates for each sub-region and the variance estimator included covariances:
$\hat{N}_{i}=\sum_{j} \frac{n_{i j}}{\hat{p}_{i j}}$ and $\operatorname{vâr}\left(\hat{N}_{i}\right)=\sum_{j} \frac{n_{i j}\left(1-\hat{p}_{i j}\right)}{\hat{p}_{i j}^{2}}+\sum_{j} \sum_{j^{\prime}} \frac{n_{i j} n_{i j^{\prime}}}{\hat{p}_{i j}^{2} \hat{p}_{i j^{\prime}}^{2}} \operatorname{côv}\left(\hat{p}_{i j}, \hat{p}_{i j^{\prime}}\right)$

The above equation was also used to combine population estimates derived for separate sex-age groups which had different p.

AGE STRUCTURE

We compiled age structures using polar bears captured and aged during the two population inventories, 1974-1979 ($n=271$) and 2005-2007 ($n=1,628$); cubs of un-aged adult females were not included. Because we did not estimate capture probabilities for the 1970s, we cannot
present age distributions that are adjusted for capture rate. Additionally, because capture teams could not search for polar bears in the spring pack ice, the relationship of the age structure of bears available to capture on the spring time sea ice to the actual population age structure is ambigious. Thus, we did not statistically compare the age structures of captured animals between the 1970s and 2000s. We do provide the graphs for comparisons to age distributions of capture samples (also not adjusted for capture probability) for other polar bear populations, which are believed to have increased in size (Amstrup, Stirling \& Lentfer 1986; Derocher 2005). We compared the age structure of polar bears captured 2005-2007, north and south of Hudson Strait, by dividing the number of male and females captured, by geographic-, age- and sex-specific estimates of capture probability. These age frequencies were compared with Chi-square tests for independence $(\alpha=0.05)$. We compared mean ages of independent bears in north and south of Hudson Strait with Mann-Whitney U tests ($\alpha=0.05$).

REPRODUCTION

We calculated reproductive parameters for polar bears in Davis Strait from the live-capture data collected 2005-2007. We calculated mating interval and age-specific litter production rate (LPR) according to the formulation provided by Taylor, Carley \& Bunnell (1987) using program VITAL RATES (Taylor, Kuc \& Abraham 2000). The formulation of Taylor, Carley \& Bunnell (1987) estimates the litter production rate of females available to mate (i.e. not encumbered with cubs) in each year, and is appropriate for annual population projection for animals with threeyear reproductive cycles. We also calculated mean age-specific litter-produced rate (LP) according to the formulation provided by Stirling, Calvert \& Andriashek (1980) for all females (including females unavailable to mate), 4-27 years of age. We provide formulations of LPR and

LP to facilitate comparisons to the published literature on polar bears, which uses both approaches. We determined the probability of first birth at each age from the age-specific LPR and the standing age distribution; the average age of first reproduction is then the average age weighted by the probability of first birth at each age (Taylor, Carley \& Bunnell 1987). Our estimate of $m(x)$, adult per capita recruitment rate, is the average number of offspring (both sexes) accompanying adult females aged 7+. This value is an abstraction because polar bears have a three-year reproduction cycle due to extended parental care; $m(x)$ is provided to facilitate comparison with other birth-pulse species in which mature females produce young each year. For each year, COY litter size (LS) was calculated as the number of COY per number of females with COY. We compared LS among geographic sub-regions and years with Kruskal-Wallis tests on ranks, and Dunn's method for pair-wise comparisons. We assessed variation of LS with age of mother using polynomial regression, using the square root transformation of litter size. Using the age-specific dataset, we determined that there was no trend in COY litter size with the age of the mother. Thus to calculate mean LS, we used the entire dataset of females with COY. We did not compare reproductive parameters between the 1970s and 2000s, because data were collected during different seasons; Derocher \& Stirling (1996) found, in Western Hudson Bay, there to be significant cub mortality from spring to fall.

POPULATION GROWTH RATE

We used the individual-based stochastic PVA program RISKMAN (Taylor et al. 2003) to estimate natural and harvested population growth $\left(\lambda_{n}, \lambda_{\mathrm{h}}\right)$. RISKMAN is a PVA that can specifically examine population growth (e.g. McLoughlin et al. 2003; Howe, Obbard \& Shaefer 2007; Taylor et al. 2005) for animals with multiple-year reproduction cycles. See Taylor, Carley
\& Bunnell (1987) and Taylor et al. (1987; 2003) for mathematical details. While we estimated lambda for the entire population, we did not use an estimate of S_{N}, as an input, which was generated from a model where both r and S had no geographic component, because this was a very low performing model $(\triangle \mathrm{AICc}=28.3)$. Rather, we used an average S_{N}, calculated from S_{N} 's of the three geographic sub-regions (from the model-averaged S and r from models $\Delta \mathrm{AICc}<10$), weighted by estimated abundance in each geographic sub-region and for each age-sex class for 2007. Because LS did not vary with age (see Results), we used the mean LS for females ages 427 (2005-2007), expressed as the proportion of mothers with one or two COY. We used LPR values calculated from a data set of adult females ages 5-27. The age of first reproduction was assumed to be 5. Females aged 7+ were assumed to reproduce litters at a mean adult LPR rate. The proportion of males at birth was estimated as the average over 2005-2007 of the proportion of males that were COY each autumn. We set whole litter survival to 1 , i.e. assuming loss of litters is fully explained by estimated individual cub survival. We modeled the population growth from the stable age distribution determined by the vital rates. For simulations to estimate λ_{h}, we used the 5-year mean (2004-2009) harvest of polar bears from Davis Strait. We created a selectivity-vulnerability (to harvest) matrix which is a product of the empirical population standing age-sex distribution and an age-sex distribution of polar bears harvested from Davis Strait 1990-2006. We calculated annual λ_{n} and λ_{h} for each year of the simulation as the mean of 2,500 geometric means of λ_{n} and λ_{h} for each of the 10 years of the simulation. Taylor et al. (2009) comprehensively explains how variance is molded in RISKMAN; we assumed 80% of variance was sample variance and 20% environmental variance (White 2000). These simulations assume that the vital rates, and the variance of those rates, remain constant for the duration of the 10-year simulation.

