## Nunavut Wildlife Research Trust Fund

### **Interim Report**

### 2010/2011

Project Number: 3-10-10

**Project Title:** Multi-species Stock Assessment Surveys of NAFO Division 0A. 0B and Canadian Shrimp Fishing Area 3 – A Three-year Plan

Year 1: Survey of NAFO Division 0A

#### Summary:

The 2010 Multi-species Stock Assessment Surveys of NAFO Division 0A and Shrimp Fishing Area 1 were successfully completed. Ice covered much of the northern survey area but at least two sets were taken in all but 1 stratum. In all 31 of the 90 stations were sampled. In southern 0A and SFA1 all sets allocated to the survey area were collected. Samples were also collected for a variety of other research programs interested in the area.

### Introduction:

The 2010 Multi-species survey is Year 1 of 3 for this multi-year proposal. This work extends the survey series for Greenland Halibut which began in 1999 and for shrimp which began in 2006. In this year the area of interest was NAFO 0A and SFA1. Funding for this survey came through the partnership of six agencies: the Nunavut Wildlife Management Board; the Nunavut Department of Environment (Fisheries and Sealing Division) and CanNor Development Agency; Nunavut Tunngavik Inc.; Nunavut Exploratory Fishery Fund (an industry sponsored research fund); and Fisheries and Oceans Canada.

### **Project Objectives:**

The primary objectives are as follows:

- 1. Collect the data required to establish age structure, estimate population abundance, biomass, and recruitment of Greenland Halibut;
- 2. Collect the data required to establish age structure, estimate population abundance, biomass, and recruitment of northern and striped shrimp;
- 3. Record numbers caught and collect length and weight data on all other commercial species caught, to allow calculation of abundance, biomass, and size structure of these species;

- 4. Record numbers and collect weight data on all non-commercial species caught, to allow calculation of abundance and biomass of these species;
- Collect additional data and biological samples as time permits (e.g. lengths for bycatch, maturity information, coral and sponge samples, other special requests);
- 6. Collect oceanographic data at each fishing station;
- 7. Collect oceanographic data at standard stations previously established.

#### Materials and Methods:

A stratified random survey design based on water depth was used to sample the study areas. Fishing sets were assigned within strata and based on stratum size, using a buffered random design (Kingsley et al 2004). Each stratum had approximately one set per 750 square km (about 220 sq. nautical miles). Each stratum had a minimum of 2 stations, regardless of size.

Two types of trawl gear were used. For continuity with previous data collections stations in Div. 0A were sampled using the Alfredo trawl and in SFA1 with the Cosmos trawl. Environmental data was collected with a trawl mounted Seabird CTD (conductivity, temperature, depth) during each set. The trawl was monitored with a Marport MBAR receiving geometry information from Scanmar and Marport spread sensors and a Furuno Trawleye.

Three study areas were surveyed in 2010. For Greenland Halibut the standard Southern 0A survey area was allocated 91 sets and the Northern 0A survey area was allocated 90 sets. For the SFA1 shrimp survey area 22 sets were allocated. Three standard CTD transects were located in these areas; one in northern 0A and two in southern 0A. Ice prevented sampling of the northern transect but oceanographic data (temperature, salinity and chlorophyll by depth) was collected along the southern lines with a Seabird SBE-19plus CTD fitted with a flow-through fluorometer.

#### **Results:**

The Canadian scientific crew, Tim Siferd, Martin Curtis and Kevin Hedges of DFO C&A, Robert Ennis, Len Mansfield and Paul Beck of St John's, Newfoundland assembled in Iqaluit on October 13<sup>th</sup>. The crew flew to Ilulissat, Greenland on an Air Nunavut charter, where we were met by the seventh member of the scientific crew Parnuna Egede of the Greenland Institute of Natural Resources (GINR) and boarded the GINR research vessel Paamiut.

