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Executive Summary 

Background 

The Baffin Bay (BB) and Kane Basin (KB) polar bear subpopulations are jointly 

managed by Canada (Nunavut) and Greenland. The Canada-Greenland Joint Commission on 

Polar Bear (JC) facilitates coordination between the two jurisdictions. In 2011, due to concerns 

about potentially unsustainable harvest and the demographic effects of observed, long-term 

changes in sea-ice habitat, the JC tasked its Scientific Working Group (SWG) with reassessing 

the status of the BB and KB subpopulations. Both subpopulation were surveyed in the 1990s. 

However, by 2011 these earlier surveys were considered too old to provide a reliable basis for 

assessment or future harvest management. Consequently, the SWG undertook a research 

program using genetic capture-recapture (BB and KB), radiotelemetry (BB and KB), and aerial 

surveys (KB) from 2011–2014 to obtain updated information on subpopulation size, status, 

delineation, habitat quality, and habitat use (SWG 2016).  

Results from these recent studies suggest that, over the last few decades, the BB 

subpopulation has undergone significant changes in range, movements, habitat use, body 

condition, and reproductive performance concurrent with a decline in sea-ice extent, duration, 

and quality. Baffin Bay is a relatively abundant subpopulation with an estimated 2,826 bears in 

2011–2013 (95% CI = 2,059–3,593). However, due to differences in capture-recapture (CR) 

sampling designs, results from the surveys in the 1990s and 2010’s cannot be directly compared 

to assess trends in the size of the subpopulation. For KB, recent studies suggest that the 

subpopulation is transitioning from a multiyear sea-ice system towards a sea-ice regimen 

characteristic of the seasonal ice ecoregion, where sea ice melts almost entirely during the 

summer. The KB subpopulation has responded to changing sea ice by expanding its range since 

the 1990s, especially during summer. Larger and more variable home ranges, and the use of 

lower sea-ice concentrations in summer and fall, have also been observed (SWG 2016). The 

current abundance of the KB subpopulation was estimated at 357 bears in 2012–2014 (95% CI = 

221–493), with the available evidence suggesting this subpopulation has been stable or 

increasing since the 1990s.  
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Harvest assessment approach 

Following a review of research findings for BB and KB (SWG 2016), the JC provided the 

SWG with three potential alternatives for subpopulation Management Objectives: (1) maintain a 

relatively stable subpopulation size; (2) maintain a subpopulation size that achieves maximum 

sustainable yield, with respect to a potentially changing environmental carrying capacity; and (3) 

reduce subpopulation size by approximately 30% in 10–15 years. Management Objectives 1 and 

2 were considered potential objectives for both BB and KB, while an exploration of Management 

Objective 3 was associated with concerns about human-bear conflicts, and was requested for BB 

only. The JC requested that the SWG use the best-available information to provide advice on 

harvest management strategies, including levels of Total Allowable Harvest, under which these 

objectives could be achieved. The JC provided two levels of risk tolerance (“low” and 

“medium”) for not meeting each objective.  

In this report, we use the ecological and demographic data from SWG (2016) to evaluate 

a suite of potential harvest strategies for the BB and KB subpopulations. We evaluated all 

strategies against the specific management objectives and risk tolerances provided by the JC, and 

for each strategy we also recorded other metrics of biological or management interest (e.g., the 

probability of severely depleting adult male bears). We interpreted the JC’s request for advice on 

“low” and “medium” risk tolerance to mean a 90% and 70% chance of successfully meeting a 

management objective, respectively (alternatively, a 10% and 30% chance of failing to meet a 

management objective). 

We performed a quantitative risk assessment using a demographic model based on the 

life history of polar bears, which can include the effects of environmental change (Regehr et al. 

2017). The potential effects of future changes in sea-ice conditions on subpopulation size and 

status, and the resulting implications for harvest management, were incorporated in the analyses 

by using projected trends in carrying capacity (K, the capacity of the environment to support a 

given number of polar bears). In addition to this direct environmental effect, the model included 

a mechanistic submodel of Allee effects in the mating system, which limited reproduction under 

conditions of low subpopulation density or imbalanced numbers of adult females and males. We 

considered several different scenarios of the vital rates (e.g., rates of reproduction and survival) 

for each subpopulation due to uncertainty and potential bias in some demographic parameters 

from CR studies for both BB and KB.  
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For each combination of management objective and vital rates scenario, we evaluated 

multiple harvest strategies. Harvest strategies were defined in terms of the key elements that can 

be identified and adaptively managed by authorizing agencies, including harvest rate and harvest 

level (measured in number of independent bears [i.e., not including cubs-of-the-year or 

yearlings] removed annually), the sex and age composition of the harvest, the management 

interval, and the quality (i.e., level of statistical precision) of available survey data. We evaluated 

10, 15, and 20-year management intervals, defined as the number of years between successive 

changes to the harvest based on new data from subpopulation surveys. The management interval 

often used as an objective in Canada is 15 years. For BB and KB, the interval between the two 

most recent surveys was 18 years (1993 to 2011), although some management adjustments 

occurred during this period. Thus, a management interval of 15–20 years approximates current 

practices for these subpopulations. A management interval of 10 years was used to illustrate the 

effects of more frequent subpopulation surveys and management changes.  

Strategies using three harvest sex ratios (SR) were examined; SR = 1 (i.e., a 1:1 male-to-

female ratio) reflecting conditions where harvest is not selective for either males or females; SR 

= 2 reflecting the target ratio for sex-selective harvest currently implemented in Canada, and 

reflecting the reported sex ratio of the combined Canada-Greenland harvest 1998–2013; and, for 

each subpopulation, a ‘status quo’ sex ratio of the combined Canada-Greenland harvest 1998–

2013, based on results from recent genetic sampling (2011–2013) indicating that sex was 

incorrectly reported for a substantial number of harvested bears.  

All population projections assumed a state-dependent (i.e., dependent on current 

conditions) management approach, under which harvest levels did not remain constant in the 

future, but rather were updated according to the management interval. This means that the 

harvest strategies are tied directly to the timeline for reassessing subpopulation abundance and 

vital rates. 

 

Baffin Bay  

For the BB subpopulation, projections included a proxy for changes in K estimated from 

the number of ice-covered days per year in the BB region, which decline by approximately 5.5% 

per decade when projected forward in time. Use of a projected, declining trend in K is consistent 

with evidence for range contractions, and changes in nutritional condition and reproductive rates 
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of BB polar bears associated with sea-ice loss (SWG 2016). In the demographic model, we 

assumed that the current rates of survival and reproduction for BB polar bears reflect a 

subpopulation that is near its maximum net productivity level (MNPL, the subpopulation size 

that results in the greatest net annual increment in numbers resulting from reproduction minus 

losses due to natural mortality). In other words, we assumed that subpopulation size has been 

held below K due to harvest, and that BB bears are not currently experiencing strong density-

dependent suppression of survival or reproduction. Our projections did not include potential 

density-independent effects of sea-ice loss, which could reduce subpopulation resilience and 

capacity to support harvest in the future. If such changes occur rapidly compared to the schedule 

for future subpopulation surveys and harvest changes (as determined by the management 

interval), the risk of negative population outcomes would be higher than estimated from our 

projections.   

We evaluated three scenarios of the vital rates for the BB subpopulation. Each scenario 

used the same rates of reproduction (litter production rate and cub-of-the-year litter size) as 

calculated from the recent genetic CR data (2011–2013) but differed in the rates of survival. 

Scenario 1 used estimates of unharvested survival (S*) calculated from CR data for the period 

2011–2013. Scenario 2 used estimates of S* calculated from CR data for the period 1998–2010. 

Scenario 3 used estimates of S* representing the “average” rates seen amongst polar bear 

subpopulations; this provided a benchmark for comparison with other subpopulations. Of the 

three scenarios, we considered Scenario 2 a more likely representation of the status of the BB 

subpopulation, because it used data specific to BB and could reproduce plausible trends in 

subpopulation abundance and sex ratio that were consistent with the available scientific 

information and Traditional Ecological Knowledge. Additionally, unlike Scenario 1, estimates of 

S* for the period 1998–2010 were less susceptible to terminal bias (i.e., bias at the end of a time 

series of estimates, a common problem in CR studies).   

Scenario 2 resulted in an unharvested asymptotic population growth rate λ = 1.08 (SE = 

0.02) annually (i.e., 8% per year). For harvest strategies with SR = 1.25 (i.e., a 1.25:1 male-to-

female sex ratio in the harvest, the estimated status quo for BB based on genetic data), an age 

composition based on historic harvest data, and a 15-year management interval, present-day 

harvest rates of up to 4.3% and 5.7% were consistent with Management Objective 2 under “low” 

and “medium” risk tolerances, respectively. We focused on Management Objective 2 for the BB 
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subpopulation because this objective is more relevant to sustainable harvest when K is declining. 

Applying these harvest rates to the current subpopulation size of 2,826 would result in present-

day harvest levels of up to approximately 120 and 160 bears per year, depending on risk 

tolerance. Under this harvest strategy, the present-day harvest level would be maintained for a 

15-year period, at which point a new subpopulation survey should have been completed and the 

harvest should have been re-calculated. Over the next 35 years (approximately three polar bear 

generations), the harvest level would be expected to decline due to declining K with sea-ice loss, 

and possibly due to other demographic effects.  

The harvest strategies listed above (i.e., present-day harvest rates of up to 4.3% and 

5.7%) should be interpreted with caution for several reasons. First, strategies at the upper end of 

this range were associated with up to a 12% probability of severely depleting adult male bears, 

and up to a 4% probability of extirpation (i.e., reduction to a very small and non-viable 

subpopulation size) after 35 years. Second, recent subpopulation studies provided evidence for 

ecological effects of sea-ice loss that could, now or in the future, translate into negative 

demographic effects above and beyond the declining trend in K and Allee effects included in our 

model. Although there were several reasons to place less confidence in the relatively low 

estimates of S* from 2011–2013 (Scenario 1), it is possible that these lower estimates reflected, 

to some extent, a reduced capacity for subpopulation growth due to sea-ice loss. If that is the 

case, the risks of negative population outcomes could be much higher than estimated under 

Scenario 2. Our analyses did not make purposefully-conservative assumptions, and therefore 

could have understated the future effects of sea-ice loss. Such risks could be reduced through a 

precautionary approach to harvest management.  

Simulations for Management Objective 1 (maintaining a relatively stable subpopulation 

size) demonstrated that this objective likely cannot be achieved in the mid- to long-term due to 

projected declines in K, which would reduce subpopulation size regardless of harvest level. 

Simulations also suggested that Management Objective 3 for the BB subpopulation (reduction of 

30% in 10–15 years) is probably not feasible at the level of risk tolerance stated by the JC. The 

largest-possible subpopulation reduction that remained within risk tolerance (with some 

caveats—see main text) was approximately 25% over 15 years. This required a 1:1 male-to-

female sex ratio in the harvest, a 5-year management interval, and improved precision in the vital 

rates estimated from future subpopulation surveys. Under this harvest strategy, a present-day 
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harvest rate of 8.7% (approximately 245 bears per year) would be applied for a 5-year period, at 

which point a new subpopulation survey would have been completed and the harvest would be 

re-calculated. Over a 15-year period, the harvest level would need to decline rapidly as 

subpopulation size declined. Results suggested that attempting a managed subpopulation 

reduction without a near-optimal, state-dependent approach—for example, applying a fixed-level 

harvest of 245 bears per year without new subpopulation surveys—would be associated with 

high probabilities of severe male depletion and extirpation after 15 years. 

 

Kane Basin 

For the KB subpopulation, projections included interannual variation in K but no 

declining trend, reflecting evidence that decreasing sea ice in the multiyear-ice region of KB may 

have positive ecological effects in the near term (e.g., increased marine productivity as the 

system transitions to annual sea-ice dynamics; SWG 2016). Similar to BB, we assumed that the 

estimated rates of survival and reproduction for KB polar bears reflect a subpopulation that is 

currently functioning near MNPL.   

We evaluated two scenarios of the vital rates that differed in terms of estimated survival 

rates for young bears. Scenario 1 used time-constant estimates of S* calculated from CR data for 

the period 1992–2014; and Scenario 2 used similar estimates, but with mean values of S* for 

bears less than or equal to 2 years of age modified, to reproduce the estimated increase in 

subpopulation abundance from 224 bears in the 1990s to 357 bears in the 2010s (SWG 2016). 

We considered Scenario 2 a more likely representation of the status of the KB subpopulation, 

because under Scenario 1 the unmodified estimates of S* for bears age 2 years or less were low 

(range across age classes of 0.45–0.73) compared to other subpopulations of similar productivity, 

and had high statistical uncertainty due to sparse data (e.g., less than 4 cubs-of-the-year were 

sampled per year 2012–2014). Additionally, use of survival rates under Scenario 1 suggested a 

poor demographic status for the KB subpopulation, yielding an unharvested population growth 

rate of 1% per year (λ = 1.01 [SE = 0.04]). This low rate is inconsistent with multiple lines of 

evidence for the KB subpopulation, including estimated increases in subpopulation size since the 

1990s (SWG 2016), the likely positive trends in marine productivity in the region, recent 

information on nutritional condition and reproduction, and available Traditional Ecological 

Knowledge.  
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Scenario 2 for the KB subpopulation resulted in an unharvested population growth rate of 

5% per year (λ =1.05 [SE = 0.06]). For harvest strategies with a SR = 0.94 (the estimated status 

quo, based on genetic data), an age composition based on historic harvest data, and a 15-year 

management interval, present-day harvest rates up to 1.7% and 1.1% were consistent with 

Management Objectives 1 and 2, respectively, at the “medium” level of risk tolerance. At the 

“low” level of risk tolerance, Management Objectives 1 and 2 could not be met in the absence of 

harvest, due to variability in subpopulation trajectories resulting from high uncertainty in the 

vital rates. Applying harvest rates of 1.1% to 1.7% to the current subpopulation size of 357 

would result in a present-day harvest levels of up to approximately 4–6 bears per year. Under 

this harvest strategy, the present-day harvest level would be maintained for a 15-year period, at 

which point a new subpopulation survey would be completed and the harvest would be re-

calculated. Over the next 35 years, the harvest level would be expected to remain stable or 

increase due to stable or potentially increasing K. Harvest strategies at the upper end of this 

range were associated with up to a 17% probability of severely depleting adult male bears, and 

up to a 3% increased probability of extirpation compared to projections with no harvest, after 35 

years. 

Under Scenario 2, harvest rates that met management objectives for the KB 

subpopulation were lower than the observed harvest rate for the period 1998–2014, during which 

subpopulation size likely increased (SWG 2016). This inconsistency was due primarily to high 

statistical uncertainty in estimates of S* for bears age 2 years or less, a consequence of small 

sample sizes and relatively short study periods of research in KB. If alternative assumptions were 

made for uncertainty in estimates of S* for bears age 2 years or less (e.g., if the precision of these 

estimates was increased to match the precision of survival estimates for older bears), present-day 

harvest rates up to 2.2% to 2.8% (8–10 bears per year) were consistent with Management 

Objective 1 at a “medium” risk tolerance, when following a state-dependent approach with a 15-

year management interval.  

Considering all available ecological and demographic data for the KB subpopulation, 

present-day harvest rates up to approximately 2.8% (10 bears per year) seem unlikely to cause 

negative population outcomes under a state-dependent approach with effective monitoring. It is 

possible that the logistical challenges of studying the KB subpopulation may lead to continued 

difficulty in obtaining accurate and precise estimates of vital rates, despite increased survey 
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efforts. We therefore suggest developing a suite of ecological and demographic indicators to 

monitor subpopulation status, including accurate information on the level and composition of the 

harvest, marine productivity, habitat availability, reproductive rates, and estimates or indices of 

subpopulation size (via aerial survey or CR).  

 

Monitoring requirements and further research  

The results in this report are intended to help inform and guide subsequent decisions of 

the JC with respect to determining appropriate levels of harvest for these two shared 

subpopulations of polar bears. Both BB and KB are experiencing long-term trends in the extent, 

duration, and quality of sea-ice habitat. Our analyses identify harvest strategies that are designed 

to maintain subpopulation size near MNPL with respect to a changing K, and to limit negative 

effects of harvest on the probability of subpopulation persistence. All of the harvest strategies 

presented in this report require the existence of a coupled research-management system under 

which both the sustainable harvest rate and the harvest level are adjusted periodically, based on 

new scientific information from subpopulation surveys and other sources. For both BB and KB, 

our analyses demonstrate that shorter management intervals and more precise data can 

substantially reduce the risk of negative population outcomes associated with a given harvest 

strategy. A state-dependent management approach is an effective means of reducing the risk of 

overexploitation while maintaining opportunities for use. This is especially important if sea-ice 

loss is currently having ecological effects on polar bears that may signal negative demographic 

effects in the future (BB); or if a less-conservative harvest strategy is selected when the currently 

available estimates of vital rates have high uncertainty and appear inconsistent with other lines of 

evidence (KB). Harvest strategies that appear sustainable over the next three polar bear 

generations under a state-dependent approach could lead to subpopulation depletion or 

extirpation under a fixed-level approach that removes the same number of bears annually without 

reassessment. 

In addition to regular, periodic surveys to estimate subpopulation size and vital rates, we 

recommend more frequent but less intensive monitoring of sea-ice habitat, movement and habitat 

use, nutritional condition, and reproductive indices based on research and harvest data, and 

Traditional Ecological Knowledge. Continuous genetic monitoring of the harvest to detect 

recoveries of genetically marked animals, and improving the accuracy of harvest reporting, are 
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also needed. Systematic analysis of all harvest data, especially for the BB subpopulation, could 

provide complimentary estimates of harvest rate and other demographic parameters. During the 

intervening years between scheduled subpopulation surveys, these monitoring programs may 

provide a mechanism to detect sudden shifts in environmental conditions or subpopulation status 

that might necessitate a change in harvest strategy (e.g., a shortening of the management 

interval). Also, these monitoring programs will provide information essential for designing and 

implementing periodic subpopulation assessments. We suggest that future subpopulation 

assessment protocols consider the use of integrated population models, which can analyze data 

from multiple sources (e.g., different types of research, harvest, and Traditional Ecological 

Knowledge) in a unified framework, potentially leading to improved assessments of overall 

subpopulation status.  

