Subpopulation	Estimate	$\pm 2 \text { SE or }$ $95 \% \mathrm{Cl}$	Year of Population Estimate	ethod	$\begin{gathered} \text { Historic } \\ \text { Trend } \end{gathered}$	Local and/or TEK assessment	Recent trend	Fut	$\underset{\substack{\text { Historic annual removal } \\ \text { (} 5 \text { yr mean) }}}{ }$	Historic annual removal (3 yr mean)	Historical annual removals (last year)	Potential Maximum Removals (last year)	Comments/Vulnerabilities/Habitat	Jurisdiction	Subpopulation
Baffin Bay	2,074	1542-2606	$1997{ }^{1}$	M\R	$\begin{gathered} \hline \text { likely } \\ \text { reduced } \\ \hline \end{gathered}$	stable ${ }^{2}$	$\begin{gathered} \hline \text { likely } \\ \text { decline }{ }^{3} \end{gathered}$	uncertain ${ }^{4}$	141	137	137	133 (NU:65+GL:68)	currently being reassessed, high harvest, decline in sea ice, increased shipping	Nu, 6L	Baffin Bay
Davis Strait	2,158	1833-2542	2007^{5}	M\R	$\begin{gathered} \begin{array}{c} \text { likely } \\ \text { increased } \end{array} \\ \hline \end{gathered}$	increased ${ }^{6}$	$\begin{gathered} \text { likely } \\ \text { increase }^{7} \end{gathered}$	likely decline ${ }^{8}$	104	118	126	QC + 75 (NU:61+NL:12+GL:2)	based upon 2007 survey information, high harvest; decline in sea ice;	NU, CC, NFLD \& lab, GL	Davis Strait
Foxe Basin	2,580	2093-3180	2009-10 ${ }^{9}$	A	stable	increased ${ }^{10}$	stable ${ }^{11}$	likely stable ${ }^{12}$	106	104	93	QC+94	long term decline in sea ice; potential for increased shipping for mineral extraction	nu, ac	Foxe Basin
Gulf of Boothia	1,592	870-2314	$2000{ }^{13}$	M1R	likely stable	increasing ${ }^{14}$	likely stable ${ }^{15}$	likely stable ${ }^{16}$	58	63	52	66	Current and projected habitat change may affect productivity of ecosystem. Subpopulation has high vital rates and low harvest.	nu	Gulf of Boothia
Kane Basin	164	94-234	$1997{ }^{17}$	M\R	$\begin{gathered} \begin{array}{c} \text { likely } \\ \text { reduced } \end{array} \\ \hline \end{gathered}$	increasing ${ }^{18}$	uncertain ${ }^{19}$	uncertain ${ }^{20}$	13	12	5	11 (NU:5+GL:6)	currently being reassessed, likely a sink population connected with Baffin Bay, small population, decline in sea ice;	Nu, GL	Kane Basin
Lancaster Sound	2,541	1759-3323	1995-7 ${ }^{21}$	M 1 R	likely stable	increasing ${ }^{22}$	uncertain ${ }^{23}$	uncertain ${ }^{24}$	85	90	85	85	historic sex-skewed harvest, habitat decline, potential for	nu	Lancaster Sound
M'Clintock Channel	284	166-402	$2000{ }^{25}$	M\R	$\begin{aligned} & \text { likely } \\ & \text { reduced } \end{aligned}$	stable ${ }^{26}$	$\begin{gathered} \text { likely } \\ \text { increase }^{27} \end{gathered}$	uncertain ${ }^{28}$	3	3	3	3	increasing oil/gas development; loss of multi-year ice; currently being reassessed	n	M'Clintock Channel