Results

CAPTURE AND RECOVERY DATA

We marked 1,518 individual polar bears during 2,128 capture events in 2005-2007 in Davis Strait (see Table S1). These figures include bears captured west of the management boundary with Foxe Basin (Fig. 1). The actual demographic location of this western boundary has not been ascertained with satellite-telemetry or tag return data (Taylor \& Lee 1995; Taylor et al. 2001). Our data and other capture data from Foxe Basin (E. Peacock, unpublished data; M. Taylor unpublished data) suggest a distinct discontinuity in the late summer and early autumn distribution of polar bears east of Kimmirut, Nunavut (at approximately 69° W), i.e. west of the boundary suggested by Taylor et al. (2001).

We analyzed live-capture data consisting of 2,529 captures of 1,860 individuals (866 females, 990 males) in Davis Strait, collected 1974-2007 (Fig. 1). We incorporated 145 harvested bears (49 females, 95 males) that were marked in Davis Strait, as dead encounters (i.e., recoveries), 1974-2009 (Fig. 2). Over this 35-year period, eight of the recoveries were harvested in Foxe Basin and 13 in Baffin Bay (including 1 by Greenlandic hunters). We compiled known ages or generated laboratory ages for 2,249 of 2,674 (84\%) capture and recovery events.

MARK-RECAPTURE-RECOVERY MODELS

We found no over-dispersion ($=1$) with the general model, and no adjustments were made to parameter estimates. We present model-averaged estimates of all parameters, estimated over 27 models where model $\Delta \mathrm{AICc}<10$ (see Table S2). The four top models $(\triangle \mathrm{AICc}<2)$ of capture probability had a geographic component, with highest rates of capture in SD and lowest in ND
(see Table S3). Top models suggest that capture rates were consistently highest for adult males, followed by subadults and then adult females and dependent young, a finding consistent with other fall-time polar bear capture studies (e.g. Taylor et al. 2005). Model-averaged estimates of the probability of capture ranged from $0.14(0.07-0.25,95 \% \mathrm{CI})$ for adult females and dependent young in 2005 in ND to 0.51 ($0.45-0.58$) for adult males in SD in 2006-07.

Recovery rates varied by geography, dependent status and time period (see Fig. S2, Table S4). Recovery rates were highest for non-juvenile males, 1984-1988 in CD (0.48, 0.24-0.73) and lowest for juveniles and independent females in SD, 1999-2008 (0.08, 0.04-0.15). There was no consistent trend in recovery rates over the study period. However, disregarding the first time period 1974-1978, when harvest reporting was incomplete, recovery has generally declined from 1980 to 2008. A declining recovery rate, combined with increasing total survival (see below), suggests a declining rate of polar bear harvest from the 1980s to 2000s.

SURVIVAL AND ABUNDANCE

The two most supported sub-models for total survival ($\triangle \mathrm{AICc}<2$; cumulative weight, 0.78) included effects of time period (Fig. 3), age-class, sex (for non-juveniles) and geography (Table 1, See Table S2). Both sub-models [(ageclass + nonjuv:male + timeperiod) and (ageclass + nonjuv:male + timeperiod + geo)] are competitive, because the addition of the single parameter (geo; $\Delta \mathrm{AICc}=0.82$) is also accompanied by a reduction in model deviance (See Table S2).

Across all geographic sub-regions, S was highest for adult females and lowest for senescent males; all rates were lowest in ND. Estimates of S increased from 1974 to 2008 (Fig. 3; for S_{N} see Fig. S3). In non-competitive models, harp supplants timeperiod in explaining variation in S. The influence of increasing harp seal abundance on survival appears first in a model with $\triangle \mathrm{AICc}$
$=5.5$ (Table 1, See Table S2), and further, in an interaction with geography ($\triangle \mathrm{AICc}=5.8$; See Table S2). In these models, as seal abundance in Davis Strait increased, survival increased (β /SE for $\operatorname{harp} \geq 2.0$; Table 1). Polar bear survival increased with harp seal abundance at the lowest rate in ND (logit coefficient $\quad=0.10(0.10, \mathrm{SE}), \quad=0.20(0.09), \quad=0.22(0.08))$. An interaction between harp and subadult also appears in a non-competitive model ($\Delta \mathrm{AICc}=6.3$; see Table S2); this model would suggest the increase of seal abundance positively influenced survival of non-subadults (adults and dependent young) to an extent 1.7 times larger than for subadults $(\quad=0.14(0.10), \quad=0.23(0.09))$.

A break-point regression $\left(R^{2}=0.51, P=0.001\right.$; see Fig. S1) indicated that a break in the time series occurs between 1984 and 1985, with two significant and opposite trends in summer ice concentration from 1974-1984 and 1985-2008 $\left(y=0.01 x-23.06, R^{2}=0.52, P=0.01 ; y_{2}=\right.$ $\left.8.47-0.004 x, R^{2}=0.49, P=0.000\right)$. The effect of total concentration of summer ice as a secondorder variable on polar bear survival first appears in a low-performing model with $\Delta \mathrm{AICc}=7.91$ (Table 1, see Table S2); estimated logit coefficients suggest that our ice metric as a sole ecological predictor variable is unimportant in modeling survival in this dataset (Table 1). Total survival estimates (and 95\% CIs) for adult female polar bears (for ND and SD) from the top model that included both time and geographic effects $(\Delta \mathrm{AICc}=0.82)$ are plotted with ice and harp to graphically show relationships (Fig. 4).

Model-averaged estimates of adult female S_{N} in 2008 for SD, CD and ND were 0.954 ($0.913-0.977,95 \%$ CI), 0.964 (0.916-0.985) and 0.936 (0.862-0.972), respectively (Table 2). We estimated the abundance of polar bears in Davis Strait for 2007 to be 2,158 (1833-2542; see Table S5).