The Paamiut departed Ilulissat on October 15<sup>th</sup>. Prior to departure it was known that ice would become a problem in completing the northern survey area with the potential of disrupting the sampling of the southern area. It was decided to complete the northern most sets in the southern survey area before proceeding to the northern survey area. Sampling began with the first set taken on October 17<sup>th</sup>. Fifteen sets were completed in the southern survey area then we moved to the north on the 19<sup>th</sup>.

Ice of untrawlable density covered the majority of the northern survey area by October 19<sup>th</sup> (see map below). In all, successful sets sampled 31 of the 90 allocated stations. This included at least 2 sets taken in all but one stratum in the survey area. This will allow for a partial estimate of biomass to be produced for the area.

In the northern survey area in the strata off the mouth of Lancaster Sound we experience large areas of soft mud bottom dominated by *Ombellula* sp. sea pens up to 2.5m in length. Large numbers of the sea pen came up on many of the tows. It appears to be an area which meets the criteria for a Vulnerable Marine Ecosystem and should be examined further prior to extensive trawling in the area.

The northern survey area was completed on October 23<sup>rd</sup>. The CTD transect planned for the northern survey area could not be completed because of ice coverage.

Sampling resumed in the southern survey area on October 24<sup>th</sup>. All 91 Greenland halibut sets allocated in the survey design were taken as were the 22 sets allocated to the shrimp survey in SFA1.

Samples collected for other studies were:

Vonda Wareham. DFO Newfoundland and Labrador. All corals and sea pens encountered during the study were collected and returned to Winnipeg. Vonda is planning an aging study of the sea pens so that growth might be determined for these species. Corals and sea pens are two groups of structure forming organisms identified as important in regards to Vulnerable Marine Ecosystems and MSC certifications. This work helps support C&A's commitment to these internal and external interests to the fisheries.

Phil Sargent. Memorial University. Several specimens of Velutinid snails found in the catch were collected.

Pierre Richard. DFO C&A. Whale sightings were recorded during the cruise by the crew. Bottle Nose whales were a common visitor when near the 1000m depth contour. For the first time two Sperm whales were sighted near the ship in southern 0A.

Megan Best. DFO Maritimes. Sponge samples were collected from all sets for identification of sponge to as low a taxonomic level as possible. Sponge is a group of structure forming organisms identified as important in regards to Vulnerable Marine Ecosystems and MSC certifications. This work helps support C&A's commitment to these internal and external interests to the fisheries.

John Nelson. DFO Pacific. 96 Arctic and Polar Cod were sampled in three locations over the two surveys areas. The study is looking into the genetic differences of these two cod species.

Further analysis of the data from the cruise will produce population and other indices that will be included in the final report.

### Discussion:

The survey in 2010 was successfully completed as far as the ice conditions would allow. Initial impressions of the catch were that the Greenland Halibut numbers were as high as or better than in 2008 with the average fish size larger than previously observed. There were also more small halibut of the 1+ year classes than seen in previous surveys. This bodes well for future good recruitment to the fishery.

## Management Implications:

The survey data continues the monitoring of the fisheries for Greenland halibut and northern shrimp in NAFO 0A. The information is critical to making informed management decisions on stock status; the impact fishing is having on the stocks and the adjustment of TACs. The collection of information on other potentially commercial organisms during the survey also supplies co-managers information necessary to evaluate exploratory fishing requests in the area.