Northern Beaufort Sea	1291*	n/a	$2006{ }^{29}$	M\R	likely stable	stable ${ }^{30}$	likely stable ${ }^{31}$	likely stable ${ }^{32}$	39	45	40	77 (NU:6+ NWT:71)	TEK study ongoing; increasing oil/gas development; decline in sea ice;	nu, NWT	Northern Beaufort Sea
Norwegian Bay	203	115-291	$1997{ }^{33}$	M\R	uncertain	stable ${ }^{34}$	uncertain ${ }^{35}$	uncertain ${ }^{\text {36 }}$	2	2	3	4	small, isolated population	NU	Norwegian Bay
$\begin{gathered} \text { Southern Beaufort } \\ \text { Sea } \end{gathered}$	1215*	n/a	$2006{ }^{37}$	M\R	uncertain	stable ${ }^{38}$	$\begin{gathered} \text { likely } \\ \text { decline }{ }^{39} \end{gathered}$	likely decline ${ }^{40}$	41	42	23	56 (US:35 + NWT:21)	Bromaghin et al. 2015 under review by Polar Bear Technical Committee; annual variability in ice conditions results in changes in density; bears are shifting to NB because of ice conditions; TK study completed; potential for oil/gas development	Us, YK, NWT	Southern Beaufort Sea
$\begin{gathered} \text { Southern Hudson } \\ \text { Bay } \end{gathered}$	951	662-1366	$2012{ }^{41}$	A	stable	stable James Bay; increased in East Hudson Bay ${ }^{42}$	stable ${ }^{43}$	uncertain ${ }^{44}$	62	49	38	60 (NU:25 + QC:30 + ON:5)	Uncertain due to contradictory lines of evidence: Iarge declines of body condition, declines in survival rates yet no change in abundance, TEKinidicates winter body ondition has not changed, TEK, indicates that reproductive rates have improved, TEK and science indicate changes in sea ice, ice free season increased by 28 days between 1980-2009. recent high harvest, habitat decline; decline of perrafrost- based denning habitat: revised voluntary harvest agreement of 45 to take effect in 2014-2015	nu, ac, on	Southern Hudson Bay
Viscount Melville Sound	161	93-229	$1992{ }^{45}$	M ${ }^{\text {R }}$	$\begin{aligned} & \text { likely } \\ & \text { reduced } \end{aligned}$	increased ${ }^{46}$	$\underset{47}{\text { Tikely stable }}$	uncertain ${ }^{48}$	5	6	6	7	currently being reassessed	nu, NWT	Viscount Melville
Western Hudson Bay	1030	754-1406	$2014{ }^{49}$	A	$\begin{aligned} & \text { likely } \\ & \text { reduce } \end{aligned}$	increased ${ }^{50}$	likely stable ${ }^{\text {51 }}$	likely decline ${ }^{52}$	23	27	29	$24+$ Manitoba	sea ice decline; harvest; declines in body condition and lower productivity compared to adjacent Foxe Basin and South Hudson Bay subpopulations; historic decline in abundance from late 1980s through late 1990s linked to reduced survival due to timing of sea ice breakup; recent analysis indicated relative stability in subpopulation from 2001-2010, a period during which there was no significant trend in sea ice freeze up or breakup; continued linkage between female survival and sea-ice conditions.	мв, мU	Western Hudson Bay