AGE STRUCTURE

We built population age structures using information from 271 polar bears captured and aged in 1974-1979, and from 1,628 in 2005-2007. The age structures of captured bears in Davis Strait appear to differ between the two decades, with older bears more represented in the capture sample in the 2000s compared to the 1970s (Fig. 5). The average age for polar bears >2 years of age in the 2000s was 9.3 (0.1, SE) and in the 1970s, 7.9 (0.4). In 2005-2007, the age structure (weighted by capture probability) of both males (See Fig. S4; $\chi^{2}=35.17, d f=23, p=0.01$) and females (See Fig. S5; $\chi^{2}=28.87, d f=18, p=0.01$) differed between north and south of Hudson Strait, with a trend towards older bears in the north. The mean age of female bears > 2 years old between the two regions was not different (Mann Whitney $U=26,772, p=0.50, n=371$). Males > 2 years old north of Hudson Strait were older (10.2 ± 0.2) than bears south of Hudson Strait (9.2 ± 0.4; Mann-Whitney $\mathrm{U}=48,427, P=0.001, n=557$).

REPRODUCTION

During 2005-2007, two four-year-old females were captured with COY litters, and the oldest mother captured with COY was 27 years old. Average age of first reproduction was 5.33 ± 0.78 (SE) years. We estimated mating interval as 1.8 (0.21) years. COY LS did not differ among years (Kruskall-Wallis, $H=1.63, d f=2, P=0.44$). There was neither a linear nor a $2^{\text {nd }}$-order trend of LS with age of mother (ages 4-27; $y=0.001 x+1.53, p=0.93 ; y=0.001 x^{2}-0.010 x+1.47, p=$ 0.86; $n=90$ aged mothers with COY). Mean LS in Davis Strait in autumn was 1.49 ± 0.14 ($n=$ 119 COY litters). LS significantly differed among the three geographic sub-regions within Davis Strait (Kruskal-Wallis, $H=10.72, d f=2, P=0.005$). However, the comparison (Dunn's method) of the pair of geographic sub-regions with the largest difference of ranks (SD with COY LS of
1.71 ± 0.08 and ND with 1.33 ± 0.14) was not statistically significant ($Q=1.96, p>0.05$). Mean adult (ages 7-21) LPR (based on females available to mate) was 0.44 ± 0.11 (SE; Table 3); LP (includes females unavailable to mate) was 0.33 ± 0.04 (Table 3). The mean proportion of males in COY litters 2005-2007 was 0.55 ($0.04, \mathrm{SE}$). The mean annual adult per capita recruitment rate $m(x)$ was 0.361 (SE=0.055) (Taylor et al. 1987).

POPULATION GROWTH RATE

Using demographic parameters calculated from this study (see Table S6) and PVA, average λ_{N} over 10 years was $1.037(0.01, \mathrm{SE})$. Using an annual harvest reflecting the legal quotas (Nunavut, 46; Greenland, 2; Newfoundland and Labrador, 6) and 5-year mean reported Québec harvest (13.4 ± 2.1 bears/year), current λ_{h} is 1.008 (0.01). Unreported harvest is not included in this assessment of population growth.

Discussion

CURRENT POPULATION DEMOGRAPHY

We estimated the abundance of the Davis Strait polar bear population to be 2,158, which results in a relatively high population density of polar bears of approximately 5.1 bears/1,000 km^{2} of sea ice habitat (Taylor \& Lee 1995). This density is higher than polar bear densities in other seasonal-ice populations, which are approximately 3.5 bears $/ 1000 \mathrm{~km}^{2}$ (Taylor \& Lee 1995; Taylor et al. 2005; Regehr et al. 2007; Obbard 2008).

Reproductive rates of polar bears vary greatly, even when comparing rates for populations within the same ecoregion and same season of capture. For example, the litter production rate for adult females in Davis Strait (2005-2007) is low (0.44) compared to western Hudson Bay (0.79; Aars et al. 2006) and Baffin Bay (1.0; Taylor et al. 2005), which have also
been measured in the fall. Our point estimate of COY litter size (1.49 ± 0.14, SE) is the lowest of any other population studied in the fall ($=1.57 \pm 0.02, n=4$; Obbard et al. 2010; Peacock et al. 2010). Low litter production rate is a function of higher numbers of unencumbered females and/or fewer females with COY (in the next year; Taylor et al. 1987). Estimates of low litter production rate from fall data may result from high whole-litter loss (poor cub survival) from spring to fall. This hypothesis is supported further by the short breeding interval estimated for Davis Strait (1.8 years; Ramsay \& Stirling 1988; Taylor et al. 2005). Litter size differed significantly among all sub-regions in Davis Strait; in southern Davis Strait, litter size of COY (1.71) was greater, but not statistically, than the other sub-regions (1.33 in northern Davis Strait), possibly due to the greater availability of harp seals in the south.

Natural survival rates of adult female polar bears in Davis Strait as estimated for 2008 (0.962 ± 0.019, SE, weighted mean of sub-regions) are comparable with two other seasonal-ice populations: 0.953 (0.020) in Baffin Bay (Taylor et al. 2005) and 0.94 (0.01) in Western Hudson Bay (Regehr et al. 2007). In general, seasonal-ice populations appear to show lower natural survival rates ($=0.952 \pm 0.006$, SE for adult females; $n=3$ populations including this study) than in populations where ice remains throughout the summer ($=0.967 \pm 0.007, \mathrm{SE} ; n=6$; Obbard et al. 2010). Survival rates are consistently lower in northern Davis Strait than in other sub-regions (Table 2). Geographically disparate survival rates are likely the result of polar bears showing fidelity to local areas that have different ecological scenarios. There has been no concomitant dramatic increase in harp seals in ND, and there is higher harvest pressure on polar bears in the northern part of Davis Strait (in Nunavut than in Labrador and Québec). In Davis Strait, there is higher harvest pressure on younger bears; the mean age of bears in the harvest is $6.9(0.2, \mathrm{SE} ; n=950)$, thus lower estimated survival in a group of older bears (bears are older in

ND than SD) is not necessarily inconsistent. Throughout Davis Strait, COY natural survival rates are high ($0.90-0.93$), largely because the estimation of COY mortality from fall census to fall census means that COYs are actually yearlings for the winter-fall period of the survival year. Eighty percent of our captures of COY were from a fall census, so the COY natural survival rates do not reflect COY mortality from spring to fall. High COY survival may also be a function of the higher frequency of singleton versus twin litters.