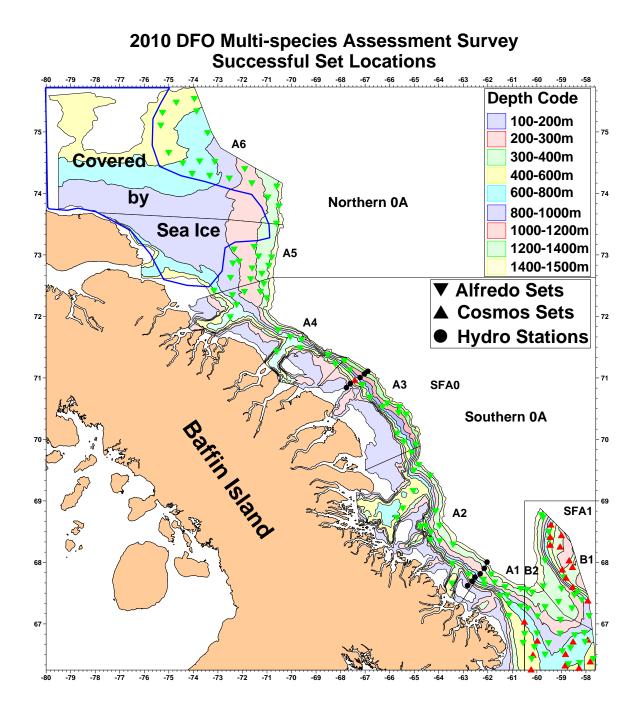
# Reporting to Communities/Resource Users:

The project summary reported here will be translated into Inuktitut and copies in both languages will be sent to each HTA adjacent to the study area.

A non-technical summary of the data presented at the 2011 NAFO Scientific Council and Northern Shrimp Advisory Committee meetings will be prepared and translated for distribution to the NWMB and the adjacent community HTA's.

### **References:**

Kingsley, M.C.S., P. Kanneworff and D.M. Carlsson. 2004. Buffered random sampling: a sequential inhibited spatial point process applied to sampling in a trawl survey for northern shrimp *Pandalus borealis* in west Greenland waters. ICES Journal of Marine Science 61: 12-24.


Table 1. Raw catch taken during the 2010 multi-species assessment survey of NAFO 0A and SFA1.