For the BB and KB subpopulations, the harvest sex ratios in recent decades, based on 

genetic sex determination, indicate weaker selection for males compared to the reported sex ratio 

and the management goal of a 2:1 male-to-female ratio. In most of our simulations, a harvest 

strategy with SR = 2 (instead of the lower status quo values of SR) did not result in higher 

harvest rates that met management objectives. This is because, for both subpopulations, 

estimates of S* were lower for males than females, and females currently comprise 

approximately 70% of independent bears. These factors, if combined with a strongly male-

selective harvest, often led to the severe depletion of adult males in our simulations, which had 

negative effects on reproduction and increased the probability of extirpation due to Allee effects 

in the mating system. These findings do not provide evidence against the conservation value of 

sex-selective harvest for polar bears. Rather, they indicate that depletion of males may be an 

emerging conservation concern for the BB and KB subpopulations. Given the current regulation 

of harvest in Canada (Nunavut) based on a sex 2:1 male-to-female sex ratio, it is important to 

further investigate this issue and particularly the lower estimates of survival for male bears. Our 

finding of skewed sex ratios in both subpopulations, despite an overall harvest that may not be 

strongly selective, suggests that these lower survival rates have a biological basis. Concurrent 

monitoring of the sex ratio in the harvest, the sex and age composition of the subpopulation, and 

the litter production rate, are necessary to determine the extent to which reduction of male bears 

could negatively affect the productivity of the BB and KB subpopulations. 
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Introduction 

Background on the Joint Commission, and the Baffin Bay and Kane Basin subpopulation 

reassessments 

 The Canada-Greenland Joint Commission on Polar Bear (JC) was established with the 

signing of a “Memorandum of Understanding between the Government of Canada, the 

Government of Nunavut, and the Government of Greenland for the Conservation and 

Management of Polar Bear Populations” on 30 October 2009 (Anon. 2009). The primary 

objectives of this Memorandum of Understanding are to: “(1) to manage polar bear within the 

Kane Basin and Baffin Bay management units in order to ensure their conservation and 

sustainable management into the future, and, (2) establish an effective system of management 

which will include adhering to the principles of conservation”. The JC subsequently established a 

Scientific Working Group (SWG) to provide scientific advice and recommendations with respect 

to the conservation and management of the Baffin Bay (BB) and Kane Basin (KB) polar bear 

subpopulations. In 2010, the JC tasked the SWG with using the best-available scientific 

information to: 

(1) Propose Total Allowable Harvest (TAH) levels for the Kane Basin and Baffin Bay 

subpopulations. 

(2) Provide science advice to the Joint Commission for monitoring the effects of habitat 

changes on polar bears. 

 The SWG reviewed the available scientific information and reported (SWG 2010) that for 

both subpopulations the most recent status updates indicated that 100% of population viability 

analysis (PVA) simulations, using current harvest levels, resulted in subpopulation declines after 

10 years (PBSG 2010). The SWG also noted that PVA simulations are typically run 10–15 years 

beyond the point in time that abundance and vital rates were estimated. Given that the most 

recent estimates of demographic parameters for the BB and KB subpopulations were from the 

mid- to late 1990s (Taylor et al. 2005, 2008a; PBSG 2010), the SWG concluded that the 

available information was outdated and it was unknown whether demographic parameters had 

changed over time. These factors, in combination with the large-scale environmental changes in 

BB during recent decades, led the SWG to recommend that a high priority be given to 
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developing new estimates of subpopulation abundance, subpopulation delineation, and vital rates 

(SWG 2010). 

 As a result, the JC tasked the SWG with evaluating various methods for assessing the 

number of polar bears in BB and KB (JC 2010). The SWG considered the pros and cons of 

physical CR, genetic CR, and aerial surveys; and concluded that physical CR was the preferred 

method to obtain robust ecological and demographic data (SWG 2011). However, due to the lack 

of support for physical CR among Inuit in Nunavut, and concerns that variability in sea-ice 

conditions can make it difficult to obtain accurate abundance estimates from aerial surveys, the 

JC recommended development of a 3-year research program based on genetic CR methods using 

biopsy darting. Following this recommendation, field research programs were conducted 2011–

2014 as part of comprehensive reassessments of the BB and KB polar bear subpopulations (SWG 

2016). 

 

Estimation of sustainable harvest for polar bears 

 Historically, polar bear management was based on the assumption that sea-ice habitat 

was relatively stable over the long term and that, once subpopulation size (N) had been 

estimated, conservation could be achieved through harvest management (SWG 2011). 

Sustainable harvest, therefore, would depend on estimates of abundance and vital rates (e.g., 

probabilities of survival and reproduction), the harvest level, and the sex and age composition of 

the harvest. Early modeling suggested that sex-selective harvest at a rate of 4.5% of total 

population size, was sustainable for polar bears under optimal conditions (Taylor et al. 1987a, b). 

Recently, Regehr et al. (2015, 2017) also found that a 4.5% harvest rate, with a 2:1 male-to-

female sex ratio in the harvest, was reasonable under many biological and management 

conditions, provided that population surveys were conducted periodically and harvest levels were 

adjusted when necessary. Regehr et al. (2017) also noted that sustainable harvest rates could be 

lower or higher than 4.5% under some conditions. This finding is consistent with recent studies 

that have provided a better understanding of how vital rates vary across subpopulations and 

change over time (e.g., Amstrup et al. 2001; Taylor et al. 2002, 2005, 2006; PBSG 2006, 2010; 

Regehr et al. 2007, 2010). 

 In recent decades, management and conservation of polar bears, particularly in Canada, 

have been informed by predictive modeling that incorporates subpopulation-specific vital rates. 



Baffin Bay and Kane Basin Harvest Assessment Final Report to the Joint Commission (2017) 
 

13 | P a g e  

The development of RISKMAN (Taylor et al. 2001), a stochastic population model, made it 

possible to perform detailed harvest assessments for multiple subpopulations, providing 

managers with a better understanding of the risk associated with different harvest strategies 

(Taylor et al. 2002, 2005, 2006, 2008a). However, RISKMAN was primarily intended to inform 

near-term management under stable conditions. It did not include a detailed model of density 

dependence, allow for future changes in environmental conditions or demographic parameters, or 

provide a way to directly assess how the frequency and intensity of subpopulation surveys can 

affect the risk of different management actions.  

 At present, the primary threat to polar bears throughout their range is the reduction in sea-

ice habitat area, duration, and quality as a consequence of climate change (Derocher et al. 2004; 

Laidre et al. 2008, 2015; Wiig et al. 2015; Atwood et al. 2016). In 2009, the Polar Bear Range 

States (2015) agreed that the impacts of climate change constitute the most important threat to 

polar bear conservation and recommended that best management practices should “Consider the 

cumulative effects of climate change and human activities on polar bear subpopulations when 

making management decisions using tools such as predictive modeling”. Hence, in many 

situations sound harvest management will no longer rely solely on an estimate of abundance and 

a fixed annual harvest rate (e.g., 4.5%), or on predictive modeling that assumes stable conditions. 

The current demographic status of the world’s 19 polar bear subpopulations is variable (PBSG 

2017) due to ecological variation, different rates of habitat change, and the influence of 

anthropogenic stressors (Vongraven and Peacock 2011; Atwood et al. 2016). Furthermore, 

although national and international agreements provide common standards for polar bear 

conservation, near-term management goals can vary across jurisdictions as a function of 

environmental, social, and other factors (Polar Bear Range States 2015). In light of this 

variability and the primary threat of habitat loss due to climate change, there is a need for 

improved risk assessment tools that can incorporate a broad range of environmental and direct 

human-caused factors to address specific management goals. 
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Harvest assessment for the Baffin Bay and Kane Basin subpopulations 

 Recent reassessments of the BB and KB polar bear subpopulations provided the 

ecological and demographic data necessary for harvest risk assessments (SWG 2016). However, 

the SWG was unable to provide harvest options as part of its final report because the JC had not 

provided specific guidance on (i) management objectives for each subpopulation, (ii) the 

expected frequency and intensity of future monitoring, and (iii) risk tolerance with respect to the 

effects of human-caused removals. Subsequently, the JC requested that the SWG propose TAH 

levels for both the BB and KB subpopulations based on the abundance estimates in SWG (2016), 

historical harvest levels, an expected 7–15 year frequency between subpopulation surveys, and 

that TAH be evaluated relative to the following management objectives (JC 2016): 

1a) Maintaining a stable subpopulation at the current subpopulation estimate, with a low 

tolerance for the risk of declines below 90% of this level. 

1b) Maintaining a stable subpopulation at the current subpopulation estimate, with a 

medium tolerance for the risk of declines below 90% of this level. 

2a) A TAH that would ensure a maximum sustainable yield, with a low level of risk 

tolerance for the subpopulation declining below this level. 

2b) A TAH that would ensure a maximum sustainable yield, with a medium level of risk 

tolerance for the subpopulation declining below this level. 

Lacking further guidance, the SWG interpreted “low” and “medium” tolerance for the risk of a 

subpopulation decline below a specified level, to mean requiring a 90% or 70% probability of 

maintaining a subpopulation size above the specified level, respectively.  

 In addition to the management objectives above, the JC subsequently requested that the 

SWG explore possible methods to achieve a managed reduction of the BB subpopulation, from 

the current estimate of 2,826 animals (SWG 2016) to approximately 2,000 animals, over a 10–15 

year period (JC 2017). Possible reasons for considering a managed reduction could be to reduce 

human-bear conflicts in circumstances where densities of polar bears have increased or 

nutritionally-stressed bears are increasingly coming in close proximity to humans, which may 

occur as sea-ice loss continues (Wilder et al. 2017). 

 In this report, we used recent estimates of abundance and vital rates (SWG 2016) in a 

matrix-based demographic model (adapted from Regehr et al. 2015, 2017) to evaluate TAH for 

the BB and KB polar bear subpopulations, relative to management objectives provided by the JC. 
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The demographic model is based on the life history of polar bears, and provides several 

advantages compared to other predictive modeling tools, including (i) an ability to incorporate 

the effects of a changing habitat (e.g., through a variable or declining K), (ii) a species-specific 

model of density dependence, which is important when evaluating the combined effects of 

habitat change and human-caused removals; (iii) an integrated model of Allee effects in the 

mating system, based on the work of Molnár et al. (2008, 2014); and (iv) a direct link between 

research and management actions, so that harvest strategies can be evaluated in light of the 

frequency and intensity of future subpopulation surveys.  

 For each subpopulation, we used data from SWG (2016) to develop alternative scenarios 

of the vital rates, which either represented plausible conditions for the current status of the 

subpopulation or provided a useful benchmark (e.g., for comparison with a subpopulation of 

“average” productivity). We considered multiple scenarios because estimates of demographic 

parameters from CR studies for polar bears can include uncertainty that is not reflected in the 

statistical distributions of the parameters, as well as multiple types of bias (Regehr et al. 2009; 

Chapter 3 in SWG 2016). To obtain robust results from predictive modeling it is important that 

demographic parameters be evaluated for biological realism and within the framework of other 

available information (e.g., Skalski et al. 2012).    

 Our analyses focused on harvest management strategies that were defined in terms of the 

harvest rate (percentage of the total subpopulation size removed per year), harvest level 

(measured in number of independent bears removed per year), sex and age composition of 

removed animals, management interval (number of years between successive subpopulation 

surveys and management changes), and the precision of demographic parameters estimated from 

subpopulation surveys. All harvest strategies were evaluated using a state-dependent (i.e., 

dependent on current conditions; Lyons et al. 2008) management approach, under which both the 

harvest rate and harvest level were updated periodically according to the management interval. 

State-dependent management has many features in common with the “adaptive management” 

approach recommended by the Range States (Polar Bear Range States 2015). It also has many 

advantages over other management approaches (e.g., a fixed-level harvest), both in terms of 

mitigating harvest risks and making it possible to maximize long-term yield (Regehr et al. 2017). 

Because our analyses incorporated multiple types of variability (e.g., statistical uncertainty and 
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environmental variation), results are presented in a probabilistic manner that is consistent with 

management objectives provided by the JC.  

 The final results of this analysis are a series of potential harvest strategies for the BB and 

KB subpopulations. It is intended that these results help inform and guide subsequent decisions 

of the JC with respect to its determination of appropriate levels of harvest for these two shared 

subpopulations of polar bears. 

 

Methods 

Demographic and management model 

 We performed population projections using the matrix-based demographic model 

described in Regehr et al. (2015, 2017). The demographic model is based on the polar bear life 

cycle (Figure 1), with six female stages representing age and reproductive status, and four male 

stages representing age (Hunter et al. 2010; Regehr et al. 2010). Transitions between stages are 

defined by vital rates relative to a post-breeding census from the autumn or spring of year t to the 

autumn or spring of year t + 1, for the BB and KB subpopulations, respectively. Projections were 

referenced to independent bears (i.e., bears age ≥ 2 years that are not members of a family group) 

because cubs-of-the-year (C0) and yearlings (C1) are not included as individuals in the life cycle, 

but rather are used to define the reproductive status of an adult female (adult females with C0, 

stage 5; adult females with C1, stage 6). Projections were referenced to individual 

subpopulations and were not designed to consider immigration, emigration, or metapopulation 

dynamics. Unless otherwise noted, details of the projection model and its application follow 

from Regehr et al. (2015, 2017). A list of abbreviations, acronyms, symbols, and definitions is 

provided at the end of this report.  

 

Density dependence  

Including density dependence is necessary to evaluate the combined effects of habitat 

change and human-caused removals (Guthery and Shaw 2013). We constructed density-

dependent curves of the vital rates (sample curves shown in Figure BB1) using methods and 

shape parameters described in Appendix S2 of Regehr et al. (2017). We assumed that available 
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vital rates for the BB and KB subpopulations (section Vital rates) corresponded to an estimated 

subpopulation size at maximum net productivity level (MNPL; section Abbreviations, Acronyms 

etc.) under asymptotic population dynamics.  

The matrix model was used to project hypothetical polar bear subpopulations forward 

over annual time steps starting at t = 1 (section Population projections). At each time step, 

density was determined as the sum of metabolic energetic equivalent (mee) values in the 

subpopulation, divided by carrying capacity (K; section Carrying capacity and environmental 

variation) expressed as energetic equivalents (Regehr et al. 2017). Under this approach, larger 

bears (e.g., adult males) occupied more energetic space and therefore had a greater density effect 

than smaller bears (e.g., subadult females). Regehr et al. (2017) found that individual variation in 

energetic requirements can influence population productivity because a given environment can 

generally support more females than males. We used mee values from Regehr et al. (2017) that 

were calculated from data on body mass and diet for the Chukchi Sea and Southern Beaufort Sea 

subpopulations (Table S2 in Regehr et al. 2017) because equivalent data were not available for 

the BB and KB subpopulations.  

The demographic model incorporated a mechanistic submodel for Allee effects in the 

mating system, following the recommendation of Regehr et al. (2017). Molnár et al. (2008, 

2014) proposed that, under some conditions, reproductive rates for polar bears may decline due 

to limitations in mate finding. Such declines can occur if adult males are depleted relative to 

adult females, which is possible under sex-selective harvest (McLoughlin et al. 2005; Taylor et 

al. 2008b); or if polar bear densities are low during the breeding season. Because Allee effects in 

the BB and KB subpopulations have not been studied directly, the submodel for Allee effects 

was based on equation 3 from Molnár et al. (2014) with input parameters for a “generic 

population”. For both the BB and KB subpopulations, we calibrated the Allee submodel by 

calculating the degree of mating season aggregation that would result in a litter production rate 

equal to the estimated value from recent subpopulation studies (section Vital rates). This ensured 

that reproductive rates at t = 1 were equivalent to observed values. In subsequent years of 

projections (t = 2, 3, …), the estimate of litter production rate from the Allee submodel was 

standardized by dividing by its value at t = 1. The resulting value was constrained to the interval 

[0,1] and used to modify the value of litter production rate (β4) obtained from the density-

dependent curves of the vital rates. Under this approach, a subpopulation that did not experience 
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male depletion or significant reductions in abundance, did not experience declines in 

reproduction due to Allee effects.  

For the BB subpopulation, we used an on-ice area of 656,000 km2 (Stern and Laidre 

2016) to calculate the densities of female and male bears available to breed at each time step 

(stages 4 and 10, respectively), which are inputs to the Allee submodel (Molnár et al. 2014). A 

mating season aggregation parameter of 0.43 resulted in a litter production rate of 0.93, as 

estimated from 2011–2013 field data (section Results). For the KB subpopulation, we used an 

on-ice area of 53,000 km2 (Stern and Laidre 2016). We set the mating season aggregation 

parameter to 1.0 because the Allee submodel could produce a litter production rate of 0.71, as 

estimated from 2012–2014 field data (section Results), without a reduction in the effective 

subpopulation area. 

 

Carrying capacity and environmental variation 

Modeling wildlife populations under climate change required consideration of the effects 

of variability and trends in the environment (Boyce et al. 2006). We derived a proxy metric to 

represent potential changes in K using satellite data of sea-ice extent. We calculated separate 

metrics for the BB and KB subpopulations, based on the number of ice-covered days per year 

within the management boundary for each subpopulation (Chapters 4 and 9 in SWG 2016). We 

used the number of ice-covered days because it integrates spatial and temporal variation in sea-

ice availability in a manner that is biologically relevant to polar bears (Stern and Laidre 2016). 

For each subpopulation, we fit a linear model to the time series of ice-covered days from 1979–

2014. We then used the fitted model to project correlated values of ice-covered days forward in 

time, using methods of Gelman and Hill (2007) to simulate uncertainty in the slope coefficient 

and residual standard errors. Finally, we standardized the metric by dividing the projected values 

of ice-covered days at year t = 1, 2, … k, by the fitted value at year t = 1. This resulted in a 

dimensionless metric (κ) representing proportional changes in K. During population projections, 

carrying capacity at year t, calculated as K(t) = K(t = 1) × κ(t), operated on vital rates through the 

density-dependent relationships.  

The number of ice-covered days in the BB management area declined over the period 

1979–2014 (slope = -1.22 days/year, SE = 0.23, P < 0.001), from fitted values of 245 days in 

1979 to 203 days in 2014. This is a decline of approximately 5.5% per decade. During harvest 
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assessment analyses for the BB subpopulation, projected values of κ were based on the estimated 

slope coefficient due to evidence for the effects of sea-ice loss on subpopulation ecology (SWG 

2016). Therefore all population projections for BB included a proxy for K that varied from year-

to-year, and declined by approximately 23% over three polar bear generations (section 

Population projections).  

The number of ice-covered days in the KB management area declined over the period 

1979–2014 (slope = -1.24 days/year, SE = 0.41, P < 0.01), from fitted values of 253 days in 1979 

to 210 days in 2014. This is a decline of approximately 5.3% per decade. During harvest 

assessment analyses for the KB subpopulation, projected values of κ were based on a slope 

coefficient of 0, due to evidence for potential increases in productivity of the KB subpopulation 

associated with a transition from a multi-year ice region to seasonal ice conditions (SWG 2016). 

Therefore all population projections for KB included a proxy for K that varied from year-to-year, 

but remained stable over three polar bear generations (section Population projections). In other 

words, unlike for the BB subpopulation, projections for KB did not reflect the potential effects of 

long-term, decreasing trends in sea-ice cover.  

In addition to density-dependent variation in the vital rates resulting from variation in K, 

we subjectively included additional density-independent variation as 25% of total uncertainty 

(i.e., temporal variation plus sampling uncertainty) in estimated vital rates, following the 

example of Taylor et al. (2002). Density-independent variation was implemented using the 

correlation matrix from Regehr et al. (2010), because that analysis estimated vital rates with a 

multistate CR model that was based on a life cycle graph similar to Figure 1. 