It is important to note that the decision to model capture probability, and consequently survival and abundance, by geography, allowed us to account to some extent for violation of the assumption of temporary emigration, which likely differed by geography. Not including a geographic covariate would have resulted in lower survival estimates.

CHANGES IN POPULATION DEMOGRAPHY

Our abundance estimate for Davis Strait polar bears is higher than the 1979 estimate of approximately 900 animals, which was the sum of separate estimates for southeast Baffin Island (Stirling, Calvert \& Andriashek 1980) and Labrador (Stirling \& Kiliian 1980). These earlier population estimates were derived from spring capture, and may be biased low if some portion of the population was consistently offshore on pack ice and unavailable for capture. The earlier studies also did not sample from Hudson Strait and Ungava Bay (Fig. 1). Consequently, we cannot directly compare the abundance estimates. The apparent increasing age in the population may reflect recovery from lower numbers due to increased survival, as observed in the Barents Sea after elimination of harvest (Derocher 2005), and in the southern Beaufort Sea after reduction of harvest (Taylor 1982; Amstrup, Stirling \& Lentfer 1986; Stirling 2002). Alternatively, increasing age may also occur because of a decline in recruitment resulting in
relatively fewer young individuals. This latter hypothesis is supported by both older bears and lower litter sizes in northern Davis Strait. Using the recorded harvest in Davis Strait and assuming the 1979 abundance was under estimated, a linear increase from 1,200 to 2,158 bears from 1979-2007 would have required an annual growth rate of approximately 2.1%, resulting in a mean annual harvest rate of 3.2% and natural population growth rate of 5.4%. This natural growth rate is consistent with that of the neighboring Baffin Bay population (Taylor et al. 2005). Thus, biologically, it is possible that the population could have doubled over the past 30 years, but our data are not sufficient to confirm or reject this hypothesis.

Our estimates of polar bear survival in the 1970s and 1980s may be biased low. A negative bias could be due to a positive skew between the sample of the population that was captured and the segment that was harvested. In Baffin Bay, Taylor et al. (2005) found that polar bears captured in the spring are more likely to be harvested than those captured in the fall. This phenomenon may also occur in Davis Strait, although the differences in capture season are confounded by time period, and whether survival was estimated by recapture, or recapture and recovery. Early recovery rates are also likely underestimated, because the harvest reporting systems were still being implemented in the 1970s and early 1980s; reporting became mandatory in 1993 in the Northwest Territories. Thus, we suggest our estimates of S_{N} in the earlier years are likely biased low, and the pattern in the increasing estimates of S_{N} may be, to some degree, artificial. Based on a meta-analysis of standing age distributions, Taylor et al. (1987) suggested that populations of polar bears cannot increase with adult female $S_{N} \leq 0.93$. However, even in the 1990s with good harvest reporting, S_{N} estimates for adult females were approximately 0.93 and lower (see Fig. S3), indicating the majority of an increase in population size would have been more likely to have occurred in the 2000s and/or there is additional un-modeled recovery
heterogeneity. A population increase in the 2000s is consistent with local observations of the increase of bears seen in Labrador having occurred in the past decade (A. Simpson, J. Merkurasuk, Torngat Mountains National Park, personal observations).

There are a few lines of evidence to suggest that the population of polar bears in Davis Strait is currently experiencing density-dependent effects (Fowler 1981). First, the population density is relatively high (Taylor \& Lee 1995). Second, our simulations suggest the population is probably stationary (at reported harvest rates), following a likely period of increase as suggested by local, Inuit and scientific observations. Third, Davis Strait is now experiencing very low reproduction in comparison to other populations of polar bears (e.g., Ramsay \& Stirling 1988; Taylor et al. 2002, 2005, 2009; Regher et al. 2010). Concurrently, the prey base increased during this interval (DFO 2010), and this may be related to increased survival rates, especially in the southern portion of the population. Thus we propose that a density-dependent reduction in population growth for Davis Strait polar bears from 1974 to 2007 has been a complex interaction that appears to have been partly mitigated by increased prey abundance. We concur with Taylor (1994) that only manipulative experiments can unambiguously confirm density-dependence. However, we suggest that the combination of our parallel lines of evidence and the expectation of patterns for large mammals (Taylor 1994; Fowler 1981), the Davis Strait population is likely experiencing the effects of density dependence. Derocher (2005) found a decreasing trend in litter production over nine years for polar bears in the Barents Sea, and attributed the decline to either climate change and/or the effects of density dependence. The abundance of the Barents Sea population likely increased since the 1973 ban on harvest in Norway, but is now experiencing habitat decline - a similar ecological scenario to that we suggest has occurred in Davis Strait.

In our top models, polar bear survival in Davis Strait varied with time and geography, factors that include changes in sea-ice habitat, prey density, but also other, unknown variables. Survival models with environmental covariates as independent factors were not supported in comparison to models with broader variables (time and geography); positive and significant effects of harp seal abundance on total survival were demonstrated. We note that our ability to relate changes in survival with the more recent ice habitat decline is limited; 63% of the recoveries of marked bears between 1985 and 2008 (the period of ice decline) are from 20062008, and 100% of the recaptures are from 2006-2007. Indeed, a wealth of information on the ecological covariates with polar bear survival lays in the future patterns of recovery and recapture of recently marked bears (1,518 individuals marked, 2005-2007).