|          |                  |                            |                    |            |               | Raw C           | atch Weight | (kg)         |
|----------|------------------|----------------------------|--------------------|------------|---------------|-----------------|-------------|--------------|
|          |                  | •                          | -                  | Depth      |               |                 | <b>.</b>    | •            |
| Set      | Date             | Survey Area                | Gear               | (m)        | Note          | Turbot          | Shrimp      | Other        |
| 1        | 17-Oct           | Southern 0A                | Alfredo            | 932        |               | 113.45          | 0           | 67.22        |
| 2        | 17-Oct           | Southern 0A                | Alfredo            | 550        |               | 38.4            | 0.28        | 2.37         |
| 3        | 17-Oct           | Southern 0A                | Alfredo            | 1319       |               | 146.57          | 0           | 8.34         |
| 4        | 17-Oct           | Southern 0A                | Alfredo            | 1445       |               | 128.5           | 0           | 44.37        |
| 5        | 17-Oct           | Southern 0A                | Alfredo            | 912        |               | 191.55          | 0           | 3.75         |
| 6        | 17-Oct           | Southern 0A                | Alfredo            | 1131       |               | 97.4            | 0           | 4.2          |
| 7        | 18-Oct           | Southern 0A                | Alfredo            | 445        | Lineuropooful | 10.26           | 0.3         | 4.59         |
| 8        | 18-Oct           | Southern 0A                | Alfredo            | 511        | Unsuccessful  | 57.0            | 0           | 0.00         |
| 9        | 18-Oct           | Southern 0A                | Alfredo            | 741        |               | 57.9            | 0           | 2.03         |
| 10       | 18-Oct           | Southern 0A                | Alfredo            | 780        |               | 72.7            | 0           | 1.1          |
| 11       | 18-Oct           | Southern 0A                | Alfredo            | 946        |               | 143.9           | 0           | 1.35         |
| 12       | 19-Oct           | Southern 0A<br>Southern 0A | Alfredo            | 1045       |               | 138             | 0           | 4.18         |
| 13       | 19-Oct           |                            | Alfredo            | 1251       |               | 164.9           | 0           | 13.75        |
| 14       | 19-Oct           | Southern 0A                | Alfredo            | 1413       |               | 67.8            | 0           | 12.12        |
| 15       | 19-Oct           | Southern 0A                | Alfredo            | 1348       |               | 90.64           | 0           | 26.12        |
| 16       | 19-Oct           | Northern 0A                | Alfredo            | 1345       |               | 54.96           | 0           | 15.52        |
| 17       | 19-Oct           | Northern 0A                | Alfredo            | 1144       |               | 314.92          | 0           | 6.24         |
| 18       | 19-Oct           | Northern 0A                | Alfredo            | 904        | Lineuropooful | 80.5            | 0           | 2.98         |
| 19       | 19-Oct           | Northern 0A                | Alfredo            | 643        | Unsuccessful  | 24              | 0           | 4.00         |
| 20<br>21 | 19-Oct<br>19-Oct | Northern 0A<br>Northern 0A | Alfredo            | 709<br>753 | Linguagaaaful | 34              | 0           | 1.23         |
| 21<br>22 | 20-Oct           | Northern 0A                | Alfredo<br>Alfredo | 1044       | Unsuccessful  | 228.31          | 0           | 3.68         |
| 22<br>23 | 20-Oct<br>20-Oct | Northern 0A                | Alfredo            | 947        |               | 97.35           | 0           | 3.00<br>3.99 |
| 23<br>24 | 20-Oct<br>20-Oct | Northern 0A                | Alfredo            | 1077       |               | 97.35<br>177.87 | 0           | 3.99<br>7.39 |
| 24<br>25 | 20-Oct<br>20-Oct | Northern 0A                | Alfredo            | 1245       |               | 59.1            | 0           | 4.23         |
| 25<br>26 | 20-Oct<br>20-Oct | Northern 0A                | Alfredo            | 1245       |               | 70.7            | 0           | 4.23         |
| 20<br>27 | 20-Oct<br>20-Oct | Northern 0A                | Alfredo            | 1200       |               | 274.5           | 0           | 12.66        |
| 28       | 20-Oct<br>20-Oct | Northern 0A                | Alfredo            | 1440       |               | 39.75           | 0           | 13.17        |
| 20<br>29 | 20-Oct<br>20-Oct | Northern 0A                | Alfredo            | 1460       |               | 57.9            | 0           | 12.47        |
| 30       | 20-Oct<br>21-Oct | Northern 0A                | Alfredo            | 1357       |               | 88.1            | 0           | 54.95        |
| 31       | 21-Oct<br>21-Oct | Northern 0A                | Alfredo            | 1476       |               | 133.47          | 0           | 24.32        |
| 32       | 21-Oct           | Northern 0A                | Alfredo            | 1261       |               | 130.55          | 0           | 20.73        |
| 33       | 21-Oct           | Northern 0A                | Alfredo            | 1095       |               | 137.78          | 0           | 4.68         |
| 34       | 21-Oct           | Northern 0A                | Alfredo            | 947        |               | 78.15           | 0           | 3.99         |
| 35       | 21-Oct           | Northern 0A                | Alfredo            | 749        |               | 61.65           | 0           | 0.61         |
| 36       | 21-Oct           | Northern 0A                | Alfredo            | 698        |               | 34.93           | 0           | 10.66        |
| 37       | 22-Oct           | Northern 0A                | Alfredo            | 618        |               | 15.85           | 0           | 7.3          |
| 38       | 22-Oct           | Northern 0A                | Alfredo            | 559        |               | 20.95           | 0.46        | 11.25        |
| 39       | 22-Oct           | Northern 0A                | Alfredo            | 503<br>504 | Unsuccessful  | 20.00           | 0.70        |              |
| 40       | 22-Oct           | Northern 0A                | Alfredo            | 534        | Unsuccessful  |                 |             |              |
| 41       | 22-Oct           | Northern 0A                | Alfredo            | 491        | 2             | 17.93           | 1.08        | 10.87        |
| 42       | 22-Oct           | Northern 0A                | Alfredo            | 426        |               | 7.35            | 0.69        | 17.43        |
|          | •••              |                            |                    | .=•        |               |                 | 2.00        |              |