 

Harvest and simulated population assessments 

During population projections, harvest was implemented annually at a calculated level. 

Throughout our analyses the harvest level refers to the number of independent bears removed 

from a subpopulation by humans (i.e., the combination of subsistence harvest, sport hunting, 

removals of problem bears, defense kills, etc.). The calculated harvest level was updated every 

several years, according to the management interval (section Abbreviations, Acronyms etc.). To 

account for selectivity in human-caused removals and individual variation in the reproductive 

value of polar bears, harvest was implemented using stage-specific harvest vulnerability vectors. 

For females and males separately, we estimated harvest vulnerability by comparing the age 
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structure of the harvest to the estimated age structure of the subpopulation (section Population 

initialization). For the BB subpopulation, age structure of the harvest in Canada was estimated 

using data from 805 bears for which age had been determined from counts of cementum annuli 

(Christensen-Dalsgaard et al. 2010) or from individual capture histories, during the period 1998–

2013. Because age determination for polar bears is referenced to the spring, whereas stage 

transitions in the life cycle graph were referenced to autumn for BB, we subtracted 1 from the 

known age of bears harvested January through August. For example, a 4-year-old male bear in 

the spring of calendar year t remained a member of stage 8 (3 years) until it transitioned to stage 

9 (4 years) in the autumn of year t. Age structure of the Greenland harvest was determined from 

212 bears taken during the period 2012–2015. We assumed this sample was representative of the 

Greenlandic harvest because cementum ages were not available for other years. Overall harvest 

vulnerability vectors were derived by averaging the Canadian and Greenlandic vectors, weighted 

by the total reported harvest in each country 1998–2014 (Table 8.6 in SWG 2016). The resulting 

harvest vulnerability vectors for females (stages 1–6) and males (stages 7–10) were [0.93, 1.17, 

1.10, 1.00, 0.00, 0.00] and [1.25, 1.34, 1.01, 1.00], respectively. During population projections 

for KB, we used the same harvest vulnerability vectors as were estimated for BB, because 

harvest data for the KB subpopulation were sparse and the two subpopulations are subject to 

similar harvest management regimes (Chapter 8 in SWG 2016). 

At the beginning of each population projection (i.e., t = 1), the harvest level was 

calculated using the mean values of the vital rates and N as estimated from recent subpopulation 

surveys (section State-dependent management approach ). This ensured that starting harvest 

levels reflected current data for the BB and KB subpopulations. At the beginning of each 

subsequent management interval, the harvest level was calculated using estimates of vital rates 

and N derived from simulated population assessments. Conceptually, the simulated population 

assessments represent new subpopulation surveys, performed in the future, to obtain updated 

data that can be used for management. The simulated population assessments included sampling 

uncertainty, for which the level and correlation structure were based on recent CR studies (SWG 

2016). In other words, each successive simulated population assessment produced demographic 

parameters of similar precision to the most recent genetic CR studies for the BB and KB 

subpopulations (SWG 2016). Exceptions were made for some simulations, which included a 

modified level of precision in simulated population assessments (section Population projections). 
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This allowed us to evaluate the effects on harvest management of future survey methods that 

provide more precise or less precise estimates of N and the vital rates (section Simulations).  

  

State-dependent management approach 

We used a state-dependent management approach to calculate harvest level (Regehr et al. 

2017) as a function of N and the intrinsic population growth rate (r, which depends on the vital 

rates) as follows: 

 

 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) = 𝐹𝐹𝑂𝑂 × 𝑟̃𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡) × 0.5 × 𝑁𝑁�(𝑡𝑡) [eqn 1] 

and 

 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) = 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) × 𝑆𝑆𝑆𝑆 [eqn 2] 

 

where  H female is the number of females that can be removed annually; 

FO  is a factor that directly adjusts the harvest rate to reflect management 

objectives and the risk tolerance of managers with respect to harvest; 

𝑟̃𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is an estimate of the intrinsic population growth rate from subpopulation 

studies, referenced to population density at MNPL and selected as the 50th 

percentile of its sampling distribution;  

0.5  is a factor to calculate female removals assuming an equal sex ratio in the 

subpopulation, which serves to protect against excessive female removals 

when the male segment of a subpopulation is depleted; 

𝑁𝑁�  is an estimate of N from subpopulation studies and selected as the 50th 

percentile of its sampling distribution; 

H male is the number of males that can be removed annually; and 

SR  is a factor that specifies the male-to-female ratio in removals. 

 

To implement this state-dependent approach, managers must choose input values of the 

parameters FO and SR. The parameter FO directly influences the harvest rate: higher values lead 
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to a higher harvest, which can eventually increase the risk of negative population outcomes (e.g., 

depletion). The parameter SR determines the sex ratio of the harvest.  

In our analyses, values of FO and SR remain constant for the duration of population 

projections, so that each harvest strategy had a consistent definition. In practice these parameters 

could be adjusted over time in response to changing biological or management conditions. In 

contrast, in our analyses the biological parameters in equations 1 and 2 (i.e., the true values of 

rMNPL and N, as well as their estimated values 𝑟̃𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑁𝑁�) varied during population projections 

(e.g., N declined over time due to declining K). The notation for time (t) in equations 1 and 2 

indicates that the estimated parameters 𝑟̃𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑁𝑁� are updated periodically, as determined by 

the management interval. Equations 1 and 2 are written in terms of harvest level for convenience; 

the harvest rate (in this instance, referenced to the number of independent bears in the 

subpopulation) for females is the right side of equation 1 before multiplying by 𝑁𝑁�.  

 

Management Objectives 

We evaluated harvest relative to three management objectives provided by the JC 

(section Introduction; Table BB1).  

Management Objective 1 was to maintain N above 90% of its starting value. Although we 

report results for this objective for both subpopulations, it was of limited value for BB because 

our analyses included projected trends in K that made it unlikely to meet Management Objective 

1 even with no harvest (section Carrying capacity and environmental variation).  

For Management Objective 2, we interpreted the language “…ensure a maximum 

sustainable yield” (JC 2016) as a desire to maintain a subpopulation size above MNPL relative to 

a potentially changing K (Management Objective 2 in Table BB1). To evaluate this objective we 

used a single value of MNPL corresponding to a subpopulation density (N/K) = 0.70, which is 

similar to the mean estimate of density at MNPL across a wide range of vital rates (Regehr et al. 

2017). Using a single value of MNPL across all population projections, had the benefit of 

providing a consistent point of reference for management decisions.  

Management Objective 3 was specific to BB, and reflected the goal of a managed 

reduction in total subpopulation size to 2,000 bears in 10–15 years. This corresponds to a 

reduction of approximately 30% relative to the mean estimate of 2,826 for the period 2012–2013 
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(SWG 2016). In Table BB1, we express this objective as a desire to maintain a subpopulation 

size above 70% of its starting value (Table BB1), noting that Joint Commission (2017) indicated 

that Management Objective 3 should also consider “…not achieving an abundance below the 

level that would produce maximum sustainable yield” as well as “…a potentially changing 

environmental carrying capacity”. We interpret this as meaning that, to achieve Management 

Objective 3, the conditions for both Management Objectives 2 and 3 must be met.  

In Table BB1 there are two versions of each Management Objective, reflecting “low” and 

“medium” levels of risk tolerance for not meeting the objective (section Introduction). We 

interpreted Management Objectives 1 and 2 as mid- to long-term objectives, and therefore 

evaluated them at the final time step t = 36 years, corresponding to approximately three polar 

bear generations in the future (section Population projections). Management Objective 3 was a 

short-term objective and was evaluated at t = 15. When reporting which harvest strategies met 

the management objectives, we included an additional condition requiring that the increased 

probability of a subpopulation being extirpated (Pextirpation) due to harvest, compared to an 

identical projection without harvest, not to exceed 0.05. In other words, this condition sought to 

ensure that harvest alone would not result in more than a 1-in-20 chance of extirpation. Applying 

this condition and Management Objective 2 together, over a sufficiently long time period, is 

consistent with the definition of “sustainable harvest” suggested by Regehr et al. (2107). Harvest 

strategies that met Management Objectives 1 and 2 generally were not associated with a high 

probability of extirpation, which meant that the condition on Pextirpation had only a minor influence 

on the results. The exception was for some harvest strategies associated with Management 

Objective 3 (section Results).   

 

Vital rates 

 We parameterized the matrix-based projection model using estimates of vital rates for the 

BB and KB subpopulations from recent genetic CR studies (SWG 2016). The published vital 

rates were adapted to the matrix-based projection model using methods described in Appendix 

S1 of Regehr et al. (2017).  

 For both the BB and KB subpopulations, litter production rate (equivalent to the 

parameter β4 in Figure 1, for bears age ≥ 5 years) was not reported in SWG (2016) due to 

uncertainty in the age of bears that were observed from the air but not physically captured, and 



Baffin Bay and Kane Basin Harvest Assessment Final Report to the Joint Commission (2017) 
 

24 | P a g e  

therefore did not provide a tooth for subsequent age determination. Also, there was uncertainty in 

the sex of some animals for which genetic samples were not obtained. We used simulation 

methods to estimate reproductive parameters for each subpopulation in a manner that accounted 

for this uncertainty. First, we created 10,000 bootstrap datasets by resampling, with replacement, 

from the 2010s field data. In each bootstrap dataset, animals with known reproductive status (i.e., 

adult females with dependent young), or of known age (from counts of cementum annuli) and 

known sex (from genetic analysis of tissue samples), were deterministically assigned to a life 

cycle stage. For animals of known sex but unknown age, a value for numeric age was sampled 

from a multinomial distribution created for bears of the same field-estimated age class. The 

multinomial distribution used probabilities calculated from Table B3 in SWG (2016), which 

compares sex and age classes as estimated from the air, with known sex and age for bears 

observed in BB and KB during the period 2011–2014. For animals of unknown sex, a similar 

procedure was used that considered both sex and age, with probabilities calculated from Table 

B2 in SWG (2016). For each bootstrap dataset, we estimated mean litter production rate as the 

number of females with C0 (stage 5) in year t + 1 divided by the product of adult female survival 

and the number of females available to breed (stage 4) in year t, taking into account annual 

sample sizes (Taylor et al. 1987b). The number of bears in each stage was calculated directly 

from the field data because CR modeling did not identify differences in recapture probabilities 

among female bears (Chapters 5 and 10 in SWG 2016). Standard error in the reproductive 

parameters was estimated as the standard deviation of point estimates from the 10,000 bootstrap 

datasets.   

 

Baffin Bay 

 During recent subpopulation studies for BB, there was uncertainty and concern about bias 

in estimates of survival probability, particularly during the period 2011–2013 (Chapter 5 in SWG 

2016). Therefore, we considered three alternative scenarios for the vital rates of BB polar bears, 

which represented a potential range of conditions (i.e., from low to high) for the current status of 

the subpopulation. We performed population projections using the vital rates for all three 

scenarios (section Simulations) and attempt to provide guidance about which results are most 

applicable to management.   

 



Baffin Bay and Kane Basin Harvest Assessment Final Report to the Joint Commission (2017) 
 

25 | P a g e  

Reproductive parameters 

 All three scenarios of the vital rates for the BB subpopulation used reproductive 

parameters estimated from CR studies 2011–2013, based on field data described in Chapter 6 of 

SWG (2016), and using the methods described above. To calculate litter production rate we used 

S = 0.95, the estimate of total survival for females ≥ 2 years during the period 1998–2010 (Table 

5.8 in SWG 2016). The resulting litter production rate for bears age ≥ 5 years (β4) was 0.93, 

which suggests relatively high mating success and cub production. Other reproductive 

parameters were similar to values presented in Chapter 6 of SWG (2016), with minor differences 

in the point estimates and variances due to the simulation methods used here (Table BB1). The 

parameter β4 is the most important breeding parameter in the matrix-based projection model 

(Hunter et al 2007). Due to the lack of age data for most observations in BB during the period 

2011–2013, we were unable to estimate litter production rate for 4-year-old bears (β3) with an 

acceptable degree of accuracy, and therefore used the value 0.10 for this parameter from Taylor 

et al. 2005. We set the value for β5 to 0, because females that are observed with C0 in the autumn 

of year t are not able to subsequently lose their cubs, re-breed, and be observed with a new litter 

of C0 in year t + 1.  

 

Scenarios for survival 

 We evaluated three scenarios for survival rates of BB polar bears, representing alternative 

hypotheses for the current status of the subpopulation. Scenario 1 used estimates of natural (i.e., 

unharvested) survival (S*) for the period 2011–2013 (page 261 in SWG 2016). Scenario 1 

represents the hypothesis that estimates of S* for 2011–2013 are accurate, in contrast to the 

higher estimates for BB polar bears during the period 1998–2010 and the higher mean estimates 

for most other subpopulations (Appendix S1 in Regehr et al. 2017). This scenario suggests a 

relatively poor status for the BB subpopulation (section Results).  

 For Scenario 2, we calculated S* from estimates of total survival (i.e., including harvest) 

and harvest reporting probabilities for the period 1998–2010 (Table 5.8 in SWG 2016), using the 

equations for natural survival on page 257 of SWG (2016). Scenario 2 represents the hypothesis 

that the 1998–2010 estimates of S* for BB are accurate, whereas the 2011–2013 estimates were 

negatively biased. SWG (2016) proposed that such bias may occur due to heterogeneity in 
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recapture probability, non-random patterns of temporary emigration, of other factors. Terminal 

bias (i.e., bias at the end of a time series) in survival estimates commonly occurs in CR studies of 

long-lived, mobile animals (Peñaloza et al. 2014). Similar to our rationale in using Scenario 2, 

other studies have elected not to use terminal estimates S* in population viability analyses due to 

concerns about bias (e.g., Langtimm 2009).  

 Scenario 3 used hypothetical survival rates representing an “average” polar bear 

subpopulation. To derive mean estimates of S* for Scenario 3, we started with the estimates of 

S* from Scenario 1 for female bears, and set estimates of S* for male bears equal to 99% of these 

values. This reflects observations from other case studies that natural survival is generally similar 

for females and males (Table S1 in Regehr et al. 2017). Next, we increased all estimates of S* in 

equal increments, until they produced an intrinsic population growth rate (r) of 0.05 under 

deterministic and asymptotic population dynamics. The value r = 0.05 is the mean estimate 

across case studies for polar bears as reviewed in Appendix S2 of Regehr et al. (2017). For 

Scenario 3, we used an amount of sampling uncertainty equivalent to data precision level 3 in 

Regehr et al. (2017). This represents the 50th percentile of estimated sampling uncertainty in case 

studies for polar bears, and is therefore typical of recent studies for the species (Appendix S4 in 

Regehr et al. 2017). Scenario 3 provides a benchmark for comparison with scenarios 1 and 2; it 

does not represent a data-based hypothesis for the current status of the BB subpopulation.  

 Estimates of S* corresponding to the three scenarios of the vital rates are presented in 

Table BB3. For each scenario, we used the matrix-based projection model to calculate basic 

demographic parameters under asymptotic population dynamics (Table BB4). These parameters 

provide a general sense of the capacity for subpopulation growth under each scenario, but do not 

fully describe how the subpopulations behaved in the demographic model, because the model 

includes multiple types of stochasticity and can produce transient dynamics. 

 

Kane Basin 

 During recent subpopulation studies estimates of S* were derived from CR and harvest 

data collected during the period 1992–2014 (Chapter 10 in SWG 2016). Due to sparse data, 

SWG (2016) did not consider estimation models that allowed for temporal variation in survival. 

This presents a challenge for harvest assessment because all available estimates of S* represent 

average values over a 23-year period, and do not reflect potential changes in survival in recent 
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years. Furthermore, exploratory population reconstruction using the time-constant estimates of 

S* and observed harvest patterns, resulted in a declining subpopulation trend over the period 

1998–2014 (section Population initialization). This is inconsistent with estimated increases in 

abundance of the KB subpopulation from CR modeling, from 224 (SE = 40) for the period 1995–

1997, to 357 (SE = 92) for the period 2013–2014 (Chapter 10 in SWG 2016). SWG (2016) 

provide several caveats for the estimated increase in abundance, including potentially 

inconsistent sampling frames between the 1990s and 2010s. However, other lines of evidence 

from subpopulation ecology and Traditional Ecological Knowledge also suggest that the KB 

subpopulation is currently healthy and has been stable or increasing in recent years (SWG 2016). 

We considered two alternative scenarios of the vital rates for the KB subpopulation to reflect 

uncertainty in current subpopulation status.  

 

Reproductive parameters 

 The two scenarios of the vital rates for KB used reproductive parameters estimated from 

CR studies 2012–2014, based on field data described in Chapter 21 of SWG (2016) and using the 

methods described above. To calculate litter production rate we used S = 0.95, the estimate of 

total survival for females ≥ 3 years during the period 1992–2014 (Table 10.3 in SWG 2016). The 

resulting litter production rate for bears age ≥ 5 years (β4) was 0.71 (Table KB1). Because we 

were unable to estimate litter production rate for 4-year-old bears (β3) using data from genetic 

sampling conducted 2012–2014, we set this parameter to 0 based on the finding by Taylor et al. 

(2008) that 4-year-old bears did not reproduce. We set the value for β5 to 0.10 based on Regehr 

et al. (2010), which is the only study to directly estimate the probability that a female observed 

with C0 in the spring of year t, conditional on losing her cubs, will re-breed and produce a new 

litter of C0 in the spring of year t + 1. This likely had a minor effect on results, due to the relative 

unimportance of β5 to population growth (Hunter et al. 2007). 

 

Scenarios for survival 

 We evaluated two scenarios for survival rates of KB polar bears. Scenario 1 used un-

modified estimates of S* as reported on page 496 of SWG (2016). Scenario 1 represents the 

hypothesis that time-constant estimates of S* are accurate and represent the current status of the 
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KB subpopulation, despite being too low to reproduce the estimated increase in abundance over 

the period 1998–2014 (section Population initialization). Scenario 1 suggests a relatively poor 

status for the KB subpopulation (section Results).  

 For Scenario 2, we modified values of S* for some sex and age classes until the vital 

rates were sufficiently high to reproduce the estimated increase in abundance over the period 

1998–2014. Specifically, for female and male polar bears age ≤ 2 years, we created 10 equal-

increment values of S* from a minimum corresponding to the point estimate for that sex and age 

class, to a maximum corresponding to the estimate of S* for bears age ≥ 3 years of the same sex. 

This approach retained the lower values of unharvested survival for males compared to females, 

a pattern that was apparent for both the BB and KB subpopulations (SWG 2016). We chose to 

modify values of S* for bears ≤ 2 years, rather than for adults, because CR and dead-recovery 

sample sizes were small for younger bears (Table 10.1 in SWG 2016), which resulted in high 

sampling uncertainty and increased potential for bias (Pollock et al. 1990). We performed 

population reconstructions for each set of equal-increment values of S*, to determine the 

magnitude of increases in S* necessary to achieve a 50% probability of reproducing the 

estimated increase in abundance of the KB subpopulation (section Population initialization). 