In contrast to populations in Western Hudson Bay (Regher et al. 2006) and the Southern Beaufort Sea (Regher et al. 2010), point estimates of survival rates increased over a period of declining ice concentration; increasing total survival rates are consistent with our conclusion that the abundance of polar bears in Davis Strait has increased. The increases in estimated survival rates also occurred over a period of increasing abundance of harp seals (Fig. 4) and a likely decline in relative rate of harvest. Our observation of a currently reduced population growth in Davis Strait has perhaps been exacerbated by the progressive sea ice decline since the mid1990s, and is most likely due to low reproductive rates (and cub survival from birth to time of fall census). This result corroborates predictions for the effect of sea ice decline on litter size in seasonal-ice populations (Molnár et al. 2011). We could not analyze reproductive parameters from the 1970s to 2000s, and thus cannot disentangle the effects of sea-ice habitat change and population density. Population density and sea-ice habitat decline may have interacted to influence the vulnerable age-classes (young). Rode et al. (unpublished data) concluded that the

Comment [ESP2]: Will be submitted for review soon. When it is, I can forward to the editors:

Rode KD, Peacock E, Taylor MK, Stirling I, Born EW, Laidre KL, Wiig O (In Prep) A tale of two polar bear populations (Ursus maritimus): ice habitat, harvest, and body condition.
body condition of polar bears in Davis Strait varies with annual changes in ice habitat, and that body condition has declined from the 1970s to 2000s. Declines in body condition and reproduction/recruitment are likely to precede declines in survival in a long-lived species, including polar bears (Stirling et al. 1999, Regher et al. 2007), whether the trigger is an increased density, a decline in habitat or an interaction of both. Our conclusion of reduced reproductive rates, in concert with declines in body condition (K.D. Rode et al. unpublished data), but currently high rates of survival, is consistent with this theory.

FUTURE POLAR BEAR POPULATION MANAGEMENT

Precautionary strategies for polar bear conservation, including harvest management, are required for polar bear populations experiencing changes in density, population productivity, reductions in habitat, and increased human contact. The low reproductive rates of polar bears in Davis Strait, and declines in body condition suggest habitat and/or density impacts on the population. Our conclusions that survival varies across geography and over time, variation which incorporates ecological changes of prey abundance, ice, and harvest rates, underpin the need to for managers to develop a broader ecological perspective in harvest management. Further, a social carrying capacity for polar bear abundance in Davis Strait has been underscored by local users (Kotierk 2009b). If sea ice habitat continues to decline, a management strategy to maintain current levels of abundance may only exacerbate density-dependent effects, and would ultimately not be possible. Similarly, management to reduce population density and thereby increase population productivity may not result in anticipated reduction of density effects if habitat declines simultaneously to population reductions, or if the current low recruitment rates are entirely due to habitat deterioration.

ACKNOWLEDGEMENTS

We thank the governments of Nunavut, Québec, Newfoundland and Labrador (NL) and Greenland for providing harvest data. The governments of Nunavut, NL, Nunatsiavut and the Makivik Corporation, Polar Continental Shelf Project, Parks Canada and the Nunavut Wildlife Management Board provided funding of new capture operations, 2005-2007. A. Simpson (Parks Canada) provided logistics support, E. Born (Greenland Institute of Natural Resources) assisted with harvest data, and B. Doidge and B. Ford (Makivik), and R. Jefferies, R. Otto and T. Chubbs (NL) assisted with harvest data and logistics. We thank all field technicians, including those who contributed significant time during the new 2005-2007 field effort: C. Didham, M. Dyck, B. Ford, R. Jefferies, R. Otto, T. Pardy, J. McConnell, M. Kotierk. The map figures were prepared by J. McConnell. We thank our pilots, especially J. Innis, for ensuring the safety of polar bears and crews from 1974 to 2008. We thank J. Bromaghin and D. Diefenbach for constructive reviews of the manuscript. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

REFERENCES

Aars J., Lunn, N.J. \& Derocher, A.E. (2006) Polar Bears: Proceedings of the 14th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, Seattle, Washington, USA. 2024 July 2005. Gland, Switzerland and Cambridge, UK: IUCN.

Amstrup, S. C., Marcot, B. G. \& Douglas, D. C. (2008) A Bayesian network modeling approach to forecasting the 21st century worldwide status of polar bears. Arctic Sea Ice Decline: Observations, Projections, Mechanisms and Implications. Geophysical Monograph 180 (eds E. T. DeWeaver, C. M. Bitz \& L. B. Tremblay) American Geophysical Union, Washington D.C.

Amstrup, S. C., Stirling, I. \& Lentfer, J. W. (1986) Past and present status of polar bears in Alaska. Wildlife Society Bulletin, 14, 241-254.

Arnold, T. W. (2010) Uninformative parameters and model selection using Akaike's Information Criterion. Journal of Wildlife Management, 74, 1175-1178.

Borchers, D. L., Buckland, S. T., Goedhart, P. W., Clarke, E. D. \& Hedley, S. L. (1998) HorvitzThompson estimators for double-platform line transect surveys. Biometrics, 54, 12211237.

Burnham, K. P. (1993) A theory for combined analysis of recovery and recapture data. Marked individuals in the study of bird populations. (eds J. D. Lebreton \& P. M. North), pp. 199213. Birkhauser, Basel, Switzerland.

Burnham, K. P. \& Anderson, D. R. (2002) Model selection and multimodel inference: A practical information-theoretic approach, 2nd edn. Springer, New York.

Calvert, W. \& Ramsay, M. A. (1998) Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus, 10, 449-453.

Cooch, E. \& White, G. C. (2007) Combing data from multiple sources. The Mark Book, 15 pp. available at http://www.phidot.org/software/mark/docs/book/, accessed September 2010.

Derocher, A. E. (2005) Population ecology of polar bears at Svalbard, Norway. Population Ecology, 47, 267-275.

Derocher A.E. \& I. Stirling (1996) Aspects of survival in juvenile polar bears. Canadian Journal of Zoology, 74, 12461252.

Derocher, A. E. \& Taylor, M. K. (1994) Density-dependent population regulation of polar bears. Density dependent population regulation of black, brown and polar bears, Monograph Series 3, Ninth International Conference on Bear Research and Management (ed M. K. Taylor).