| 43 | 22-Oct | Northern 0A | Alfredo | 457  |              | 6.15    | 1.35 | 23.58  |
|----|--------|-------------|---------|------|--------------|---------|------|--------|
| 44 | 22-Oct | Northern 0A | Alfredo | 487  |              | 11.35   | 1.54 | 19.03  |
| 45 | 22-Oct | Northern 0A | Alfredo | 629  |              | 171.75  | 0.38 | 5.87   |
| 46 | 22-Oct | Northern 0A | Alfredo | 792  |              | 56.74   | 0    | 6.6    |
| 47 | 22-Oct | Northern 0A | Alfredo | 681  | Unsuccessful |         | -    |        |
| 48 | 22-Oct | Northern 0A | Alfredo | 677  |              | 28.8    | 0    | 5.48   |
| 49 | 22-Oct | Northern 0A | Alfredo | 826  |              | 36.55   | 0    | 64.16  |
| 50 | 22-Oct | Northern 0A | Alfredo | 1118 |              | 224.4   | 0    | 10.74  |
| 51 | 23-Oct | Northern 0A | Alfredo | 1429 |              | 69.4    | 0    | 44.11  |
| 52 | 23-Oct | Southern 0A | Alfredo | 758  |              | 44.3    | 0    | 6.14   |
| 53 | 23-Oct | Southern 0A | Alfredo | 497  |              | 35.15   | 0.34 | 9.71   |
| 54 | 23-Oct | Southern 0A | CTD     | 1546 |              |         |      |        |
| 55 | 23-Oct | Southern 0A | CTD     | 1311 |              |         |      |        |
| 56 | 23-Oct | Southern 0A | CTD     | 1024 |              |         |      |        |
| 57 | 23-Oct | Southern 0A | Cosmos  | 680  |              |         |      |        |
| 58 | 23-Oct | Southern 0A | CTD     | 345  |              |         |      |        |
| 59 | 23-Oct | Southern 0A | CTD     | 190  |              |         |      |        |
| 60 | 23-Oct | Southern 0A | Alfredo | 749  |              | 40.57   | 0    | 1.21   |
| 61 | 23-Oct | Southern 0A | Alfredo | 677  |              | 104.25  | 0    | 6.18   |
| 62 | 23-Oct | Southern 0A | Alfredo | 903  |              | 174.2   | 0    | 5.99   |
| 63 | 23-Oct | Southern 0A | Alfredo | 1207 |              | 302.5   | 0    | 6.95   |
| 64 | 24-Oct | Southern 0A | Alfredo | 1411 |              | 98.5    | 0    | 28.01  |
| 65 | 24-Oct | Southern 0A | Alfredo | 1425 |              | 72.25   | 0    | 24.03  |
| 66 | 25-Oct | Southern 0A | Alfredo | 1107 |              | 1256.75 | 0    | 277.18 |
| 67 | 25-Oct | Southern 0A | Alfredo | 467  |              | 15.03   | 0.62 | 352.86 |
| 68 | 25-Oct | Southern 0A | Alfredo | 552  |              | 27.85   | 0    | 1.3    |
| 69 | 25-Oct | Southern 0A | Alfredo | 1109 | Unsuccessful |         |      |        |
| 70 | 25-Oct | Southern 0A | Alfredo | 1070 |              | 227     | 0    | 53.86  |
| 71 | 25-Oct | Southern 0A | Alfredo | 688  |              | 32.95   | 0    | 2.03   |
| 72 | 25-Oct | Southern 0A | Alfredo | 1449 |              | 58.9    | 0    | 24.81  |
| 73 | 25-Oct | Southern 0A | Alfredo | 1150 |              | 353.7   | 0    | 399.67 |
| 74 | 25-Oct | Southern 0A | Alfredo | 1460 |              | 19.6    | 0    | 25.2   |
| 75 | 25-Oct | Southern 0A | Alfredo | 578  |              | 32.79   | 0.24 | 18.68  |
| 76 | 25-Oct | Southern 0A | Alfredo | 540  |              | 12.85   | 0    | 3.02   |
| 77 | 25-Oct | Southern 0A | Alfredo | 468  |              | 16.71   | 2.05 | 7.18   |
| 78 | 26-Oct | Southern 0A | Alfredo | 1371 |              | 120.62  | 0    | 2.67   |
| 79 | 26-Oct | Southern 0A | Alfredo | 1371 |              | 36.65   | 0    | 7.57   |
| 80 | 26-Oct | Southern 0A | Alfredo | 925  |              | 494.85  | 0    | 7.4    |
| 81 | 26-Oct | Southern 0A | Alfredo | 708  |              | 153.2   | 0.3  | 370.2  |
| 82 | 26-Oct | Southern 0A | Alfredo | 877  |              | 207.2   | 0    | 2.73   |
| 83 | 26-Oct | Southern 0A | Alfredo | 454  |              | 11.13   | 2.66 | 18.84  |
| 84 | 26-Oct | Southern 0A | Alfredo | 1096 |              | 417     | 0    | 8.51   |
| 85 | 26-Oct | Southern 0A | Alfredo | 1359 |              | 49.05   | 0    | 24.49  |
| 86 | 27-Oct | Southern 0A | Alfredo | 499  |              | 15.44   | 0.23 | 3.57   |
| 87 | 27-Oct | Southern 0A | Alfredo | 588  |              | 61.95   | 4.6  | 27.92  |
| 88 | 27-Oct | Southern 0A | CTD     | 152  |              |         |      |        |
| 89 | 27-Oct | Southern 0A | CTD     | 701  |              |         |      |        |
| 90 | 27-Oct | Southern 0A | CTD     | 976  |              |         |      |        |
| 91 | 27-Oct | Southern 0A | CTD     | 1067 |              |         |      |        |
|    |        |             |         |      |              |         |      |        |