Notes
$M / R-$ Physical Mark Recapture Survey

${ }^{n / T}$ The revevised estimates for $N B$ and $S B$ is the result of management boundary change. It is based on a USGS analysis.

2015 PBTC Status Table Footnotes

1. Taylor et al. 2005
2. Dowsley 2005; Dowsley 2005b; Dowsley 2007; Dowsley and Taylor 2006; Nunavut Wildlife Management Board (NWMB) Public Hearing minutes and

Ibmissions for April 2008, September 2009

位
4. Vital rates for Riskman PVA are 18 years old; TEK indicates population is stable; there is current research and ongoing assessment
5. Peacock et al. 2013
7. Peacock et al. 2013; Stirling 1980.
8. The impact of a TAH increase on the population has not been modeled; predicted trend after survey was completed at harvest levels in 200
was considered stable (Peacock et al. 2013); NWMB Davis Strait public hearing submissions May 16-17, 2011
9. Government of Nunavut (GN) final report 2012
10. Sahanatien pers com. 7 Feb 2013; Dyck pers com. 7 Feb 2013: Canadian Wildlife Service Nunavut consultation report 2009
11. GN report 2012; Atkinson et al. 2010; Taylor et al. 2006; Taylor and Lee 1995
13. Taylor et al. 2009
14. Keith et al. 2005; Canadian Wildlife Service Nunavut consultation report 2009
15. For the period $2000-2015$, assuming all sources of removals in the population sum to 74 bears/yr, the population can be expected to persiss
at a stable population size (Taylor et al. 2009)
16. Hunters in area reporting ice conditions have improved productivity, harvest levels remain stable (Dyck pers com. 2013)
17. Taylor et al. 2008
18. Canadian Wildlife Service Nunavut consultation report 2009
19. Population simulations of existing data suggest that only a very small quota (<2) may be sustained for this subpopulation (Taylor et al. 2008)
20. Vital rates for PVA are 17 years old, current research and ongoing assessment
22. Canadian Wild lifí Service Nunavut consultation reaort 200
23. For the period 1997-2012, the population would be expected to be stable under the historical harvest regimen (1993-97). At the
current mean harvest rate of 78 bears/yr (2002-2006), we estimate that the population is more likely to decline than to increase (Taylor et al. 2008), 24. Vital rates for Riskman PVA are 16 years old
25. Taylor et al. 2006
26. Inuit report that bears are moving to neighbouring areas throughout the region. (Keith et al. 2005; CWS Nunavut consultation report 2009)
27. Likely an increase based on quantitative assessment of growth rate (Taylor et al. 2006)
2. Griswes or A Ware 4 years sa, seval 2011
29. Griswold et al., unpubished; Striring et al. 2011
31. Populations size used for management was historically adjusted to 1,200 due to bias in in population estimate (Amstrup et al. 2005; Stirling et al. 2011). 32. Durner et al. 2009, Stirling et al. 2011, and TEK (JJint Secretariat, unpublished) indicate stable population and habitat conditions may improve in shor-term 33. Taylor et al. 2006; Taylor et al. 2008
34. Canadian Wildlife Service Nunavut consultation report 2009
35. Vital rates for Riskman PVA are 17 years old and vital rates were substituted from other populations (Taylor et al 2008); no recent work in the area 36. Vital rates for Riskman PVA are 17 years old and vital rates were substituted from other populations (Taylor et al. 2008)
37. Griswold et al., unpublished; USGS 2010

Quotas were based on ther but not statistically different from previous population estimates (Amstrup et al. 1986, Regehr et al. 2006)
Quotas were based on the understanding that the total harvest of independent females would not exceed the modelled sustainable maximimum of
1.5% of the population (Taylor et al. 1987) and that a $2: 1$ ratio of males to females would be maintained in the total quota harvested (Stirling 2002)
40. Based on sea ice declines (Durner et al 2009), changes in body conditions measured in Alaska (Rode et al. 2010) and modelling (Regehr et al. 2010)

Estimated risk of future decline is based on vital rates estimated from 2001-2006 data used in demographic models that incorporate sea ice forecasts.
41. Obbard et al. 2013
42. NMRWB Public Hearing Inukjuak February 2014
43. Based on comparison with previous subpopulation estimates (Obbard et al. 2013; Obbard 2008; Kolenosky 1994).
44. Body condition decline, vital rate declines and changes in ice conditions; Inuit observations show no decline in body condition or abundance (Obbard pers com. 2014, Obbard et al. 2013, NMRWB, unpublished
46. Canadian Wildlife Service Nunavut consultation report 2009; community consultations in 2012 and 2013
47. Harvest managed for population growth since last survey including a 5 year moratorium; comparable litter size in 2012 (GNWT unpublished)
48. Vital rates for Riskman PVA are 22 years old; population reassessment currently in process
49. Stapleton et al. 2014
50. Canadian Wildlife Service Nunavut consultation report 2009, Kotierk 2012, NWMB Public Hearing minutes 2005; Tyrrell 200
51. Lunn et al. 2014 Unpublished Report
52. Based on body condition, abundance estimates, reduced reproductive productivity, and changes in ice conditions (Stirling and Parkinson 2006
stapleton et al. 2014, Lunn pers com.)