Thus, Scenario 2 represents the hypothesis that estimates of N for the KB subpopulation are 

accurate and provide a valid basis for inference about the subpopulation’s capacity to grow and 

support harvest. Uncertainty in estimates of S* for Scenario 2 was calculated from the relative 

standard deviations for Scenario 1, which meant that even though estimates of S* for bears ≤ 2 

years were increased under Scenario 2, the corresponding level of data precision was not 

improved.  

 Estimates of S* corresponding to the two scenarios of the vital rates are presented in 

Table KB2. Basic demographic parameters, calculated under asymptotic population dynamics, 

are presented in Table KB3. 

 

Population projections 

 We performed population projections to evaluate the dynamics of the BB and KB polar 

bear subpopulations and to investigate the effects of different harvest strategies. For a given 

projection, the main biological inputs were: a starting value of N (expressed as a number of 

independent bears); mean values from a scenario of the vital rates, referenced to MNPL; 
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estimates of sampling variation, process variation, and the correlation structure of the vital rates; 

a starting stage distribution; a starting subpopulation density, expressed as the ratio N/K; stage-

specific mee values; and a stochastic projection of the dimensionless metric κ, representing 

future variation in K. The main management inputs were: a value of FO for use in Equation 1 to 

calculate harvest rate; a value of SR for use in Equation 2 to calculate harvest level; stage-

specific harvest vulnerability vectors for females and males; a value for the management 

interval; and rsd.mod, the modifier on the baseline relative standard deviation of the vital rates 

due to sampling uncertainty, which was applied to future subpopulation assessments (section 

Abbreviations, Acronyms, etc.).  

Populations were projected 35 years into the future (i.e., from t = 1, 2, … 36), which is 

equivalent to approximately three polar bear generations (Regehr et al. 2016). At each time step t 

= 2, 3, … k, the following operations were performed. First, subpopulations were projected 

forward 1 year using a stage-structured matrix model: n(t+1) = A(t) × n(t), where n(t) is a stage 

distribution vector representing the number of animals in each life cycle stage at time step t, and 

A(t) is a 10×10 projection matrix (Caswell 2001). Entries in A(t) were defined in terms of vital 

rates in the life cycle graph (Figure 1). Demographic stochasticity was not included, because it is 

considered relatively unimportant at subpopulation sizes typical of polar bears (White 2000). 

Second, harvest was allocated among stages using a multinomial distribution with the probability 

for each stage calculated as the product of its proportional stage distribution and harvest 

vulnerability vector. For some projections, selective harvest led to the depletion of bears in one 

or more stages. If the specified harvest level exceeded the number of bears in a stage, the excess 

harvest was applied to adult bears of the same sex (i.e., stages 4 or 10). If the specified harvest 

exceeded the total number of one sex, the excess harvest was applied to adult bears of the other 

sex. Third, subpopulation density was calculated by summing mee values across animals in the 

subpopulation, then dividing by the total mee values available at carrying capacity. The survival 

and reproductive rates corresponding to this density were determined from the density-dependent 

curves, with modifications applied to the parameter β4 based on the Allee submodel. Fourth, 

these vital rates were subject to density-independent stochastic variation. Finally, the resulting 

vital rates were used to construct a projection matrix for the next time step A(t+1).  

 During population projections, we defined persistence as maintaining a subpopulation 

size greater than a pre-determined quasi-extinction threshold. We used a threshold of 100 
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independent bears for the BB subpopulation, which is similar to values that have been used for 

brown bears (Wielgus 2002). We used a threshold of 25 independent bears for KB, because it is 

a smaller subpopulation and 25 bears was likely high enough to avoid negative small-population 

dynamics resulting from demographic stochasticity (Morris and Doak 2002). We note that 

Regehr et al. (2017) used higher quasi-extinction thresholds, calculated as 15% of starting N. We 

did not follow that approach because our analyses incorporated an Allee submodel, which 

provided a mechanistic description of small-population dynamics that have been suggested as 

important for polar bears (Molnár et al. 2014). During projections, subpopulations that crossed 

below the quasi-extinction threshold were considered extirpated and could not recover.   

 

Population initialization 

 For both BB and KB we performed exploratory population reconstruction, which 

consisted of retrospective projections that used historic biological and management conditions. 

This helped to evaluate the vital rates, establish reasonable initial conditions for the main 

population projections (e.g., a subpopulation composition that was consistent with the history of 

sex-selective harvest), and reduce transient dynamics in early years of projections (Caswell 

2001). 

 

Baffin Bay 

 We performed population reconstruction for the period 1998–2010 using vital rates from 

Scenario 2. We did not include 2011–2013 in the reconstruction due to concerns about bias in the 

survival estimates for those years (SWG 2016). For the population reconstruction, the mean 

value of starting N was set to 1,968 independent bears. This was calculated from the estimated 

total subpopulation size (i.e., including C0 and C1) of 2,826 for the period 2011–2013 (Chapter 5 

in SWG 2016). We used this starting value because of potential bias in the 1993–1997 estimate 

of N due to limited geographic sampling in the 1990s (Chapters 3 and 6 in SWG 2016). Methods 

to convert from total subpopulation size, to the number of independent bears, are described 

below. Starting N/K (i.e., at t = 1) was set to 0.67, which corresponded to MNPL as estimated 

from the density-dependent curves of the vital rates for Scenario 2. Harvest was implemented at 
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a fixed level of 162 independent bears per year, which was the mean reported harvest for the BB 

subpopulation during the period 1998–2010 (Table 8.4 in SWG 2016).  

 We used a male-to-female sex ratio in the harvest (SR) of 1.25 for population 

reconstruction. This value was derived by averaging Canadian and Greenlandic harvest sex 

ratios, weighted by the total reported harvest in each country. The Canadian sex ratio was 

calculated directly from hunter-reported sex as it agreed with the genetically-determined sex, 

which indicated that 0.34 of harvested bears were female (Chapter 8 in SWG 2016). The 

Greenlandic sex ratio was estimated separately for this analysis, due to apparent discrepancies 

between hunter-reported sex and genetically-determined sex (Chapter 8 in SWG 2016). 

Specifically, we used the genetic sex data from tissue samples collected from 77 polar bears 

harvested in Greenland during the period 2011–2013, to estimate that 0.53 of the reported 

harvest was female. Lacking genetic sex data for other years, we assumed that this proportion 

was representative of the Greenlandic harvest 1998–2010. Harvest was implemented using the 

stage-specific harvest vulnerability vectors for the BB subpopulation. For population 

reconstruction, we used a deterministic proxy metric for K that was based directly on the 

observed time series of ice-covered days 1998–2010. Other specifications for population 

reconstruction were the same as for the full suite of projections (section Simulations). 

 The reconstructed subpopulation, using vital rates from Scenario 2 and a fixed-level 

harvest of 162 bears per year, exhibited a relatively stable trajectory during the period 1998–

2010. The observed population growth rate was 1.01 (SE = 0.10) per year as calculated using the 

methods of Humbert et al. (2009). The ending proportion of females in the subpopulation was 

0.69. For comparison, the mean proportion of females in the BB subpopulation during the period 

2011–2013 was 0.66, as calculated using sex- and age-specific estimates of abundance for bears 

age ≥ 2 years from the most-supported CR model (Chapter 5 in SWG 2016). The similarity 

between the proportions 0.69 and 0.66, and the ability of population reconstruction to produce 

plausible population dynamics (i.e., a stable subpopulation under the observed harvest), provide 

a degree of confidence in the vital rates of Scenario 2. 

 To obtain a starting stage distribution for the full suite of population projections, we 

adjusted the final stage distribution from the population reconstruction until the proportion of 

females was 0.66, keeping the within-sex stage distributions constant. This produced the 10-

stage distribution vector [0.07, 0.05, 0.05, 0.17, 0.18, 0.14, 0.07, 0.05, 0.05, 0.17]. When 
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combined with estimates of C0 and C1 litter size for Scenario 2, this produced a ratio of 

independent bears to total bears of 0.70. Therefore, all projections for the BB subpopulation 

started with a mean value of Nt=1 = 2,826 × 0.70 ≈ 1,968 independent bears, where 2,826 is the 

estimated total subpopulation size for 2011–2013 from SWG (2016). To reduce transient 

dynamics, all projections started at a subpopulation density N/K = 0.81, the median estimated 

density at the final year of population reconstruction.    

 

Kane Basin 

 We performed population reconstruction for the period 1998–2014, to evaluate the vital 

rates from Scenario 1 and to identify values of S* for Scenario 2 (section Vital rates). For the 

population reconstruction, the mean value of starting N was set to 153 independent bears. This 

was calculated from the estimated total subpopulation size of 224 for the period 1995–1997 

(Chapter 10 in SWG 2016). Methods to convert from total subpopulation size, to the number of 

independent bears, are described below. Starting N/K was set to 0.73, which corresponded to 

MNPL as estimated from the density-dependent curves of the vital rates for Scenario 1. Harvest 

was implemented at a fixed level of 8 independent bears per year, which is the mean harvest 

reported for the KB subpopulation during the period 1998–2013 (Tables 8.2 and 8.5 in SWG 

2016). 

 We used SR = 0.94 for population reconstruction. This value was derived by averaging 

Canadian and Greenlandic harvest sex ratios, weighted by the total reported harvest in each 

country. The Canadian sex ratio was calculated directly from hunter-reported sex, which 

indicated that 0.33 of harvested bears were female (Chapter 8 in SWG 2016). The Greenlandic 

sex ratio was based on genetically-determined sex for bears harvested from the KB 

subpopulation during the period 2011–2014, which indicated that 0.53 of harvested bears were 

female (Chapter 8 in SWG 2016). Lacking genetic sex data for other years, we assumed that this 

proportion was representative of the Greenlandic harvest 1998–2014. Harvest was implemented 

using the stage-specific harvest vulnerability vectors that were calculated for the BB 

subpopulation.  

For KB population reconstruction, we used a deterministic proxy metric for K with 

interannual variation based on the observed time series of ice-covered days 1998–2014, but with 
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an increasing trend of approximately 3% per year. We subjectively included this trend in K, 

rather than using observed values of the sea-ice metric, because an increasing trend would be 

necessary to allow N to increase from 224 bears in 1995–1997 to 357 bears in 2012–2014 (i.e., 

Nt=17 / Nt=1 ≈ 1.6; Chapter 10 in SWG 2016), conditional on vital rates that were sufficiently high 

to produce such an increase. Other specifications for population reconstruction were the same as 

for the full suite of projections (section Simulations). 

An initial KB population reconstruction used vital rates from Scenario 1 and a fixed-level 

harvest of 8 bears per year. This resulted in a declining trajectory during the period 1998–2014, 

with an observed population growth rate of 0.98 (SE = 0.40) per year. The large variance in the 

observed growth rate was due primarily to high sampling uncertainty in vital rates for the KB 

subpopulation (Chapter 10 in SWG 2016). The fact that the growth rate was negative, despite an 

increasing proxy for K, suggests that a subpopulation with vital rates similar to Scenario 1 would 

be unlikely to support a harvest of 8 bears per year, even in the absence of density-dependent 

regulation.  

Subsequent KB population reconstructions used the same conditions as described above, 

but with the estimates of S* from Scenario 1 modified to include incremental increases in 

survival for bears age ≤ 2 years (section Vital rates). We found that an average proportional 

increase in S* of 38% (i.e., 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∗  = 1.38 × 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜∗ ) produced an increasing trajectory 

during the period 1998–2014, with an observed population growth rate of 1.03 (SE = 0.33). This 

corresponded to a median increase in abundance of Nt=17 / Nt=1 = 1.59 (SE = 0.71), which is 

similar to the estimated increase in abundance for the KB subpopulation from 1995–1997 to 

2012–2014. Therefore, Scenario 2 of the vital rates for the KB subpopulation included these 

modified estimates of S* for bears ≤ 2 years (section Results).  

The reconstructed subpopulation, using vital rates from Scenario 2 and a fixed-level 

harvest of 8 bears per year, produced an ending proportion of females in the subpopulation of 

0.70. For comparison, the mean proportion of females in the KB subpopulation during the period 

2012–2014 was 0.71, as calculated from sex- and age-specific estimates of abundance for bears ≥ 

2 years from the most-supported CR model (Chapter 10 in SWG 2016). To obtain a starting 

stage distribution for the full suite of projections, we adjusted the final stage distribution from the 

population reconstruction until the proportion of females was 0.71, keeping the within-sex stage 

distributions constant. This produced the 10-stage distribution vector [0.06, 0.06, 0.05, 0.24, 
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0.16, 0.14, 0.05, 0.04, 0.03, 0.17]. When combined with estimates of C0 and C1 litter size for 

Scenario 2, this leads to a ratio of independent bears to total bears of 0.68. Therefore, all 

projections for the KB subpopulation started with a mean value of Nt=1 = 357 × 0.68 ≈ 244 

independent bears, where 357 is the estimated total subpopulation size for 2012–2014 from SWG 

(2016). To reduce transient dynamics, all projections started at a subpopulation density N/K = 

0.69, the median estimated density at the final year of population reconstruction.  

 

Simulations 

 We define a “simulation” as multiple replicates of a population projection, where each 

replicate has the same mean biological inputs and the same management inputs (section 

Population projections). For each simulation, we used a parametric bootstrap procedure that 

generated 250 correlated random samples of the input vital rates and starting value of N, for the 

purpose of representing sampling variation in the vital rates (White 2000). We subjectively 

included sampling variation as 75% of total uncertainty (i.e., temporal variation plus sampling 

uncertainty) following the example of Taylor et al. (2002). Samples of the vital rates were 

generated using either a multivariate beta distribution or a stretched beta distribution (Morris and 

Doak 2002), as described in Appendix S3 of Regehr et al. (2017). When vital rates were near the 

boundary conditions [0,1] and variances were large, shape parameters for the beta distribution 

occasionally could not be determined. When this occurred, we generated a sample for the vital 

rate in question using a truncated normal distribution. The correlation structure for sampling 

variation in the vital rates was informed by the most-supported CR model for the BB 

subpopulation (Table 5.7 in SWG 2016). Specifically, we used a correlation coefficient of 1 

within the following sets of parameters, and a correlation coefficient of 0 between the sets: [σ1, 

σ2, σ3, σ4, σ5, σ6], [σ7, σ8, σ9, σ10], [σL0, σL1], [β3, β4, β5], and [N]. This correlation structure was 

also used for simulated population assessments, based on the assumption that future estimation 

methods would be broadly similar to SWG (2016).  

 For each random sample of the vital rates and starting N, we ran 50 projections, each with 

a different stochastic projection of κ (section Carrying capacity and environmental variation). 

Also, the projections included stochastic, density-independent variation at each time step. 

Therefore, for each simulation the resulting 250 × 50 = 12,500 replicate projections reflected 
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both sampling and environmental variation. Although 12,500 is a relatively small number of 

replicates for population viability analysis (White 2000), this number was computationally 

feasible (section Software) and gave reproducible results at the levels of precision we report.  

 For each subpopulation, we performed simulations designed to evaluate a range of 

biological conditions and harvest strategies relevant to polar bear management (see below). For 

each simulation, we report the probability of meeting management objectives, calculated as the 

number of replicates that met the corresponding population condition (Table BB1) divided by the 

total number of replicates. At specific time steps, we also report Pextirpation, defined as the 

proportion of replicates for which N declined below the quasi-extinction threshold at any time 

step prior to time step t = k; and the probability of male depletion (Pmale.dep), defined as the 

proportion of replicates for which the number of adult males (stage 10) was below 50% of the 

quasi-extinction threshold at t = k. The metric Pmale.dep is relevant because lower values of S* for 

males compared to females, combined with sex-selective harvest, led to severe depletion of adult 

male bears under some conditions. Finally, we report the median change in subpopulation size 

(Nt=k / Nt=1), the median subpopulation density (Nt=k / Kt=k), and the mean realized harvest level 

(Ht=k). These values were calculated over all replicates, including those that led to extirpation. 

The metric H is relevant because some simulations included declining N (to declining K or to 

high harvest) and declining r (due to Allee effects caused by male depletion), which led to 

declining values of H over time under state-dependent approach.   

 

Baffin Bay 

We performed a primary set of simulations for the BB subpopulation to evaluate 

sustainable harvest for the three scenarios of the vital rates. All primary simulations used a 

management interval of 15 years and rsd.mod = 1. For each scenario, we performed simulations 

over 36 annual time steps for all combinations of the following inputs: 

1. Five, 11, and 8 values of the management factor FO for Scenarios 1, 2, and 3, 

respectively. These values of FO corresponded to starting harvest levels that differed 

by 20 bears per year, and encompassed the estimates of maximum sustainable yield 

for each scenario based on asymptotic dynamics and non-selective harvest (section 

Results). 
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2. Three values of sex ratio in the harvest, corresponding to SR = 1.0, 1.25, and 2.0. The 

value of SR = 1.25 represents the current status quo for the BB subpopulation under 

the assumptions made during population reconstruction (section Population 

initialization). We included SR = 2 because it is a common management objective for 

polar bears (Taylor et al. 2008b). We included SR = 1 to evaluate non-sex selective 

harvest, which might be a strategy for managed population reduction.  

 We performed a secondary set of simulations using the vital rates for Scenario 2 only, 

which we considered the most likely representation of the current status of the BB 

subpopulation. The objectives were to evaluate the effects of changes in the management interval 

and the precision of data obtained from future subpopulation assessments. All secondary 

simulations used SR = 1.25. We performed simulations over 36 annual time steps for all 

combinations of the following inputs: 

1. Nine values of the management factor FO, corresponding to starting harvest levels 

that differed by 10 bears per year, and encompassed the range of harvest that met 

management objectives for Scenario 2 during primary simulations.  

2. Three values for the management interval corresponding to 10, 15, and 20 years. 

3. Three levels of precision in subpopulation data, corresponding to rsd.mod = 0.5, 1.0, 

and 1.5.  

 We also performed several post hoc simulations that were focused on the issue of 

managed population reduction.  

 

Kane Basin 

We performed a primary set of simulations for the KB subpopulation to evaluate 

sustainable harvest for the two scenarios of the vital rates. All primary simulations used a 

management interval of 15 years and rsd.mod = 1. For each scenario, we performed simulations 

over 36 annual time steps for all combinations of the following inputs: 

1. Five and 9 values of the management factor FO for Scenarios 1 and 2, respectively. 

These values of FO corresponded to starting harvest levels that differed by 2 bears per 

year, and encompassed the estimates of maximum sustainable yield for each scenario 

based on asymptotic dynamics and non-selective harvest (section Results). 
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2. Two values of sex ratio in the harvest, corresponding to SR = 0.94 and 2.0. The value 

of SR = 0.94 represents the current status quo for the KB subpopulation under the 

assumptions made during population reconstruction (section Population 

initialization).  