| 92   | 27-Oct  | Southern 0A | CTD     | 1350 |              |        |         |        |
|------|---------|-------------|---------|------|--------------|--------|---------|--------|
| 93   | 27-Oct  | Southern 0A | CTD     | 1595 |              |        |         |        |
| 94   | 27-Oct  | Southern 0A | Alfredo | 729  |              | 130.1  | 0.21    | 275.97 |
| 95   | 27-Oct  | Southern 0A | Alfredo | 871  |              | 467.6  | 0       | 6.95   |
| 96   | 27-Oct  | Southern 0A | Alfredo | 1038 |              | 258.25 | 0       | 7.53   |
| 97   | 28-Oct  | Southern 0A | Alfredo | 1448 |              | 36.6   | 0       | 11.87  |
| 98   | 28-Oct  | Southern 0A | Alfredo | 1288 |              | 117.3  | 0       | 17.92  |
| 99   | 28-Oct  | Southern 0A | Alfredo | 1331 |              | 21.84  | 0       | 12.46  |
| 100  | 28-Oct  | Southern 0A | Alfredo | 663  |              | 98.65  | 0.55    | 3.96   |
| 101  | 28-Oct  | Southern 0A | Alfredo | 1018 |              | 303.45 | 0       | 14.29  |
| 102  | 28-Oct  | Southern 0A | Alfredo | 737  |              | 134.7  | 1.32    | 11.69  |
| 103  | 28-Oct  | Southern 0A | Alfredo | 439  |              | 29.38  | 0.89    | 4.78   |
| 104  | 29-Oct  | SFA1        | Cosmos  | 658  |              | 0      | 0       | 175.67 |
| 105  | 29-Oct  | Southern 0A | Alfredo | 565  |              | 10.72  | 0.63    | 50.3   |
| 106  | 29-Oct  | Southern 0A | Alfredo | 530  | Unsuccessful |        |         |        |
| 107  | 29-Oct  | Southern 0A | Alfredo | 540  |              | 22.77  | 1.47    | 11.01  |
| 108  | 29-Oct  | SFA1        | Cosmos  | 529  |              | 9.25   | 1.45    | 11.36  |
| 109  | 29-Oct  | Southern 0A | Alfredo | 514  |              | 15.3   | 1.54    | 11.63  |
| 110  | 29-Oct  | SFA1        | Cosmos  | 452  |              | 3.35   | 2.54    | 3.44   |
| 111  | 29-Oct  | Southern 0A | Alfredo | 781  |              | 31.45  | 0       | 12.83  |
| 112  | 29-Oct  | Southern 0A | Alfredo | 899  |              | 54.65  | 0       | 4.47   |
| 113  | 29-Oct  | Southern 0A | Alfredo | 584  |              | 19.75  | 0.57    | 22.67  |
| 114  | 30-Oct  | SFA1        | Cosmos  | 712  |              | 12.15  | 0       | 18.88  |
| 115  | 30-Oct  | Southern 0A | Alfredo | 779  |              | 84.7   | 0       | 174.17 |
| 116  | 30-Oct  | Southern 0A | Alfredo | 1054 |              | 265.99 | 0       | 19.08  |