DFO (2010) Current Status of Northwest Atlantic Harp Seals, Pagophilus groenlandicus. Science Advisory Report 2009/074. DFO Canadian Scientific Advisory Secretariat

Faraway, J. J. (2006) Extending the Linear Model with R: Generalized linear, mixed effects and nonparametric regression models, Boca Raton, Chapman \& Hall/CRC Taylor \& Francis Group. 312 pp.

Fowler, C. W. (1981) Density dependence as related to life history strategy. Ecology, 62, 602610.

Howe, E. J., Obbard, M. E. \& Schaefer, J. A. (2007) Extirpation risk of an isolated black bear population under different management scenarios. Journal of Wildlife Management, 71, 603-612.

Huggins, R.M. 1989. On the statistical analysis of capture experiments. Biometrika 76, 133-140.

Iverson, S. J., Stirling, I. \& Lang, S. L. C. (2006) Spatial and temporal variation in the diets of polar bears across the Canadian Arctic: indicators of changes in prey populations and environment. Top Predators in Marine Ecosystems (eds I. L. Body, S. Wanless \& C. J. Camphyuysen) pp. 98-117. Cambridge University Press, Cambridge.

Kotierk, M. (2009a) Elder and hunter knowledge of Davis Strait polar bears, climate change and Inuit participation. Department of Environment, Government of Nunavut, Igloolik, Nunavut. 23 pp.

Kotierk, M. (2009b) The documentation of Inuit and public knowledge of Davis Strait polar bears, climate change, Inuit knowledge and environmental management using public opinion polls. Department of Environment, Government of Nunavut, Igloolik, Nunavut. 103 pp.

Laake, J. L. \& Rexstad, E. (2007) RMark - an alternative approach to building linear models. Appendix C Program MARK, "A gentle introduction." (eds E. G. Cooch \& G. C. White). Available at http://www.phidot.org/software/mark/docs/book/, accessed September 2010. McDonald, T. L. \& Amstrup, S. C. (2001) Estimation of population size using open capturerecapture models. Journal of Agricultural, Biological, and Environmental Statistics, 6, 206-220.

McLoughlin, P. D., Taylor, M. K., Cluff, H. D., Gau, R. J., Mulders, R., Case, R. L. \& Messier, F. (2003) Population viability of barren-ground grizzly bears in Nunavut and the Northwest Territories. Arctic, 56, 185-190.

Molnár, P. K, Derocher, A. E., Thiemann, G.W. and Lewis, M. A. 2010. Predicting survival, reproduction and abundance of polar bears under climate change. Biological Conservation 143, 1569-1826.

Molnár, P. K., Derocher A. E. , Klanjscek T., Lewis M. A. (2011) Predicting climate change impacts on polar bear litter size. Nature Communications, 2:186 doi 10.1038/ncomms1183 (2011).

Obbard, M. E., Cattet, M. R. L., Moody, T., Walton, L. R., Potter, D., Inglis, J. \& Chenier, C. (2006) Temporal trends in the body condition of southern Hudson Bay polar bears. Ontario Ministry of Natural Resources, Peterborough, Ontario. 8 pp.

Obbard, M. E. (2008) Southern Hudson Bay polar bear project: Final Report. Ontario Ministry of Natural Resources, Peterborough, Ontario. 64 pp.

Obbard M. E, Thiemann G. W., Peacock E., Debruyn T.D. (2010) Polar Bears: Proceedings of the 15th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, Copenhagen, Denmark 29 June - 3 July 2009. Gland, Switzerland and Cambridge, UK: IUCN.

Peacock, E., Derocher, A. E., Obbard, M. E. \& Lunn, N. F. (2010) Polar bear ecology and management in Hudson Bay in the face of climate change. Climate change and top predators in Hudson Bay (eds L. L. Loseto, S. H. Ferguson \& G. Gilchrist), pp. 93-116. Springer.

Prestrud, P. \& Stirling, I. (1994) The International Polar Bear Agreement and the current status of polar bear conservation. Aquatic Mammals, 20, 113-124.

R Core Development Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.Rproject.org, accessed September 2010.

Ramsay, M. A. \& Stirling, I. (1988) Reproductive biology and ecology of female polar bears (Ursus maritimus). Journal of Zoology, 214, 601-634.

Regehr, E. V., Hunter, C. M., Caswell, H., Amstrup, S. C. \& Stirling, I. (2010) Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice. Journal of Animal Ecology, 79, 117-127.

Regehr, E. V., Lunn, N. J., Amstrup, S. C. \& Stirling, I. (2007) Effects of earlier sea ice breakup on survival and populaiton size of polar bears in western Hudson Bay. Journal of Wildlife Management, 71, 2673-2683.

Rode K. D., Amstrup S. C. and Regehr, E. V. (2010) Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecological Applications, 20, 768-782.

Seber, G. A. F. (1982) The estimation of animal abundance and related parameters, 2nd edn.
MacMillan Publishing Co., Inc., New York.

Skinner, W. R., Jefferies, R. L., Carleton, T. J., Rockwell, R. F. \& Abraham, K. F. (1998) Prediction of reproductive success and failure in lesser snow geese based on early season climatic variables. Global Change Biology, 4, 4-16.

Stirling, I. (2002) Polar bears and seals in the eastern Beaufort Sea and Amundsen Gulf: A synthesis of population trends and ecological relationships over three decades. Arctic, 55, 59-76.

Stirling, I., Calvert, W. \& Andriashek, D. (1980) Population ecology studies of the polar bear in the area of southeastern Baffin Island. Canadian Wildlife Service Occasional Paper 44. 31 pp.

Stirling, I. \& Derocher, A. E. (1993) Possible impacts of climatic warming on polar bears. Arctic, 46, 240-245.

Stirling, I. \& Kiliian, H. P. L. (1980) Population ecology studies of the polar bear in northern Labrador. Canadian Wildlife Service Occasional Paper 42. 19 pp.

Stirling, I., Lunn, N. J. \& Iacozza, J. (1999) Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climatic change. Arctic, 52, 294-306.