 We performed a secondary set of simulations using the vital rates for Scenario 2 only, to 

evaluate the effects of changes in the management interval and the precision of data obtained 

from future subpopulation assessments. Scenario 2 was more useful for this investigation 

because, unlike Scenario 1, it led to non-zero harvest levels that met management objectives. All 

secondary simulations used SR = 0.94. We performed simulations over 36 annual time steps for 

all combinations of the following inputs: 

1. Nine values of the management factor FO, corresponding to starting harvest levels 

that differed by 1 bear per year, and encompassed the range of harvest that met 

management objectives for Scenario 2 during the primary simulations.  

2. Three values for the management interval corresponding to 10, 15, and 20 years. 

3. Three levels of precision in subpopulation data, corresponding to rsd.mod = 0.5, 1.0, 

and 1.5.  

Finally, we performed several post hoc simulations focused on the ramifications of high 

uncertainty in estimates of S* for bears age ≤ 2 years.  

 

Software 

Computations were performed in the R computing language (version R 3.4.0; The R 

Project for Statistical Computing; http://www.r-project.org). Simulations were run the Amazon 

Elastic Compute Cloud (http://aws.amazon.com/ec2/) using an Amazon Machine Image for RStudio 

Server (RStudio 2016) developed by L. Aslett (http://www.louisaslett.com/RStudio_AMI/). Each 

simulation took approximately 60 minutes using a Memory Optimized r4.xlarge computing 

instance.  
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Results 

Baffin Bay 

Primary simulations 

We performed a primary set of simulations to evaluate population dynamics and 

sustainable harvest, for three scenarios of the vital rates, over a period of three polar bear 

generations during which K declined. Projections used a 15-year management interval, a baseline 

level of data precision (i.e., rsd.mod = 1.0) based on recent subpopulation surveys (SWG 2016), 

and a mean starting subpopulation size Nt=1 = 1,968 (SE = 236) independent bears with a stage 

distribution and subpopulation density determined from population reconstruction (section 

Population initialization). Tables BB5–BB7 present the highest harvest strategies that met 

management objectives for each scenario of the vital rates (see below). The harvest rate (h) in 

these tables is presented as the percentage of total subpopulation size (i.e., subpopulation size 

including C0s and C1s) that is removed each year as independent bears, because this definition 

of h is commonly used in polar bear management. Strategies with lower values of FO than appear 

in Tables BB5–BB7, but otherwise similar inputs (e.g., the same harvest sex ratio), also met 

management objectives. Some of the harvest strategies in Tables BB5–BB7 could result in the 

depletion of adult male bears; probabilities of extirpation, compared to projections with no 

harvest, that approach the upper limit of 0.05; or declines in the calculated harvest level over 

time. Detailed results from the primary simulations are presented in Appendix S1. 

 

Scenario 1  

Scenario 1 of the vital rates resulted in an asymptotic intrinsic growth rate at MNPL 

(rMNPL) of 0.03 (Table BB4), suggesting a limited capacity for growth and low resilience relative 

to other polar bear subpopulations (Regehr et al. 2017). Statistical uncertainty in estimates of S* 

for the period 2011–2013 (Table BB3) contributed to high uncertainty in the estimate of rMNPL, 

with approximately 26% of its sampling distribution below 0 (i.e., corresponding to a negative 

intrinsic growth rate). Management Objective 1 was not achievable even in the absence of 

harvest, due to the combined effects of low r, declining K, and high uncertainty in the vital rates 

(Table BB5). Management Objective 2 could be met using FO = 0 to 0.41, depending on the 
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value of SR and risk tolerance. This corresponds to a starting harvest rate ht=1 = 0 to 0.7%, and a 

starting harvest level Ht=1 = 0 to 20 bears per year. Upper limits on FO that met Management 

Objective 3 were 0 to 1.22, depending on SR and risk tolerance. However, due in part to high 

uncertainty in the vital rates, harvest strategies at the upper end of this range simultaneously 

increased Pextirpation toward the upper condition of 0.05 at t = 15, while being unlikely to reduce 

the median subpopulation size by 30% (Table S.BB1). A subpopulation similar to Scenario 1 

would have little capacity to support harvest, and would risk a 2 to 3% chance of extirpation at t 

= 36 in the absence of harvest (Table S.BB1).  

 

Scenario 2  

Scenario 2 resulted in rMNPL = 0.08 (Table BB4), suggesting a strong capacity for growth 

and relatively high resilience. Due to declining K, Management Objective 1 was either not 

achievable or only achievable with no harvest (Table BB6). Management Objective 2 could be 

met using FO = 0.43 to 1.03, depending on SR and risk tolerance. This corresponds to a starting 

harvest rate ht=1 = 3.6 to 5.7%, and a starting harvest level Ht=1 = 100 to 160 bears per year. At 

the upper end of this range, a harvest strategy using FO = 0.92 and the status quo value of SR = 

1.25 corresponds to ht=1 = 5.7% and Ht=1 = 160 bears per year, which is similar to harvest of the 

BB subpopulation in recent decades (Chapter 8 in SWG 2016). A sample of replicates from 

population projections can help visualize the effects of this harvest strategy on subpopulation 

trajectories. Figure BB3 shows that the median subpopulation size declines in parallel with (but 

not faster than) declining K, which is a consequence of a state-dependent management approach 

that meets Management Objective 2. The color-coding in Figure BB3 identifies the potential for 

male depletion or subpopulation extirpation in later years (Table S.BB2). For replicates that 

experienced male depletion, reproductive rates declined due to Allee effects in the mating 

system. This reduced the subpopulation’s capacity for growth and resulted in lower calculated 

harvest levels under the state-dependent approach. Figure BB4 illustrates these effects, for the 

same harvest strategy that was shown in Figure BB3. Other harvest strategies that were more 

selective for males (i.e., SR = 2), including some strategies that met Management Objective 2 

(Table BB6), had higher probabilities of causing male depletion (e.g., up to 0.25 at t = 36; Table 

S.BB2). Evaluation of Management Objective 3 is presented with results from the secondary 

simulations (see below).  
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Scenario 3  

Scenario 3 was based on hypothetical vital rates that resulted in rMNPL = 0.05 (Table 

BB4), representing a subpopulation with average capacity for growth and resilience. This 

scenario provided a benchmark for comparison with the data-based Scenarios 1 and 2. Similar to 

Scenario 2, Management Objective 1 was either not achievable or only achievable with no 

harvest, due to declining K (Table BB7). Management Objective 2 could be met using FO = 0.53 

to 0.89, depending on SR and risk tolerance. This corresponds to a starting harvest rate ht=1 = 2.1 

to 3.6%, and a starting harvest level Ht=1 = 60 to 100 bears per year. Harvest strategies under 

Scenario 3 that used SR = 2 were less likely to cause male depletion than similar strategies under 

Scenario 2 (Table S.BB3), because under Scenario 3 values of S* were similar for adult females 

and adult males. Upper limits on FO that met Management Objective 3 were 0.66 to 1.40, 

depending on SR and risk tolerance. In some cases, the condition requiring that Pextirpation < 0.05 

at t = 15, compared to a similar projection without harvest, was the limiting factor for 

Management Objective 3. In other words, a harvest strategy could achieve an acceptable level of 

risk with respect to the population condition Nt=15 > (0.7 × Nt=1) but also result in Pextirpation > 

0.05. Harvest strategies that met Management Objective 3, in terms of both Nt=15 > (0.7 × Nt=1) 

and the condition on Pextirpation, were unlikely to reduce the subpopulation size by 30% (Table 

S.BB3). These findings suggest that a managed population reduction of 30% is unlikely to be 

achieved, within the guidelines for risk tolerance provided by the JC, when using a 15-year 

management interval for a subpopulation with vital rates and a level of data precision similar to 

Scenario 3. 

 

Secondary simulations 

We performed a secondary set of simulations for Scenario 2 to evaluate the effects of 

management interval and data precision. Table BB8 shows the highest harvest strategies that met 

Management Objective 2b as a function of these factors, illustrating the potential impact of 

different management conditions. For example, ht=1 is 54% higher for a 10-year management 

interval and rsd.mod = 0.5 (which corresponds to a relative standard deviation of 0.01 in σ4 due 

to sampling uncertainty), compared to a 20-year management interval and rsd.mod = 1.5 (which 
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corresponds to a relative standard deviation of 0.03 in σ4). Table S.BB4 provides detailed results 

for the simulations summarized in Table BB8. In Table S.BB4, results for the expected value of 

Ht=36 require additional explanation. It appears counterintuitive that Ht=36 is higher for a 20-year 

management interval than for a 15-year management interval. This occurs because the harvest 

strategies in Table S.BB4 are fairly aggressive, and can result in moderate degrees of male 

depletion and reduced capacity for growth at t = 36. Using a 15-yr management interval, these 

negative effects result in a reduced harvest level at the second subpopulation assessment, which 

occurs at t = 32. In contrast, using a 20-year management interval, the second subpopulation 

assessment does not occur until t = 42, which is beyond the duration of projections. The 

ramifications are that using a 20-year management interval (i) leads to higher probabilities of 

extirpation at t = 36, and (ii) would be expected to result in large reductions to the calculated 

harvest level at t = 42.  

We used results from the secondary set of simulations to evaluate Management Objective 

3, because the primary simulations suggested that achieving a subpopulation reduction, within 

the specified risk tolerance, would require a short management interval and improved data 

precision. In the secondary simulations, the harvest strategy with the highest harvest and best 

management conditions was FO = 1.15, a 10-year management interval, and rsd.mod = 0.5. This 

corresponded to ht=1 = 7.1% and Ht=1 = 200. For this strategy, the median value of Nt=15 / Nt=1 

was 0.86 at t = 15 (i.e., a median reduction of 14% in starting subpopulation size; Table S.BB4). 

Although this strategy met Management Objective 3b as stated in Table BB1, it did not reduce 

the subpopulation by 30%. Also, it led to a 0.38 probability that subpopulation size was below 

MNPL at t = 15, which exceeded the risk tolerance for the condition on maximum sustainable 

yield that was associated with Management Objective 3 (section Management Objectives).  

 

Post hoc simulations 

We performed two post hoc simulations to inform future considerations for managed 

population reduction. First, we identified a state-dependent harvest strategy (BB_S1) that came 

as close as possible to achieving a subpopulation reduction of 30% in 15 years, while meeting 

the population condition for Management Objective 3b as stated in Table BB1, but without the 

additional condition related to maximum sustainable yield. Harvest strategy BB_S1 used FO = 

1.58, SR = 1.0, a 5-year management interval, and rsd.mod = 0.5. Use of SR = 1 promoted 
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subpopulation reduction by removing more females, compared to a sex-selective harvest. This 

strategy corresponded to ht=1 = 8.7% and Ht=1 = 245. At t = 15, the median value of Nt=15 / Nt=1 

was 0.75 (i.e., a median reduction of 25% in starting subpopulation size) and Management 

Objective 3b was met (Table S.BB5). The mean harvest level declined at each management 

interval, concurrent with declining subpopulation size (e.g., Ht=15 = 180 bears per year; Table 

S.BB5). Conceptually, BB_S1 represents a near-optimal harvest strategy that would require 

nearly continuous surveys and rapid management response.   

For comparison with BB_S1, we evaluated a second harvest strategy (BB_S2) that used 

the same starting harvest level, but did not follow a state-dependent approach and used the status 

quo value SR = 1.25. Strategy BB_S2 applied a fixed-level harvest of 250 bear per year, for a 

period of 15 years, without new subpopulation assessments or changes to management during 

this period. At t = 15, the median value of Nt=15 / Nt=1 was 0.55, indicating that the subpopulation 

was depleted beyond the desired 30% reduction. Also, strategy BB_S2 did not meet 

Management Objective 3 and resulted in a 0.30 probability of male depletion and a 0.23 

probability of subpopulation extirpation at t = 15 (Table S.BB5).  

 

Kane Basin 

Primary simulations 

We performed a primary set of simulations to evaluate population dynamics and 

sustainable harvest, for two scenarios of the vital rates, over a period of three polar bear 

generations during which K remained stable. Projections used a 15-year management interval, 

the baseline level of data precision (i.e., rsd.mod = 1.0), and a mean starting subpopulation size 

Nt=1 = 244 (SE = 41) independent bears with a stage distribution and subpopulation density 

determined from population reconstruction (section Population initialization). Tables KB4–KB6 

present the highest harvest strategies that met management objectives for each scenario of the 

vital rates. Strategies with lower values of FO, but otherwise similar inputs, also met management 

objectives. Some of the harvest strategies in Tables KB4–KB6 could result in the depletion of 

adult male bears or increased probabilities of extirpation, compared to projections with no 

harvest, that approached the upper limit of 0.05. Detailed results for the primary simulations are 

presented in Appendix S1.  
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Scenario 1 

 Scenario 1 of the vital rates resulted in rMNPL = 0.01 (Table KB3), suggesting a very 

limited capacity for growth and low resilience. Statistical uncertainty in estimates of S* for the 

period 2012–2014 (Table KB2), especially for bears ≤ 2 years, contributed to high uncertainty in 

the estimate of rMNPL, with approximately 29% of its sampling distribution below 0 (i.e., 

corresponding to a negative intrinsic growth rate). Due to low values of r and high uncertainty in 

the vital rates, most management objectives could not be met even with no harvest (Table KB4). 

This is illustrated by Figure KB1, which shows a sample of replicates from population 

projections with FO = 0 (i.e., no harvest). Although the median N increases gradually over time, 

the subpopulation trajectories are highly variable. The color-coding in Figure KB1 indicates that 

male depletion is possible due to lower estimates of S* for males compared to females (e.g., 

Pmale.dep = 0.10 at t = 15; Table S.KB1). A subpopulation with vital rates similar to Scenario 1 

would have little guarantee of supporting harvest, and would face a 2 to 4% chance of extirpation 

at t = 36 in the absence of harvest (Table S.KB1). The ramifications of high uncertainty in vital 

rates for the KB subpopulation were evaluated in the secondary and post hoc simulations (see 

below). 

 

Scenario 2 

Scenario 2 resulted in rMNPL = 0.05 (Table KB3), suggesting a medium capacity for 

growth and resilience. Management Objectives 1a and 2a (i.e., the version of the objectives with 

low risk tolerance for not achieving the population condition; Table BB1) could not be met with 

no harvest, due to variability in subpopulation trajectories arising from uncertainty in the vital 

rates (Table S.KB2). Management Objective 1b could be met using FO = 0.31 to 0.48, depending 

on the value of SR (Table KB5). This corresponds to a starting harvest rate ht=1 = 1.7% and a 

starting harvest level Ht=1 = 6 bears per year, which is similar to recent harvest of the KB 

subpopulation (SWG 2016). Management Objective 2b could be met using FO = 0.21 to 0.31, 

depending on the value of SR. This corresponds to a starting harvest rate ht=1 = 1.1% and a 

starting harvest level Ht=1 = 4 bears per year. The harvest strategy that meets Management 

Objective 2 is lower than the strategy that meets Management Objective 1, because projections 
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for the KB subpopulation included a stable trend in K (i.e., Kt=36 ≈ Kt=1) Therefore, at t = 36, 

Management Objective 1 requires a subpopulation size that is greater than 0.9 × Nt=1 = 0.90 × 

(0.69 × Kt=1) ≈ 0.62 × Kt=1; whereas Management Objective 2 requires a subpopulation size that 

is greater than 0.70 × Kt=36 ≈ 0.70 × Kt=1 (i.e., a lower subpopulation size). Harvest strategies that 

met Management Objectives 1 and 2 were associated with increases in median N of up to 21% at 

t = 36 (Table S.KB2). This indicates that uncertainty in the vital rates, rather than the mean 

values of the rates, was a limiting factor in meeting management objectives. At t = 36, the 

harvest strategies in Table KB5 were associated with probabilities of causing male depletion of 

up to 0.27, due in part to lower S* of males; and increased probabilities of extirpation, compared 

to projections with no harvest, of up to 0.03 (Table S.KB2).  

 

Secondary simulations 

We performed secondary simulations for Scenario 2 to evaluate the effects of 

management interval and data precision. Table KB6 shows the highest harvest strategies that met 

Management Objective 1b as a function of these factors, indicating the potential impact of 

different management conditions on harvest strategies for the KB subpopulation. For example, 

the highest harvest strategy under improved management conditions (i.e., a 10-year management 

interval and rsd.mod = 0.5) corresponded to ht=1 = 2.2% and Ht=1 = 8. This harvest rate is 57% 

higher than the rate for a 20-year management interval and rsd.mod = 1.5.  

In contrast to the BB subpopulation, the highest starting harvest level for the KB 

subpopulation, under improved management conditions, was lower than the expected value of 

maximum sustainable yield based on asymptotic population dynamics (i.e., 13 bears per year; 

Table KB3). This finding is largely due to high uncertainty in estimates of S* for bears age ≤ 2 

years (Table KB3). The reason is that improved data precision (i.e., rsd.mod = 0.5) only reduced 

sampling variation for simulated population assessments that occur in the future. Therefore, all 

subpopulation trajectories were highly variable during the first management interval (i.e., for the 

first 10, 15, or 20 years) due to high uncertainty in the baseline vital rates for Scenario 2. 

Because we only evaluated strategies with time-constant values of FO, the range of harvest 

strategies that met management objectives was constrained by high uncertainty in the currently-

available data for the KB subpopulation. A consequence of this effect is that, for some harvest 
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strategies, the calculated harvest level increased after the first management interval, and 

remained 1-2 bears higher than the starting value at t = 15 and 36 (Table S.KB3). 

 

Post hoc simulations 

We performed two post hoc simulations to explore the ramifications of high uncertainty 

in estimates of S* for bears age ≤ 2 years. First, we reduced sampling variation in these estimates 

by 75%, which resulted in levels of uncertainty similar to bears age ≥ 3 years (e.g., the reduced 

relative standard deviation due to sampling uncertainty was 0.04 for the vital rate σ1, which is 

equivalent to the un-modified value for σ4). Conceptually, this permitted exploration of how a 

higher level of confidence in estimates of S* for bears age ≤ 2 years might affect sustainable 

harvest. After reducing the uncertainty in estimates of S*, we performed simulations under 

conditions similar to current harvest practices for the KB subpopulation (i.e., SR = 0.94, a 15-

year management interval, and rsd.mod = 1.0) and identified the highest strategy that met 

Management Objective 1b. The resulting strategy (KB_S1) corresponded to FO = 0.80, ht=1 = 

2.8%, and Ht=1 = 10 bears per year (Table S.KB4). Interpretation of these results requires 

caution, because there was not an analytical basis for reducing uncertainty in estimates of S* for 

bears age ≤ 2 years. Nonetheless, this post hoc simulation can provide guidance on what a 

sustainable harvest strategy might be, if it was assumed with an increased degree of confidence 

that survival rates of bears age ≤ 2 years have been sufficiently high to produce the estimated 

increase in abundance for the KB subpopulation.  