| 117  | 30-Oct  | Southern 0A | Alfredo | 992  |              | 206.65 | 0       | 2.03   |
| 118  | 30-Oct  | Southern 0A | Alfredo | 926  |              | 141.95 | 0       | 1.25   |
| 119  | 30-Oct  | Southern 0A | Alfredo | 1482 |              | 26.7   | 0       | 37.06  |
| 120  | 30-Oct  | Southern 0A | Alfredo | 1453 |              | 29.5   | 0       | 58.09  |
| 121  | 30-Oct  | Southern 0A | Alfredo | 1501 | Unsuccessful |        |         |        |
| 122  | 30-Oct  | Southern 0A | Alfredo | 1432 |              | 34.1   | 0       | 156.37 |
| 123  | 31-Oct  | Southern 0A | Alfredo | 1477 |              | 19.99  | 0       | 25.56  |
| 124  | 31-Oct  | Southern 0A | Alfredo | 1157 |              | 138.17 | 0       | 30.11  |
| 125  | 31-Oct  | SFA1        | Cosmos  | 477  |              | 11.95  | 2.94    | 11.31  |
| 126  | 31-Oct  | Southern 0A | Alfredo | 542  |              | 108.45 | 0.25    | 44.13  |
| 127  | 31-Oct  | SFA1        | Cosmos  | 542  |              | 2.14   | 4.2     | 5.55   |
| 128  | 31-Oct  | Southern 0A | Alfredo | 644  |              | 165.68 | 0.1     | 10.26  |
| 129  | 31-Oct  | Southern 0A | Alfredo | 1314 |              | 52.1   | 0.02    | 6.09   |
| 130  | 31-Oct  | Southern 0A | Alfredo | 1410 |              | 13.25  | 0       | 17.67  |
| 131  | 31-Oct  | SFA1        | Cosmos  | 658  |              | 31.6   | 0.47    | 18.54  |
| 132  | 01-Nov  | SFA1        | Cosmos  | 329  |              | 8.39   | 38.8    | 29.92  |
| 133  | 01-Nov  | SFA1        | Cosmos  | 319  |              | 1.17   | 71.98   | 13.06  |
| 134  | 01-Nov  | SFA1        | Cosmos  | 269  |              | 2.73   | 62.8    | 13.1   |
| 135  | 01-Nov  | SFA1        | Cosmos  | 398  |              | 16.34  | 26.53   | 24.12  |
| 136  | 01-Nov  | SFA1        | Cosmos  | 287  |              | 0.26   | 426.99  | 25.02  |
| 137  | 01-Nov  | Southern 0A | Alfredo | 446  | Unsuccessful | 0.20   | .20.00  | 20.02  |
| 138  | 01-Nov  | Southern 0A | Alfredo | 431  |              | 32.25  | 0.11    | 11.66  |
| 139  | 01-Nov  | Southern 0A | Alfredo | 1238 |              | 27.9   | 0.11    | 17.06  |
| 140  | 02-Nov  | SFA1        | Cosmos  | 357  |              | 27.5   | 1659.03 | 13.71  |
| 1-10 | 02 1107 |             | 0001103 | 001  |              | 2.0    | 1000.00 | 10.71  |