Stirling, I., McDonald, T. L., Richardson, E. S., Regehr, E. V. \& Amstrup, S. C. (In Press). Polar bear population status in the northern Beaufort Sea, Canada, 1971-2006. Ecological Applications. \qquad
Stirling, I. \& Parkinson, C. L. (2006) Possible effects of climate warming on selected
populations of polar bears (Ursus maritimus) in the Canadian Arctic. Arctic, 59, 261-275.
Stirling, I., Spencer, C. \& Andriashek, D. (1989) Immobilization of polar bears (Ursus maritimus) with Telazol in the Canadian Arctic. Journal of Wildlife Diseases, 25, 159168.

Taylor, M.K. (1982) The distribution and abundance of polar bears (Ursus maritimus) in the Beaufort and Chukchi Seas. Ph.D. Thesis, Univ. Minnesota, Minneapolis. 343 pp.

Taylor, M. K. (1994) Density-dependent population regulation of black, brown and polar bears. Monograph Series 3, Ninth International Conference on Bear Research and Management Missoula, MT, USA.

Taylor, M. \& Lee, J. (1995) Distribution and abundance of Canadian polar bear populations - a management perspective. Arctic, 48, 147-154.

Taylor, M. K., Akeeagok, S., Andriashek, D., Barbour, W., Born, E. W., Calvert, W., Cluff, H. D., Ferguson, S., Laake, J., Rosing-Asvid, A., Stirling, I. \& Messier, F. (2001) Delineating Canadian and Greenland polar bear (Ursus maritimus) populations by cluster analysis of movements. Canadian Journal of Zoology, 79, 690-709.

Taylor, M. K., Carley, J. S. \& Bunnell, F. L. (1987) Correct and incorrect use of recruitment rates for marine mammals. Marine Mammal Science, 3, 171-178.

Taylor, M. K., DeMaster, D. P., Bunnell, F. L. \& Schweinsburg, R. E. (1987) Modeling the sustainable harvest of polar bears. Journal of Wildlife Management, 51, 811-820.

Taylor, M.K., Kuc, M., \& Abraham, D. 2000. Vital Rates: Population parameter analysis program for species with three year reproductive schedules. Government of Nunavut, Iqaluit, Nunavut Territory. 30pp.

Taylor, M. K., Laake, J., Cluff, H. D., Ramsay, M. \& Messier, F. (2002) Managing the risk from hunting for the Viscount Melville Sound polar bear population. Ursus, 13, 185-202.

Taylor, M. K., Obbard, M. E., Pond, B., Kuc, M. \& Abraham, D. (2003) RISKMAN: Stochastic and deterministic population modeling RISKMANagement decision tool for harvested
and unharvested populations v. 1.9. Ontario Ministry of Natural Resources,
Peterborough, Ontario, Canada.
Taylor, M. K., Laake, J., McLoughlin, P. D., Born, E. W., Cluff, H. D., Ferguson, S. H., RosingAsvid, A., Schweinsburg, R. \& Messier, F. (2005) Demography and viability of a hunted population of polar bears. Arctic, 58, 203-214.

Taylor, M.K., Laake, J., McLoughlin, E.W., Cluff, \& Messier, F. (2009) Population demography and conservation of polar bears in Gulf of Boothia, Nunavut. Marine Mammal Science.

25, 778-796.
Thiemann, G. W., Iverson, S. J. \& Stirling, I. (2008) Polar bear diets and arctic marine food webs: insights from fatty acid analysis. Ecological Monographs, 78, 591-613.

White, G. C. \& Burnham, K. P. (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46 Supplement, 120-138.

White, G. C. (2000) Population viability analysis: Data requirements and essential analyses. Research techniques in animal ecology: Controversies and consequences (eds L. Boitani \& T. K. Fullers), pp. 288-331. Cambridge University Press, New York, NY.

Figure Captions

Fig. 1. Polar bear capture locations from 1974-2007 $(n=2,529)$ in the three sub-regions of Davis Strait

Fig. 2. Initial capture and recovery locations of polar bears, which have complete location data (n = 140) in Davis Strait from 1974-2008

Fig. 3. Total apparent survival estimates (S) of marked polar bears in Davis Strait, 1974-2008 Fig. 4. Total apparent survival estimates (95\% CI) for adult female polar bears, 1975-2008, in northern and southern Davis Strait and (a) summer ice concentration and (b) harp seal abundance. Estimates are from survival model, ageclass + timeperiod + nonjuv:male + Geo (total model, $\Delta \mathrm{AICc}=0.82$)

Fig. 5. Age structures of captured polar bears in the Davis Strait, 1974-1979 and 2005-2007

Fig. 1.

Fig. 2.

724 Fig. 3

Fig. 4.

Fig. 5.

Table 1. Logit coefficients (β) and standard errors (SE) of total survival for ecological variables in survival sub-models of polar bears 730 in Davis Strait. Each survival sub-model includes ageclass + nonjuv:male, and are from the model with lowest Δ AICc that contains 731 the variable of interest. Each effect is additive to the intercept. Bold values indicate $\beta / \mathrm{SE} \geq 2$ or ≤-2, suggesting more important
effects with higher precision

Minimum $\Delta \mathrm{AIC}_{\mathrm{c}}$ of entire model with specified submodel	Survival sub-model						
	time period	time period	harp + geo	$i c e+i c e^{2}+$ harp	geo	harp	$i c e+i c e^{2}$
	0	0.82	5.49	7.91	26.22	13.53	25.52
	Logit coefficients, β (SE)						
Intercept*	1.00 (0.59)	1.16 (0.60)	0.55 (0.66)	-0.79 (1.31)	1.88 (0.51)	0.59 (0.60)	2.35 (0.98)
Time*							
time period, 1979-1983	0.60 (0.41)	0.62 (0.41)					
time period, 1984-1988	-0.72 (0.43)	-0.71 (0.43)					
time period, 1989-1993	0.52 (0.57)	0.56 (0.59)					
time period, 1994-1998	0.38 (0.45)	0.42 (0.51)					
time period, 1999-2008	1.23 (0.38)	1.23 (0.38)					
Geographic sub-region**							
geo, ND		-0.46 (0.25)	-0.76 (0.19)		-0.52 (0.27)		
geo, SD		-0.13 (0.27)	0.08 (0.14)		0.06 (0.21)		
Harp seal abundance**							
harp			0.21 (0.10)	0.23 (0.09)		0.24 (0.06)	
Summer ice concentration**							
ice				14.08 (11.75)			-3.58 (10.22)
ice ${ }^{2}$				-39.65 (31.35)			-2.96 (27.90)