Second, we explored uncertainty in estimates of S* for bears age ≤ 2 years using a 

different approach. For all other simulations in this report, total uncertainty in the vital rates was 

partitioned as 75% sampling variation and 25% process variation, following the example of 

Taylor et al. (2002). Because time-constant estimates of S* for KB bears were referenced to a 23-

year period from 1992–2014, this partitioning may not be accurate for younger animals, which 

often exhibit higher interannual variation in survival compared to adults (Eberhardt 2002). We 

were not able to perform an analysis of variance components in S* (e.g., Cooch and White 2016) 

due to sparse data. Therefore, for bears age ≤ 2 years, we subjectively repartitioned total 

uncertainty as 25% sampling variation and 75% process variation. After making this change, we 

performed simulations under conditions similar to current harvest practices for the KB 

subpopulation (i.e., SR = 0.94, a 15-year management interval, and rsd.mod = 1.0) and identified 
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the highest harvest strategy that met Management Objective 1b. The resulting strategy (KB_S2) 

corresponded to FO = 0.64, ht=1 = 2.2%, and Ht=1 = 8 bears per year (Table S.KB4). 

 

Discussion 

We used subpopulation data from SWG (2016) in a demographic model adapted from 

Regehr et al. (2017) to evaluate a suite of potential harvest strategies for the BB and KB polar 

bear subpopulations, relative to management objectives and risk tolerances provided by the JC.  

 

Demographic and management model 

Additional details of the demographic model are presented in Regehr et al. (2015, 2017), 

including caveats and topics for future work. In this report we integrated the demographic model 

with a mechanistic submodel of Allee effects in the mating system (Molnár et al. 2008, 2014). In 

simulations for both the BB and KB subpopulations, lower estimates of S* for males than 

females, combined with a sex-selective harvest, produced stage distributions that were skewed 

toward females. If the demographic model did not incorporate Allee effects, such subpopulations 

could exhibit unrealistically high values of r (i.e., in excess of the theoretical rmax under 

asymptotic population dynamics) because most adults were female and litter production rates 

could potentially remain high even in the near-absence of adult males. This effect could be 

compounded by the fact that the model tracked subpopulation density in terms of metabolic 

energetic equivalents, which allowed a given resource base to support a larger number of females 

compared to males (section Density dependence). We suggest that deriving parameters of the 

Allee submodel for the BB and KB subpopulations, and validating model-based predictions 

against field data, are areas for future work.   

The demographic model differed from RISKMAN (Taylor et al. 2001) in several ways, 

including its ability to model temporal changes in vital rates and K. Also, we used a correlation 

structure for sampling variation that was informed by the CR models used to estimate vital rates 

(Chapter 6 in SWG 2016), whereas RISKMAN assumes sampling errors are independent (Taylor 

et al. 2006). This can influence PVA results, with correlated vital rates generally resulting in 

more variable subpopulation trajectories and higher risks of negative outcomes. To illustrate, we 

used the demographic model to calculate an unharvested, asymptotic population growth rate (λ) 
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using vital rates for the BB subpopulation as reported in Taylor et al. (2005). Our estimate of λ = 

1.053 (SE = 0.022) was similar to the geometric mean estimate of unharvested λ = 1.055 (SE = 

0.011) in Taylor et al. (2005), but our estimated standard error was twice as large. We suggest 

that our approach is more consistent with recommended practices in population viability analysis 

(Morris and Doak 2002).  

Application of the demographic model required several key assumptions. First, to create 

density-dependent curves of the vital rates it was necessary to specify a subpopulation density 

(N/K) at which the vital rates were estimated. In practice, it is not possible to directly estimate K 

for wildlife populations (e.g., Gerrodette and Demaster 1990). Therefore, we inferred that N/K 

corresponded to a subpopulation size in the vicinity of MNPL, based on evidence that harvest in 

recent decades had been near maximum sustainable yield (Regehr et al. 2017). If actual N/K 

corresponded to a subpopulation size below MNPL, our estimates of intrinsic growth rate (r) 

could be positively biased. That is, the value of r corresponding to the vital rates would be closer 

to rmax, whereas we assumed it was equivalent to rMNPL. If actual values of N/K corresponded to a 

subpopulation size significantly above MNPL, bias would be in the opposite direction. Second, 

we initialized population projections at time step t = 1 at a subpopulation size close to MNPL. 

This assumed that the BB and KB subpopulations are currently not experiencing strong density-

dependent suppression of demographic parameters, which could be inaccurate for BB given 

evidence of range contraction (Chapter 4 in SWG 2016) and links between sea-ice and 

nutritional condition and reproductive rates (Chapters 6 and 7 in SWG 2016). Although we 

placed low confidence in the low estimates of S* for the BB subpopulation from 2011–2013 

(Scenario 1; see below), it is possible these estimates partially reflected negative effects of sea-

ice loss. In combination, the short duration of recent subpopulation assessments in BB and KB, 

statistical uncertainty and potential bias in demographic parameters, and interannual variation, 

precluded direct estimation of subpopulation density. Our modeling approach did not make 

purposefully conservative assumptions about current density effects, especially for the BB 

subpopulation, and therefore could have understated the current and future effects of sea-ice loss. 

We recommend that future predictive modeling include sensitivity analyses with respect to key 

assumptions (e.g., Zabel et al. 2006).   

Polar bears are distributed throughout the circumpolar Arctic in 19 subpopulations 

(PBSG 2010). Their life history is dependent on sea ice (Laidre and Regehr 2017), which is used 



Baffin Bay and Kane Basin Harvest Assessment Final Report to the Joint Commission (2017) 
 

48 | P a g e  

as a platform from which to hunt their primary prey, ringed seals (Pusa hispida) and bearded 

seals (Erignathus barbatus).  Earlier sea-ice breakup and reductions in optimal ice habitat have 

been linked to reductions in polar bear body condition, survival, reproduction, and abundance in 

some subpopulations (Stirling et al. 1999; Regehr et al. 2007, 2010; Rode et al. 2012; Bromaghin 

et al. 2015; Lunn et al. 2016; Obbard et al. 2016). Additional studies have documented use of 

less optimal sea ice habitat in several polar bear subpopulations (e.g. Durner et al. 2009, Wilson 

et al. 2014, Laidre et al. 2015, McCall et al. 2015). Our population projections for the BB and 

KB subpopulations included environmental variation primarily through the proxy metric for K, 

which was calculated from remote-sensing data for sea ice. Sea-ice metrics from other case 

studies for polar bears are reviewed by Stern and Laidre (2016). We did not consider rapid, non-

linear declines in K or potentially catastrophic ecological or demographic effects due to climate 

change (e.g., Derocher et al. 2013), although the modeling framework could readily be adapted 

to include such effects. If subpopulations experience negative density-dependent effects that are 

larger or more abrupt than represented by the proxy metric for K, or negative density-

independent effects that occur rapidly with respect to the management interval (i.e., so that 

multiple years elapse before such effects are detected), the harvest strategies identified in this 

report might cease to meet management objectives, resulting in increased risk of negative 

outcomes. Following a state-dependent management approach with a relatively short 

management interval (e.g., 10–15 years) can mitigate such risks, because reductions in N and the 

vital rates, whatever their cause, could be detected in future subpopulation surveys, and harvest 

strategies adjusted accordingly. Population dynamics and harvest strategies for declining 

populations are reviewed in detail in USFWS (2016). 

 

Management objectives 

We evaluated Management Objectives 1 and 2 at t = 36, corresponding to three polar bear 

generations (Regehr et al. 2016) in the future, a common time reference for population 

projections (e.g.,  IUCN 2017). We also report results at t = 15 years to provide insight into near-

term population dynamics and identify potential metrics for monitoring (e.g., the proportion of 

females, see below).  

Management Objective 1, which desired to achieve N ≥ 90% of its current value, is more 

relevant to harvest assessments when habitat is stable or increasing. Under conditions of 
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declining K, it is not possible to meet Management Objective 1 over the long term, even in the 

absence of harvest. For example, population projections for BB only met Management Objective 

1b under cessation of harvest, which resulted in transient subpopulation increases as N 

approached K, followed by declines as N/K reached 1 (Tables BB6 and S.BB2).  

Management Objective 2, which desired to keep N ≥ MNPL with respect to a changing 

K, is more relevant to harvest assessments when habitat is declining. The goal is to maintain a 

constant ratio of N/K, such that subpopulation size and carrying capacity decline in parallel. If N 

remains far enough below K due to harvest (e.g., at MNPL), density effects are alleviated and 

there is a harvestable surplus. Under a harvest strategy that fulfills these conditions, long-term 

declines in N are driven primarily by declines in K. Regehr et al. (2017) proposed that such 

strategies are possible for polar bears, as long as habitat loss affects subpopulations primarily 

through density-dependent mechanisms (e.g., increased crowing and competition for limited 

resources), or if a state-dependent management approach is followed and the management 

interval is short enough to respond to density-independent reductions in r (e.g., reduced 

reproductive success because bears have insufficient time to hunt seals on the sea ice, regardless 

of density). Figure BB3 shows sample replicates from population projections that illustrate this 

concept, except toward the end of the projections when the probability of severe male depletion 

increases and causes reproductive failure (see below).  

Management Objective 3 desired to achieve, but not exceed, a 30% reduction in N in 10–

15 years, while maintaining subpopulation size above the level necessary to achieve maximum 

sustainable yield (i.e., above MNPL). Simultaneously meeting these two population conditions is 

likely not possible. That is because MNPL for polar bears occurs at approximately N/K = 0.70 

(Regehr et al. 2017). Unless a subpopulation started at N/K = 1, a 30% reduction in N would 

necessarily result in a density N/K < 0.70 (i.e., below the subpopulation size that would produce 

maximum sustainable yield).  

 

Harvest and subpopulation sex ratio 

For both subpopulations, we performed projections with multiple values of sex ratio in 

the harvest (SR). Male-biased harvest is a common wildlife management and conservation tool 

(e.g., Mysterud 2011). For polar bears, seeking to harvest at SR = 2 (i.e., a 2:1 male-to-female 

ratio) is intended to protect adult females (Taylor et al. 2008b), which have the highest 
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reproductive value (Hunter et al. 2007). For the BB and KB subpopulations, harvest data from 

recent decades suggested that SR = 1.25 and 0.94, respectively. These estimates were based on 

hunter-reported sex in Canada, which genetic testing suggests is highly accurate; and genetic sex 

determination of harvest samples from Greenland in the 2010s, which was assumed to represent 

the long-term sex ratio in the Greenlandic harvest due to apparent inaccuracies in hunter-reported 

sex (Chapter 8 in SWG 2016). For most of our simulations, harvest strategies that used SR = 2, 

instead of the lower status quo values of SR, did not result in higher harvest rates that met 

management objectives. This should not be interpreted as evidence against the conservation 

value of sex-selective harvest. Rather, it is a consequence of lower estimates of S* for males than 

females in both subpopulations which, in conjunction with a sex-selective harvest, often led to 

the depletion of males. This had negative effects on reproduction via Allee effects in the mating 

system, translating into lower realized values of r and lower sustainable harvest. Taylor et al. 

(2008b) suggested that a 2:1 male-to-female harvest designed to achieve maximum sustainable 

yield, is unlikely to reduce the abundance or mean age of male bears to the point of reducing 

mating success. However, that analysis used equal survival rates for males and females, and the 

harvest rate was calculated relative to a different interpretation of maximum sustainable yield 

than is used here. Accurate monitoring of the sex ratio in the harvest, as well as the sex 

composition of the subpopulation and the litter production rate, are necessary to determine the 

extent to which reduction of male bears might affect the productivity of the BB and KB 

subpopulations. We suggest that it is important to investigate the analytical and biological 

reasons for lower estimates of S* for male bears. Our finding that females comprise 

approximately 70% of independent bears in both subpopulations, despite harvest that may not be 

strongly selective for males, suggests that there is a biological basis for this finding, which could 

signal an emerging conservation concern and have demographic consequences not considered in 

our analyses.  

We estimated stage-specific harvest vulnerability vectors for females and male using age 

data from the BB subpopulation (section Population initialization). Results suggested a slight 

preferential selection for juvenile bears of both sexes, compared to their representation in the 

subpopulation. For example, male two-year-olds (stage 7) were 25% more likely to be harvested 

compared to what would be expected based on their relative abundance. Strong selection against 

adult female bears with dependent young (stages 5 and 6) was consistent with the protection of 
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family groups in BB (Chapter 8 in SWG 2016). All population projections assumed that harvest 

vulnerability will remain constant in the future. If this is not the case (e.g., if selection becomes 

stronger for adults and weaker for subadults), the harvest strategies that meet management 

objectives might change.  

 

Baffin Bay 

We suggest that demographic modeling results for both subpopulations should be 

interpreted within the context of other available information. Sea-ice habitat in the BB region 

significantly declined between the previous subpopulation assessment in the 1990s and the recent 

reassessment in the 2010s (Chapter 4 in SWG 2106). The length of summer (i.e., the number of 

days from sea-ice retreat in spring to sea-ice advance in fall) increased by 12 days/decade since 

1979. The mean sea-ice concentration during June–October decreased by 4% per decade. The 

general pattern of melt occurs about 3–4 weeks earlier in the 2010s than in 1990s. In general, BB 

has incurred large changes in the sea-ice regime experienced by polar bears and this has resulted 

in habitat loss (Stern and Laidre 2016; SWG 2016), which has translated to biological changes in 

the subpopulation. BB bears used significantly lower sea-ice concentrations in winter and spring 

in the 2010s than the 1990s (SWG 2016). Adult female bears are significantly closer to land in 

all months than in the 1990s, except at the end of breakup (June–July) when they stay on 

offshore sea ice as long as possible, likely to maximize feeding. Arrival dates on Baffin Island in 

summer are one month earlier in the 2010s than in the 1990s, and therefore the amount of time 

bears spent on land has increased by 20–30 days since the 1990s. There is a significantly shorter 

maternity den duration in the 2010s and maternity dens occur at higher elevations and steeper 

slopes than maternity dens in the 1990s, likely due to reduced snow cover (Escajeda et al. 2017). 

Body condition declined in BB between 1993 and 2013, and declines were in close 

association with the duration of the ice-free period and spring sea ice transition dates. 

Reproductive metrics indicate that, from 1993 to 2013, an annual index of C0 recruitment 

declined concurrent with a trend towards earlier spring sea-ice break-up (SWG 2016). There has 

also been a significant reduction in the size of the 2010s BB 95% kernel range (i.e., a measure of 

the area used by bears fitted with radiocollars) in all months and seasons compared to the range 

in the 1990s. The most marked reduction is a 60% decline in subpopulation range size in 

summer. With respect to movements across subpopulation boundaries, BB bears in the 2010s 
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were significantly less likely to leave BB than in the 1990s. In particular, there was a reduction 

in the number of collared bears moving into Davis Strait and Lancaster Sound, apparently due to 

reduced winter sea-ice coverage. This suggests the BB subpopulation has become more discrete, 

with less exchange between it and other subpopulations. 

For the BB subpopulation, litter production rate for females age ≥5 years (β4) was 

estimated to be 0.93 (SE = 0.08) from field data collected 2011–2013. Taking into account 

statistical uncertainty, this value is similar to the values of 0.88 for bears age 5 years, and 1.00 

for bears age ≥ 6 years, reported for BB by Taylor et al. (2005); and higher than the mean value 

of 0.80 for bears age ≥ 6 years across 11 other subpopulations (range = 0.44 to 0.98; Table S1 in 

Regehr et al. 2017). Relatively high litter production is consistent with our modeling assumption 

that, despite evidence for ecological change, the BB subpopulation is currently not experiencing 

strong density-dependent limitation in demographic parameters. We estimated β4 directly from 

the sample of observed bears (section Methods), which was assumed to reflect the subpopulation 

because CR modeling did not identify differences in recapture probabilities (Chapter 5 in SWG 

2016). However, during the autumn single adult females were more likely to be inland or at high 

elevations (SWG 2016), which could have led to heterogeneity in recapture probabilities that was 

not detected in the modeling process. If this was the case, single adult females could have been 

under-represented in the observation sample, which could lead to positive bias in estimates of β4 

because the number of single adult females appears in the denominator of the equation for litter 

production rate.  

The three scenarios of the vital rates for BB corresponded to significant differences in 

subpopulation status (Table BB4) and therefore in harvest strategies. We placed less confidence 

in Scenario 1, because estimates of S* for the period 2011–2103 were based primarily on three 

years of sampling, and bias in survival during the terminal years of a CR study is common when 

there is un-modeled heterogeneity in recapture probabilities or non-random temporary 

emigration from the sampling area (Peñaloza et al. 2014). Estimates of S* for Scenario 2 were 

referenced to 1998–2010, a longer period that was bracketed by intensive sampling in the 1990s 

and 2010s, and throughout which research marks were returned in the harvest. Furthermore, 

population reconstruction suggested that a subpopulation with the vital rates from Scenario 2 

could exhibit a stable trajectory over the period 1998–2010, when subject to the observed harvest 

of approximately 162 bears per year and observed variation in sea-ice conditions. We started the 
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population reconstruction in 1998 at an assumed abundance of 2,826 (i.e., the estimate for the 

period 2011–2013), because SWG (2016) indicated that lower estimates of N from the 1990s 

included an unknown level of negative bias, and that trends in the size of the BB subpopulation 

could not be reliably determined. Our finding that the vital rates of Scenario 2 were capable of 

maintaining a stable subpopulation does not constitute evidence that this occurred. We did not 

complete a comprehensive suite of population reconstructions, and other combinations of factors 

(e.g., higher starting N and lower vital rates) might reproduce equally plausible histories. 

Nonetheless, the vital rates of Scenario 2 appear consistent with available information on the 

history of the BB subpopulation, to the extent this can be determined given uncertainties and 

potential biases in the data. Also, population reconstruction from 1998–2010 led to an ending 

proportion of females in the subpopulation that was similar to the value estimated from sex- and 

age-specific abundance estimates for the period 2011–2013. 

For the reasons discussed above, we considered Scenario 2 to be the more likely 

representation of the current status of the BB subpopulation. Harvest strategies in Table BB6 that 

met Management Objective 2 are likely to satisfy the definition of sustainable harvest proposed 

by Regehr et al. (2017), which requires maintaining a subpopulation size above MNPL with 

respect to a changing K, and limiting the negative effects of harvest on persistence. For harvest 

strategies using the status quo value of SR = 1.25 and a 15-year management interval, the upper 

limits on present-day harvest rate (ht=1) were 4.3 and 5.7% for “low” and “medium” risk 

tolerances, as stated by the JC. This corresponds to present-day harvest levels of up to 120 and 

160 bears per year, respectively, which would be applied for a period of 15 years and then 

updated. This range encompasses current TAH of 132 for the BB subpopulation (SWG 2016). 