| 1 1 1 |        | 0544        | Coomoo  | 110  |              | 10.00  | 1.60 |        |
|-------|--------|-------------|---------|------|--------------|--------|------|--------|
| 141   | 02-Nov | SFA1        | Cosmos  | 416  |              | 13.32  | 1.62 | 45.05  |
| 142   | 02-Nov | SFA1        | Cosmos  | 643  |              | 61.05  | 0.04 | 7.97   |
| 143   | 02-Nov | Southern 0A | Alfredo | 638  |              | 109.15 | 0    | 8.92   |
| 144   | 02-Nov | Southern 0A | Alfredo | 1042 |              | 150.25 | 0    | 9.74   |
| 145   | 02-Nov | Southern 0A | Alfredo | 799  | Unsuccessful |        |      |        |
| 146   | 02-Nov | Southern 0A | Alfredo | 963  |              | 414.73 | 0    | 17.14  |
| 147   | 02-Nov | SFA1        | Cosmos  | 636  |              | 52.3   | 0.03 | 13.58  |
| 148   | 03-Nov | Southern 0A | Alfredo | 854  |              | 76.25  | 0    | 6.21   |
| 149   | 03-Nov | Southern 0A | Alfredo | 1237 |              | 54.75  | 0    | 7.93   |
| 150   | 03-Nov | Southern 0A | Alfredo | 1355 | Unsuccessful |        |      |        |
| 151   | 03-Nov | Southern 0A | Alfredo | 1358 |              | 15.07  | 0    | 39.82  |
| 152   | 03-Nov | Southern 0A | Alfredo | 1271 |              | 53.55  | 0    | 17.78  |
| 153   | 03-Nov | Southern 0A | Alfredo | 1233 |              | 41.8   | 0    | 13.51  |
| 154   | 03-Nov | Southern 0A | Alfredo | 1048 |              | 148.8  | 0    | 6.83   |
| 155   | 03-Nov | Southern 0A | Alfredo | 846  |              | 153.02 | 0    | 131.61 |
| 156   | 03-Nov | Southern 0A | Alfredo | 823  |              | 145.54 | 0    | 22.15  |
| 157   | 04-Nov | SFA1        | Cosmos  | 696  |              | 47.05  | 0.42 | 12.03  |
| 158   | 04-Nov | Southern 0A | Alfredo | 670  |              | 49.25  | 0    | 5.87   |
| 159   | 04-Nov | SFA1        | Cosmos  | 749  |              | 13.5   | 0    | 12.79  |
| 160   | 04-Nov | Southern 0A | Alfredo | 714  |              | 42.8   | 0.2  | 19.93  |
| 161   | 04-Nov | Southern 0A | Alfredo | 780  |              | 71.9   | 0    | 159.6  |
| 162   | 05-Nov | SFA1        | Cosmos  | 717  |              | 13.7   | 0    | 9.85   |
| 163   | 05-Nov | SFA1        | Cosmos  | 665  |              | 17.19  | 0.18 | 7.64   |
| 164   | 06-Nov | Southern 0A | Alfredo | 648  |              | 37     | 0    | 4.83   |
| 165   | 06-Nov | SFA1        | Cosmos  | 645  |              | 18.25  | 3.55 | 4.76   |
| 166   | 06-Nov | Southern 0A | Alfredo | 645  |              | 18.63  | 0.71 | 2.19   |
| 167   | 06-Nov | SFA1        | Cosmos  | 563  |              | 12.3   | 0.47 | 65.62  |
| 168   | 06-Nov | Southern 0A | Alfredo | 561  |              | 17.5   | 0.2  | 101.97 |
|       |        |             |         |      |              |        |      |        |