733 * Intercept estimate includes estimates of the levels: time period 1974-1978; geographic sub-region CD, no harp and/or no ice variable, depending on survival

Table 2. Model-averaged estimates of total apparent (S) and natural survival $\left(S_{N}\right)$ of polar bears in Davis Strait in 2008. LCL and UCL are lower and upper confidence levels, respectively

	M	0.857	0.641	0.952	0.878	0.682	0.960
Subadult	F	0.922	0.857	0.959	0.928	0.863	0.963
	M	0.893	0.825	0.936	0.909	0.843	0.949
Yearling		0.923	0.861	0.959	0.929	0.867	0.963
COY		0.900	0.743	0.966	0.908	0.756	0.969

Table 3. Reproductive parameters of captured and aged adult female polar bears in Davis Strait, 2005-2007

Age of adult female	Aged adult females	No. unencumbered	Number of litters			LP ${ }^{1}$	Age- binned LPR for PVA ${ }^{2}$	No. litters of 1 COY	No. litters of 2 COY	$\begin{aligned} & \text { COY } \\ & \text { LS } \end{aligned}$	$\begin{aligned} & \text { Binned } \\ & \text { COY } \\ & \text { LS } \end{aligned}$
			$2-\mathrm{yr}^{3}$	Yearling	COY						
4	29	27	0	0	2	0.16	-	0	2	2.00	
5	58	40	0	11	8	0.16	0.54	4	4	1.50	
6	56	38	0	10	8	0.17	0.34	5	3	1.38	1.55
7	54	37	1	9	8	0.34	0.44	5	3	1.38	
8	50	25	0	9	17	0.14	0.44	6	11	1.65	
9	33	17	1	11	4	0.26	0.44	3	1	1.25	1.44
10	24	12	0	4	8	0.29	0.44	6	2	1.25	
11	19	12	0	3	5	0.19	0.44	2	3	1.60	
12	15	8	0	5	3	0.24	0.44	2	1	1.33	1.39
13	16	7	0	3	6	0.41	0.44	4	2	1.33	
14	9	5	0	0	4	0.22	0.44	1	3	1.75	
15	8	5	0	3	1	0.30	0.44	0	1	2.00	1.61
16	19	9	0	5	5	0.06	0.44	2	3	1.60	
17	8	5	0	3	0	0.38	0.44	0	0	0.00	
18	8	4	0	1	3	0.17	0.44	3	0	1.00	1.10
19	5	2	0	2	1	0.50	0.44	0	1	2.00	
20	1	0	0	0	1	0.33	0.44	0	1	2.00	
21	7	2	0	3	2	0.75	0.44	1	1	1.50	1.73
22	2	0	0	1	1	-	0.44	0	1	2.00	
23	2	0	0	2	0	-	0.44	0	0	0.00	
24	0	0	0	0	0	0.33	0.44	0	0		-
25	2	1	0	0	1	0.50	0.44	1	0	1.00	
26	1	0	0	0	1	0.50	0.44	1	0	1.00	
27	1	0	0	0	1	-	0.44	0	1	2.00	1.25
28	1	1	0	0	0	-	-	0	0	0.00	
29	0	0	0	0	0	-	-	0	0	-	
30	1	1	0	0	0	-	-	0	0	0.00	-
Totals and summaries	429	258	2	85	90	$0.23{ }^{4}$	-	46	44	1.487^{5}	-

${ }^{1}$ LP as estimated using equations per Stirling, Calvert \& Andriashek 1980. Denominator of LP is total number of adult females. ${ }^{2}$ LPR as estimated using equations per Taylor, Carley \& Bunnell 1987. Denominator of LPR is number of adult females available to mate in each year.
${ }^{3}$ not incorporated in LPR or LP calculations
${ }^{4}$ weighted-average LPR for ages 4-21; weighted-average LPR for ages 7-27 is 0.33 (mean adult rate).
${ }^{5}$ Summary figure as estimated in VITAL RATES from standing-age distribution.

Additional Supporting Information may be found in the online version of this article:
Appendix S1. Supplementary tables and figures.
Table S1. Polar bears of different reproductive status caught (frequency by total caught) in Davis Strait, 2005-2007

Table S2. Model selection results for models with $\Delta \mathrm{AICc} \leq 10$ fitted to mark-recapture-recovery data for polar bears in Davis Strait (1974-2009)

Table S3. Model-averaged capture probability (p) of marked polar bears in Davis Strait, 20052007

Table S4. Model-averaged recovery rates (r) of marked polar bears in Davis Strait, 1974-2009.
Table S5. Abundance estimates of polar bears in Davis Strait, 2005-2007
Table S6. Demographic parameters used for estimation of population growth rate for Davis

Strait from an initial population size of 2,158 (180, SE) in 2007
Fig. S1. Break-point regression of mean weekly total ice concentration (May-October) in Davis Strait, 1974-2008

Fig. S2. Recovery rates (r) of marked juvenile and non-juvenile (ages $2+$) polar bears in subregions of Davis Strait, 1974-2008

Fig. S3. Natural survival $\left(S_{N}\right)$ of marked polar bears in three sub-regions of Davis Strait, 1974-
2008
Fig. S4. Age structure of male polar bears captured north and south of Hudson Strait in Davis
Strait, 2005-2007
Fig. S5. Age structure of female polar bears captured north and south of Hudson Strait in Davis Strait, 2005-2007