The sustainability of these harvest strategies is conditional on the input data and assumptions of 

our modeling approach, including (1) that Scenario 2, the most optimistic scenario of the vital 

rates, is an accurate representation of the current and future status of the BB subpopulation; and 

(2) adherence to a state-dependent management approach over the next 35 years, with a 15-year 

management interval and future subpopulation assessments that provide a level of precision 

similar to the 1998–2010 estimates of S* (SWG 2016). The harvest strategy corresponding to 

“low” risk tolerance (i.e., ht=1 = 4.3%) is associated with lower probabilities of male depletion 

and extirpation in later years of the projection. For the BB subpopulation, nearly all harvest 

strategies can be expected to require reductions in the harvest level over time, due primarily to 
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declining K, but also potentially due to harvest if there are inaccuracies in the input data or our 

modeling approach. It is also possible that the harvest rate will decline over time due to Allee 

effects in the mating system or to density-independent reductions in r that were not considered in 

our analyses.  

We included Scenario 3 of the vital rates, to provide a means of comparison with an 

“average” polar bear subpopulation. Table BB7 indicates that, using the status quo SR = 1.25 and 

a 15-year management interval, harvest strategies with ht=1 = 3.6% could meet Management 

Objective 2 at the “medium” level of risk tolerance. This corresponds to a present-day harvest 

level of up to 100 bears per year. The upper limit on ht=1 was also 3.6% for a harvest strategy 

with SR = 2, which is lower than the historic standard 4.5% harvest rate when using a 2:1 male-

to-female sex ratio, for subpopulations experiencing positive environmental conditions (Taylor et 

al. 1987a). This difference is partially due to our inclusion of a declining trend in K for the BB 

subpopulation. It also suggests that our demographic modeling approach, when used in 

conjunction with Management Objective 2 and a “medium” risk tolerance as stated by the JC, 

may be slightly more conservative than previous predictive modeling for polar bears.   

For the BB subpopulation, the challenges of meeting Management Objective 3, as it was 

stated by the JC, were presented above. To inform future discussion of subpopulation reduction, 

we identified a harvest strategy that resulted in a 25% reduction in starting subpopulation size 

over 15 years, while remaining with the stated risk tolerance for not exceeding a 30% reduction 

(Management strategy BB_S1 in Table S.BB5). This strategy required SR = 1, a 5-year 

management interval, and improved precision in the vital rates estimated from future 

subpopulation surveys. The starting harvest rate was 8.7%, corresponding to a present-day 

harvest level of 245 bears per year. It is unlikely that the near-optimal management conditions 

required by this strategy are feasible in practice, suggesting that either the management 

objectives or risk tolerances associated with a managed subpopulation reduction require 

reconsideration. Another practical challenge of managed reduction is that harvest must be rapidly 

reduced from very high levels in early years, to much lower levels once the target subpopulation 

size has been achieved. The risks of not reducing harvest in this manner were demonstrated by 

harvest strategy BB_S2, which maintained a fixed-level harvest of 245 bears per year for 15 

years, without new subpopulation assessments or adjustments to the harvest. That strategy 

resulted high probabilities of extirpation (Table S.BB5), emphasizing the critical importance of 
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monitoring and responsive management under aggressive harvest regimens. 

 

Kane Basin 

The annual cycle of sea-ice habitat in KB has shifted from a largely year-round ice 

platform (>30% coverage in summer) to a cycle that resembles the seasonal ice ecoregion 

(Amstrup et al. 2008) with complete melt-out in summer (<5% coverage; SWG 2016). The KB 

subpopulation has responded to changing sea-ice conditions with broad movement and habitat 

use patterns that are more similar to those of bears in seasonal sea-ice ecoregions (e.g., expanded 

seasonal home ranges). Apparent improvement in body condition in the 2010s, and no evidence 

of changes in reproductive performance in KB between the 1990s and 2010s, may reflect natural 

variation or a response to long-term changes in sea-ice dynamics in KB (SWG 2016). These 

observed changes reflect general differences in habitat use of bears occupying the archipelago vs. 

seasonal ice ecoregions: bears inhabiting seasonal ice regions have larger and more variable 

home ranges as they temporally track sea ice, whereas bears in archipelago regions have smaller 

home ranges with less variation. 

For the KB subpopulation, litter production rate for females age ≥5 years (β4) was 

estimated to be 0.71 (SE = 0.16) from field data collected 2012–2014. Considering statistical 

uncertainty, this suggests reproductive success similar to, or slightly lower than, other 

subpopulations (Table S1 in Regehr et al. 2017). The two scenarios of the vital rates for KB 

corresponded to significant differences in subpopulation status (Table KB3) and therefore in 

harvest strategies. Scenario 1 was characterized by low capacity for growth and high uncertainty 

(λ = 0.01 [SE = 0.04]), due largely to low and uncertain estimates of S* for bears age ≤ 2 years 

(Table KB2). We placed less confidence in Scenario 1 because survival estimates of young bears 

were based on very small sample sizes during the period 2012–2014 (e.g., < 4 C0 marked per 

year). Furthermore, population reconstruction suggested that a subpopulation with vital rates 

from Scenario 1 would exhibit a declining trend from 1998–2014, when subject to the observed 

harvest of approximately 8 bears per year and an increasing trend in K. This is inconsistent with 

the estimated increase in abundance from 224 in the 1990s to 357 in the 2010s (Chapter 10 in 

SWG 2016), and with other evidence for productivity of the KB subpopulation (Chapters 9, 12, 

and 13 in SWG 2016).  
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Scenario 2 for KB included modified values of S* for bears age ≤ 2 years, as necessary to 

reproduce the estimated subpopulation trend between the 1990s and 2010s, keeping other vital 

rates (e.g., adult survival) identical to Scenario 1. Vital rates in Scenario 2 retained the same 

amount of sampling variation as Scenario 1. Therefore, trajectories during population 

reconstruction were highly variable, corresponding to an 80% probability that the ending 

subpopulation size was at least one bear larger than the starting subpopulation size (i.e., that 

N2014 > N1998). This stochastic representation of the history of the KB subpopulation was slightly 

more pessimistic (i.e., more likely to correspond to a declining subpopulation) compared to 

findings in SWG (2016), which suggested that the probability of a positive subpopulation change 

between the 1990s and 2010s was 95%. For Scenario 2, the modified estimates of S* for bears 

age ≤ 2 years (Table KB2) were lower than the corresponding estimates for BB (noting that 

survival has a different time reference for the two subpopulation based on spring vs. autumn 

sampling), and within the range of juvenile survival estimates for other subpopulations with 

spring sampling (Table S1 in Regehr et al. 2017). The estimate of λ = 1.05 for Scenario 2 was 

equivalent to the mean estimate of unharvested population growth rate for other subpopulations 

(Regehr et al. 2017). Considering other lines of evidence for increasing productivity in the KB 

region, we suggest that Scenario 2 is a plausible representation of the current demographic status 

of this subpopulation.   

For Scenario 2 of the vital rates and using the status quo value of SR = 0.94 and a 15-year 

management interval, the highest harvest strategy that met Management Objective 1 at 

“medium” risk tolerance corresponded to ht=1 = 1.7% and Ht=1 = 6 bears per year. This finding is 

conditional on the input data and assumptions of the modeling approach, including (1) that 

Scenario 2 is an accurate representation of the KB subpopulation; (2) that K will remain stable 

for the next 35 years; and (3) adherence to a state-dependent management approach over the next 

35 years, with a 15-year management interval and future subpopulation assessments that provide 

a level of precision similar to the estimates of S* in SWG (2016). Sustainable harvest strategies 

for KB exhibited slight increases in mean harvest level over time (Table S.KB2), due in part to 

stability in K. If increasing biological productivity in the KB region leads to increasing trends 

over time in K and the intrinsic population growth rate, sustainable harvest levels would be 

expected to increase as well.    
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The relatively low estimate of sustainable harvest for KB was largely due to high 

uncertainty in vital rates, particularly estimates of S* for bears age ≤ 2 years. This is evidenced 

by comparing a harvest level of up to 6 bears per year, calculated from the stochastic model 

projections (see above), with the estimated maximum sustainable yield of 13 bears per year 

based on asymptotic population dynamics (Table KB3). To investigate further, we performed 

two post hoc simulations with alternative assumptions for sampling uncertainty. The first 

simulation, which reduced uncertainty in estimates of S* for bears ≤ 2 years to match the level of 

uncertainty in other survival estimates, resulted in a sustainable harvest of up to 2.8% (10 bears 

per year) under Management Objective 1 with “medium” risk tolerance, when using a 15-year 

management interval. The second simulation, which reallocated total uncertainty between 

sampling and process variation, resulted in a sustainable harvest of up to 2.2% (8 bears per year) 

under the same management conditions. These simulations were relevant because it is difficult to 

obtain precise and accurate estimates of vital rates for small and remote subpopulations such as 

KB. Without such estimates, the options available to managers include (1) inferring 

subpopulation status and sustainable harvest based on data other than the estimated vital rates 

(e.g., by modifying some estimates of S* based on other information, similar to Scenario 2 and 

the post hoc simulations); or (2) adopting a conservative harvest strategy (e.g., Taylor et al. 

2002).  

Considering all available ecological and demographic data for the KB subpopulation, we 

suggest that present-day harvest rates up to approximately 2.8% (10 bears per year) are unlikely 

to cause negative population outcomes, if coupled with effective monitoring under a state-

dependent approach. Use of a 10-year management interval would reduce the risks of harvest 

associated with high uncertainty in the currently available vital rates. If the challenges of 

studying the KB subpopulation lead to continued difficulty in obtaining accurate and precise 

estimates of vital rates, despite increased survey efforts, supplementary monitoring that is more 

frequent but less intensive may be valuable. We suggest developing a suite of ecological and 

demographic indicators to monitor subpopulation status, including accurate information on the 

level and composition of the harvest, marine productivity, habitat use and availability, 

reproductive rates, and estimates or indices of subpopulation size (via aerial survey or CR). 
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Monitoring 

All of the harvest strategies considered in this report require the existence of a coupled 

research-management system under which both the sustainable harvest rate and the harvest level 

are adjusted periodically, based on new scientific information from subpopulation surveys and 

other sources. For both subpopulations, shorter management intervals and more precise estimates 

of N and vital rates, can substantially reduce the risk of negative population outcomes associated 

with a given harvest strategy. Results from the secondary simulations can help managers balance 

trade-offs between monitoring frequency and intensity (and therefore cost), the sustainable 

harvest rate, and harvest risks (Tables BB8 and KB6).  

In our simulations, the management interval corresponded to the exact number of years 

between changes to the harvest level. For example, during population projections a 15-year 

management interval meant that new simulated population assessments were completed, and 

changes to the harvest level implemented, every 15 years. In practice, time lags in the coupled 

research-management system will likely result in departures from this simplified representation. 

For example, even if on-the-ground changes to TAH are implemented every 15 years, each 

change might be based on data from subpopulation surveys that were completed 2–3 years 

earlier. Application of the findings in this report should consider major differences, if they exist, 

between the definition of the management interval in practice and the definition used here.   

Periodically obtaining new estimates of N and the vital rates (which determine r) is a 

central feature of a state-dependent management approach (Regehr et al. 2017). These 

parameters can be difficult and expensive to collect for wildlife populations (e.g., Williams et al. 

2002), although both field methods (e.g., genetic CR; SWG 2016) and analytical approaches 

(e.g., Bayesian implementation of multistate models; Lunn et al. 2016) continue to evolve. Our 

analyses highlight the challenges of using estimated demographic parameters in harvest 

assessments for polar bears, even when the parameters were obtained from well-designed CR 

studies (SWG 2016). We sought to address these challenges primarily through consideration of 

multiple scenarios of the vital rates, which were developed based on (i) the estimated vital rates, 

referenced to different time periods; (ii) insights into the magnitude and directionality of 

potential bias (e.g., Schaub et al. 2004; Peñaloza et al. 2014); (iii) population reconstruction; and 

(iv) comparison with other case studies for polar bears. Although the magnitude of bias is 

generally lower in estimates of survival from CR studies compared to estimates of abundance 
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(Williams et al. 2002), the ramifications of relatively small bias in survival (e.g., 1–2%) can be 

profound when survival rates are used for population projections (e.g., Regehr et al. 2009). 

Skalski et al. (2012) recommend that biological realism should serve as a fundamental check for 

estimated demographic parameters and trends, and that auxiliary information should be used 

whenever possible to validate the results from predictive modeling. Peacock et al. (2011) 

recommend that management decisions for polar bears also include assessments of changes in 

body condition, habitat, population, and genetic delineation, and simultaneous surveys on 

Traditional Ecological Knowledge and human dimensions. Most of these subjects were 

successfully addressed during recent studies in BB and KB (SWG 2016). In this report, analyses 

relied heavily on estimates of subpopulation abundance and vital rates from SWG (2016), with 

limited interpretation of these estimates for the purpose of developing alternative scenarios and 

post hoc simulations.  

Detailed recommendations on how to improve future estimates of N and r for the BB and 

KB subpopulations are beyond the scope of this report. Analyses to optimize the design of CR 

studies are being conducted under implementation of the Circumpolar Action Plan for polar 

bears (Polar Bear Range States 2015). For BB and KB, we suggest considering CR studies with a 

modified sampling scheme (e.g., sampling every other year for a period of six years, rather than 

sampling annually for three years), which could be combined with ongoing, less-intensive 

monitoring (see below). Also, we suggest that future study plans consider collecting and 

analyzing multiple types of data under the framework of an integrated population model (e.g., 

Frederiksen et al. 2014). Integrated population models can offer benefits for precision, accuracy, 

and the number of relevant parameters that can be estimated. For example, Regehr et al. (In 

preparation) concurrently analyzed radiotelemetry and CR data, which allowed direct estimation 

of temporary emigration and likely reduced bias in estimates of survival. Integrated population 

models can lead to increased consistency among demographic parameters (e.g., such that 

estimates of survival from studies of individually-marked animals, are consistent with estimates 

of subpopulation trend from aerial surveys). Finally, these models could allow integration of 

multiple types of research data with information from the harvest, local observations, and 

Traditional Ecological Knowledge. This has the potential to provide an improved assessment of 

overall subpopulation status that represents multiple perspectives.  

Together with the conclusions and recommendations in SWG (2016), our analyses 
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highlight important ecological and demographic indices for monitoring the BB and KB 

subpopulations. Accurate knowledge of the number, and sex and age composition, of human-

caused removals is critical to understanding the effects of harvest on a subpopulation. Incomplete 

harvest reporting can lead to subpopulation depletion and other undesired outcomes, including 

negative bias in estimates of S* that result in pessimistic population projections and lower 

estimates of sustainable harvest. We recommend that all harvested bears for the BB and KB 

subpopulations be genetically monitored, to detect recoveries of animals that were genetically 

marked during research. When used in CR models, accurate recovery data provide important 

information on survival and can reduce bias compared to studies with live recaptures only 

(Kendall et al. 2013). Furthermore, a systematic analysis of the sex and age composition of all 

harvest data (i.e., not only from research-marked bears) could provide complementary estimates 

of harvest rate and other demographic parameters (Skalski et al. 2005). Although such analyses 

can be limited by low statistical power and untestable assumptions, these problems are reduced if 

sample sizes are large (e.g., for the BB subpopulation) and recent data are available from a 

comprehensive subpopulation assessment. We suggest that systematic analysis of harvest data 

can be a useful monitoring tool between subpopulation surveys.  

Nutritional condition and reproductive rates should be monitored as key indicators of 

subpopulation productivity (e.g., Vongraven et al. 2012). Changes in these parameters may 

precede or occur at the same time as other demographic changes (e.g., declining survival). 

Estimated relationships between time series of reproductive rates (or any other vital rate) and 

environmental conditions can be used in population projections to evaluate the future effects of 

habitat loss (e.g., Hunter et al. 2010). When such relationships are available, this represents an 

empirical alternative to our approach of projecting future trends in K that operated on vital rates 

through the density-dependent functions.  

For a subpopulation that is harvested near maximum sustainable yield, and therefore in 

theory should function at a density well below carrying capacity (e.g., N/K = 0.70), declining 

nutritional condition and reproductive rates may signal negative density-independent effects. 

Density-independent limitation can result in lower values of rMNPL, thus reducing the sustainable 

harvest rate that is calculated from equations 1 and 2. Under strong density-independent 

limitation, continued harvest without adjustment could lead to predominately additive mortality, 

with the potential to accelerate subpopulation declines compared to what would be expected 
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under sea-ice loss only (USFWS 2016). Given that there is uncertainty about the extent to which 

sea-ice loss affects polar bears via density-dependent vs. density-independent mechanisms (e.g., 

Rode et al. 2012; Lunn et al. 2016), a high priority should be placed on monitoring spatial and 

temporal changes in habitat availability (e.g., as estimated from remote-sensing data of sea ice; 

Stern and Laidre 2016) along with indices of nutritional status and reproduction. SWG (2016) 

presented multiple reproductive indices for the BB and KB subpopulations, and we suggest that 

the number of yearlings per adult female may be particularly useful because it integrates litter 

production rate and juvenile survival (Rode et al. 2014; Regehr et al. 2015). Furthermore, 

concurrent monitoring of reproduction and the proportion of females in the subpopulation, is 

important to detect potential declines in subpopulation productivity due low male survival, 

skewed sex ratios in the subpopulation, and potential Allee effects in the mating system. Our 

analyses highlight these issues as potential conservation concerns for both the BB and KB 

subpopulations.  
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Abbreviations, Acronyms, Symbols, and Definitions 

Adult – A polar bear age ≥ 5 years. 

Allee effect – In this report, Allee effects refer to changes in reproductive rates due to density 

effects in the mating system. Declining reproductive rates can occur if adult males are 

depleted relative to adult females, or if overall subpopulation density is low during the 

spring on-ice breeding season. 
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Capture-recapture (CR) – A type of research study in which animals are individually marked, 

often through biopsy darting to obtain a genetic sample, or chemical immobilization to 

apply a physical mark (e.g., ear tags and lip tattoos). Over multiple years, data on 

individually marked animals can be used to estimate abundance and vital rates.  

Carrying capacity (K) – The maximum number of individuals in a subpopulation that can be 

supported by the environment. This limit reflects the availability of food, habitat, and 

other resources. In this report, K is measured in the number of independent bears. Within 

the demographic model K is converted to metabolic energetic equivalents for the purpose 

of tracking subpopulation density over time.  

Coefficient of variation (CV) – Ratio of the standard deviation to the mean of a statistical 

distribution of values. The CV reflects the level of uncertainty in an estimate, compared 

to the value of the estimate.  

Confidence interval (CI) – A range of values that describes the uncertainty surrounding an 

estimate. Estimates of abundance and vital rates are often accompanied by a 95% CI. 

Cub-of-the-year (C0) – A polar bear cub less than one year of age. In the polar bear life cycle it 

is assumed that C0 are born on 01 January of each year.  

Density dependence – Demographic processes that change the birth or death rates as 

subpopulation density (i.e., the number of individuals per unit of habitat) changes.   

Dependent young – A polar bear age ≤ 2 years that is accompanied by its mother.  

Extirpation – The functional extinction of a subpopulation, which occurs in the population 

projections when a subpopulation size falls below the quasi-extinction threshold. In our 

analyses, extirpation is an irreversible condition that cannot be recovered from once the 

quasi-extinction threshold is crossed.   

Harvest – In this report, harvest refers to all types of human-caused removals (i.e., subsistence 

harvest, sport hunting, removal of problem bears, defense kills, etc.). 

Harvest level (H) – The number of independent bears removed each year through harvest. 

Harvest rate (h) – Percentage of the total subpopulation size (i.e., the number of all bears, 

including dependent young) that is removed as independent bears each year through 

harvest.  

Harvest strategy – A particular set of management and research conditions that define how 

harvest is conducted within the context of a state-dependent management approach. A 
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harvest strategy is specified by inputs to equations 1 and 2, which determine the level and 

sex ratio of the harvest; as well as by the management interval and the level of precision 

in subpopulation data.  

Independent bears – Polar bears age ≥ 2 years that are not with their mothers. Includes all polar 

bears in a subpopulation except for yearlings, cubs-of-the-year, and dependent two-year 

olds.   

Intrinsic population growth rate (r) – The intrinsic population growth rate in the absence of 

human-caused removals. The maximum intrinsic growth rate (rmax) occurs at a low 

density relative to carrying capacity. The intrinsic growth rate at a density referenced to 

maximum net productivity level is denoted rMNPL. Both rmax and rMNPL are unharvested, 

potential growth rates that provide measures of the resilience of a subpopulation.  

κ – A dimensionless metric representing proportional changes in carrying capacity (K), 

calculated from the number of ice-covered days per year. During projections, carrying 

capacity at year t, calculated as K(t) = K(t = 1) * κ (t), operated on vital rates through the 

density-dependent relationships.  

Litter production rate (β4) – The proportion of adult females that are available to breed in year 

t, which produce a litter of cubs-of-the-year in year t+1.  

Management interval (mgmt.interval) – Duration (in years) of the interval between successive 

changes to the harvest level based on new data from completed subpopulation surveys. 

For example, under a 10-year management interval, a harvest level would calculated in 

year t = 1 and then applied each year t = 1, 2, ... 10. During the later years of this period, 

a subpopulation survey would be completed to provide updated estimates of abundance 

and the vital rates. A new harvest level would be calculated using these data equations 1 

and 2, and the new harvest level would be applied in each year t = 11, 12, … 20.  

Management Objective – An overall goal for management of a subpopulation, as stated by the 

responsible management agencies. In this report, management objectives are presented as 

a desired population condition (e.g., maintaining a relatively stable subpopulation size) 

along with a risk tolerance for not meeting the population condition.  

Maximum net productivity level (MNPL) – The subpopulation size that results in the greatest 

net annual increment in subpopulation numbers resulting from reproduction minus losses 

due to natural mortality. The value of MNPL depends on how density dependence 



Baffin Bay and Kane Basin Harvest Assessment Final Report to the Joint Commission (2017) 
 

64 | P a g e  

operates in a subpopulation. Regehr et al. (2017) suggested that for polar bears MNPL 

occurs at approximately 70% of the maximum number of animals the environment can 

support on average (i.e., MNPL ≈ 0.70 × K). 

Metabolic energetic equivalent value (mee) – The energetic requirements of an individual bear, 

expressed relative to the energetic requirements of an average adult female. Larger bears 

(e.g., adult males) have higher mee values that smaller bears (e.g., subadult females), and 

therefore occupy more “energetic space” and make a greater individual contribution to 

density effects. 

Pextirpation – The probability of extirpation for a subpopulation. 

Pmale.dep – The probability of severe male depletion, defined as the number of adult males in a 

subpopulation (stage 10 in Figure 1) falling below 50% of the quasi-extinction threshold.  

PObjective – The probability of meeting the population condition corresponding to a Management 

Objective as defined in Table BB1. 

Population growth rate (λ) – The rate of change of subpopulation size, measured in numbers of 

individuals per unit time.  

Population projection – A simulated process in which the matrix-based model is used to project 

the size and composition of a subpopulation forward over a certain number of annual 

time steps. Each projection was defined by a specific set of biological and management 

conditions.  

Population reconstruction – In this report, population reconstruction refers to retrospective 

population projections that used historic biological and management conditions. 

Population reconstruction was used to explore the past performance of the BB and KB 

subpopulations.   

Quasi-extinction threshold – The size below which a subpopulation is considered to be 

extirpated. Population viability analyses often use quasi-extinction thresholds that are 

larger than one animal, because at very low numbers there can be negative small-

population dynamics that reduce viability and accelerate extirpation. In this report, the 

quasi-extinction thresholds were 100 and 25 independent bears for the BB and KB 

subpopulations, respectively. 

Risk tolerance – The attitude toward risk of the responsible management agencies. In this 

report, risk tolerance is expressed as the required probability of meeting the population 
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condition associated with a Management Objective (e.g., the required probability, as 

stated by managers, of maintaining subpopulation size above a desired level).  

rsd.mod – A modifier on the baseline relative standard deviation (SD) of the vital rates due to 

sampling uncertainty. Using different values of rsd.mod in population projections, 

allowed evaluation of the effects of different levels of precision in the data obtained from 

future subpopulation surveys. For example, a projection with rsd.mod = 0.5 meant that 

simulated population assessments would produce estimates of the vital rates and 

subpopulation size with approximately 50% less sampling variation, compared to the 

actual amount of sampling variation for the corresponding scenario of the vital rates. 

Scenario of the vital rates – A specific set of vital rates assumed to represent the current status 

of a subpopulation. In this report, multiple scenarios of the vital rates were considered 

because of uncertainty and potential bias in estimates of certain demographic parameters 

from CR studies for both the BB and KB subpopulations (SWG 2016).  

Stage – Stages in the life cycle graph representing bears of different sex, age, and reproductive 

status (Figure 1).   

Standard deviation (SD) – A statistical measure that quantifies the amount of variation of a set 

of numbers around the mean (i.e., average) value. A low standard deviation means that 

most numbers are very close to the mean.  

Standard error (SE) – A statistical measure that quantifies the amount of variation associated 

with an estimated parameter. The standard error is the standard deviation of a parameter’s 

sampling distribution (i.e., its probability distribution, as estimated from a random sample 

of data).  

Sex ratio (SR) – A factor that specifies the male-to-female ratio in the harvest. For example, SR 

= 2 is equivalent to a 2:1 male-to-female sex ratio.  

Simulated population assessments – Simulated subpopulation surveys that were performed 

during population projections, on a schedule according to the management interval. The 

simulated population assessments provided updated estimates of subpopulation size and 

vital rates, which were used in equations 1 and 2 to calculate an updated harvest level, 

which was applied for the subsequent management interval.  

State-dependent management – An approach under which management actions are based on 

the current state (status) of the subpopulation. In this report, state-dependent management 
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refers to a coupled research-management system under which both the harvest rate and 

the harvest level are adjusted periodically, based on new scientific information from 

subpopulation surveys. 

Subadult – Independent polar bear aged 2–4 years 

Subpopulation – One of the 19 polar bear subpopulations recognized by the International Union 

for the Conservation of Nature (in the present case the Baffin Bay and Kane Basin 

subpopulations). 

Subpopulation size (N) – The number of bears in a subpopulation. 

t – Annual time step in a subpopulation projection. Quantities labeled with a subscript t are 

referenced to a specific time step. For example, Ht=1 is a harvest level at year 15.  

Vital rates – Demographic parameters such as reproductive rates and survival rates, which 

define transitions in the life cycle graph (Figure 1) and determine the composition and 

growth of a subpopulation.  

Yearling (C1) – A polar bear cub between one and two years of age. 
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Tables and Figures 

Table BB1. Potential Management Objectives for the Baffin Bay (1-3) and Kane Basin (1-2) 

polar bear subpopulations. Population size (N) and carrying capacity (K) are measured in the 

number of independent bears and referenced to an annual time step (t) during population 

projections. 

 

Management 

Objective 

 

Population condition 

Required probability of 

meeting objective 

1a Nt=36 > (0.9 × Nt=1) ≥ 0.90 

1b Nt=36 > (0.9 × Nt=1) ≥ 0.70 

2a Nt=36 > (0.7 × Kt=36) ≥ 0.90 

2b Nt=36 > (0.7 × Kt=36) ≥ 0.70 

3a Nt=15 > (0.7 × Nt=1) ≥ 0.90 

3b Nt=15 > (0.7 × Nt=1) ≥ 0.30 
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Table BB2. Reproductive parameters for the Baffin Bay polar bear subpopulation estimated 

from field data collected 2011-2013. Dependent young are cubs-of-the-year (C0) and yearlings 

(C1). Adult females are ≥ 5 years. The mean and standard error (SE) we calculated using 

simulations methods described in the main text. 

 

Parameter Mean SE 
Litter production rate for adult females (β4) 0.93 0.08 

C0 per adult female 0.58 0.04 

Proportion of adult females with C0 0.38 0.02 

C0 litter size 1.55 0.04 

C1 per adult female 0.35 0.03 

Proportion of adult females with C1 0.24 0.02 

C1 litter size 1.47 0.05 
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Table BB3. Estimates (mean and standard error [SE]) of unharvested survival (S*) for three 

scenarios of the vital rates for the Baffin Bay polar bear subpopulation. The scenarios are 

described in the main text. 

†The life cycle graph (Figure 1) does not include separate stages for cubs-of-the-year (C0) and 

yearlings (C1), but survival rates for these age classes contribute to transition probabilities 

between reproductive stages for adult females. 

 

 Age 
class 

 Scenario 1 Scenario 2 Scenario 3 
Sex Stage Mean SE Mean SE Mean SE 
female C0 † 0.88 0.06 0.88 0.06 0.88 0.06 

female C1 † 0.89 0.06 0.89 0.06 0.89 0.06 

female 2-4 year 1-3 0.91 0.05 0.96 0.02 0.93 0.05 

female ≥5 year 4-6 0.91 0.05 0.96 0.02 0.93 0.05 

male C0 † 0.88 0.06 0.88 0.06 0.88 0.06 

male C1 † 0.89 0.06 0.89 0.06 0.89 0.06 

male 2-4 year 7-9 0.83 0.06 0.91 0.02 0.92 0.06 

male ≥5 year 10 0.83 0.06 0.91 0.02 0.92 0.06 
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Table BB4. Demographic parameters (mean and standard error [SE]) for the Baffin Bay polar 

bear subpopulation, corresponding to the three scenarios of the vital rates, based on asymptotic 

population dynamics. The parameters are: unharvested population growth rate (λ); subpopulation 

density (i.e., N/K) corresponding to maximum net productivity level (MNPL); intrinsic 

population growth rate at MNPL (rMNPL); intrinsic population growth rate at low population 

density (rmax); and maximum sustainable yield (MSY) measured in numbers of independent bears 

under non-selective harvest. 

 

 Scenario 1 Scenario 2 Scenario 3 

Sex Mean SE Mean SE Mean SE 

λ 1.03 0.05 1.08 0.04 1.05 0.03 

MNPL 0.72 0.04 0.67 0.03 0.70 0.03 

rMNPL 0.03 0.06 0.08 0.03 0.05 0.03 

rmax 0.03 0.06 0.10 0.04 0.06 0.04 

MSY 49 67 156 50 100 59 
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Table BB5. Summary of primary simulations for the Baffin Bay polar bear subpopulation, using 

Scenario 1 of the vital rates. For each row in the table, parameters are shown for the maximum 

starting (i.e., t = 1) harvest strategy that meets the corresponding Management Objective (Table 

BB1). FO is a factor to calculate the harvest rate using equation (1); SR is a factor that specifies 

the male-to-female ratio in the harvest; Ht=1 is the starting harvest level measured in the number 

of independent bears per year; and ht=1 is the starting harvest rate, defined as the fraction of total 

population size (i.e., including dependent young) that is removed each year as independent bears. 

All simulations followed a state-dependent management approach with a 15-year management 

interval and baseline data precision (i.e., rsd.mod = 1). NA indicates that a Management 

Objective was not met with no harvest.  

 

Management 
Objective 

SR = 1.0 SR = 1.25 SR = 2.0 
FO Ht=1 ht=1 FO Ht=1 ht=1 FO Ht=1 ht=1 

1a NA NA NA NA NA NA NA NA NA 

1b NA NA NA NA NA NA NA NA NA 

2a 0.00 0 0.0% 0.00 0 0.0% 0.00 0 0.0% 

2b 0.41 20 0.7% 0.36 20 0.7% 0.27 20 0.7% 

3a 0.00 0 0.0% 0.00 0 0.0% 0.00 0 0.0% 

3b 1.22 60 2.1% 1.08 60 2.1% 1.08 80 2.8% 
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Table BB6. Summary of primary simulations for the Baffin Bay polar bear subpopulation, using 

Scenario 2 of the vital rates. For each row in the table, parameters are shown for the maximum 

starting (i.e., t = 1) harvest strategy that meets the corresponding Management Objective (Table 

BB1). FO is a factor to calculate the harvest rate using equation (1); SR is a factor that specifies 

the male-to-female ratio in the harvest; Ht=1 is the starting harvest level measured in the number 

of independent bears per year; and ht=1 is the starting harvest rate, defined as the fraction of total 

population size (i.e., including dependent young) that is removed each year as independent bears. 

All simulations followed a state-dependent management approach with a 15-year management 

interval and baseline data precision (i.e., rsd.mod = 1). NA indicates that a Management 

Objective was not met with no harvest.  

 

Management 
Objective 

SR = 1.0 SR = 1.25 SR = 2.0 
FO Ht=1 ht=1 FO Ht=1 ht=1 FO Ht=1 ht=1 

1a NA NA NA NA NA NA NA NA NA 

1b 0.00 0 0.0% 0.00 0 0.0% 0.00 0 0.0% 

2a 0.78 120 4.3% 0.69 120 4.3% 0.43 100 3.6% 

2b 1.03 160 5.7% 0.92 160 5.7% 0.60 140 5.0% 

3a 1.03 160 5.7% 0.92 160 5.7% 0.60 140 5.0% 

3b 1.16 180 6.4% 1.15 200 7.1% 0.78 180 6.4% 
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Table BB7. Summary of primary simulations for the Baffin Bay polar bear subpopulation, using 

Scenario 3 of the vital rates. For each row in the table, parameters are shown for the maximum 

starting (i.e., t = 1) harvest strategy that meets the corresponding Management Objective (Table 

BB1). FO is a factor to calculate the harvest rate using equation (1); SR is a factor that specifies 

the male-to-female ratio in the harvest; Ht=1 is the starting harvest level measured in the number 

of independent bears per year; and ht=1 is the starting harvest rate, defined as the fraction of total 

population size (i.e., including dependent young) that is removed each year as independent bears. 

All simulations followed a state-dependent management approach with a 15-year management 

interval and baseline data precision (i.e., rsd.mod = 1). NA indicates that a Management 

Objective was not met with no harvest. 

 

Management 
Objective 

SR = 1.0 SR = 1.25 SR = 2.0 
FO Ht=1 ht=1 FO Ht=1 ht=1 FO Ht=1 ht=1 

1a NA NA NA NA NA NA NA NA NA 

1b 0.00 0 0.0% 0.00 0 0.0% 0.00 0 0.0% 

2a 0.60 60 2.1% 0.53 60 2.1% 0.53 80 2.8% 

2b 0.80 80 2.8% 0.89 100 3.6% 0.66 100 3.6% 

3a 1.00 100 3.6% 0.71 80 2.8% 0.66 100 3.6% 

3b 1.40 140 5.0% 1.24 140 5.0% 0.93 140 5.0% 
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Table BB8. Summary of secondary simulations for the Baffin Bay polar bear subpopulation, 

using Scenario 2 of the vital rates. Rows are different levels of rsd.mod, a modifier on the 

baseline relative standard deviation of the vital rates due to sampling uncertainty. Columns are 

different management intervals. Values in the cells represent the upper limits that meet 

Management Objective 2b (Table BB1); where FO is a factor to calculate the harvest rate, and ht=1 is 

the starting harvest rate, defined as the fraction of total population size (i.e., including dependent 

young) that is removed each year as independent bears. All simulations followed a state-

dependent management approach with SR = 1.25. 

 

  Management interval (years) 
rsd.mod 10 15 20 

(Results reported as values of FO) 

0.5 1.15 0.98 0.86 

1.0 1.03 0.92 0.80 

1.5 0.92 0.80 0.75 

(Results reported as values of ht=1) 

0.5 7.1% 6.0% 5.3% 

1.0 6.4% 5.7% 5.0% 

1.5 5.7% 5.0% 4.6% 
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Table KB1. Reproductive parameters for the Kane Basin polar bear subpopulation estimated 

from field data collected 2012-2014. Dependent young are cubs-of-the-year (C0) and yearlings 

(C1). Adult females are ≥ 5 years. The mean and standard error (SE) we calculated using 

simulations methods described in the main text. 

 

Parameter Mean SE 
Litter production rate for adult females (β4) 0.71 0.16 

C0 per adult female 0.55 0.10 

Proportion of adult females with C0 0.34 0.06 

C0 litter size 1.64 0.10 

C1 per adult female 0.22 0.06 

Proportion of adult females with C1 0.17 0.04 

C1 litter size 1.23 0.12 
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Table KB2. Estimates (mean and standard error [SE]) of unharvested survival (S*) for two 

scenarios of the vital rates for the Kane Basin polar bear subpopulation. The scenarios are 

described in the main text. 

†The life cycle graph (Figure 1) does not include separate stages for cubs-of-the-year (C0) and 

yearlings (C1), but survival rates for these age classes contribute to transition probabilities 

between reproductive stages for adult females. 

 

 
Age class 

 Scenario 1 Scenario 2 
Sex Stage Mean SE Mean SE 
female C0 † 0.45 0.15 0.74 0.25 

female C1 † 0.74 0.15 0.87 0.15 

female 2 year 1 0.74 0.15 0.87 0.15 

female 3 year 2 0.97 0.04 0.97 0.04 

female 4 year 3 0.97 0.04 0.97 0.04 

female ≥5 year 4-6 0.97 0.04 0.97 0.04 

male C0 † 0.45 0.15 0.70 0.23 

male C1 † 0.54 0.17 0.74 0.23 

male 2 year 7 0.54 0.17 0.74 0.23 

male 3 year 8 0.90 0.06 0.90 0.06 

male 4 year 9 0.90 0.06 0.90 0.06 

male ≥5 year 10 0.90 0.06 0.90 0.06 
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Table KB3. Demographic parameters (mean and standard error [SE]) for the Kane Basin polar 

bear subpopulation, corresponding to the two scenarios of the vital rates, based on asymptotic 

population dynamics. The parameters are: unharvested population growth rate (λ); subpopulation 

density (i.e., N/K) corresponding to maximum net productivity level (MNPL); intrinsic 

population growth rate at MNPL (rMNPL); intrinsic population growth rate at low population 

density (rmax); intrinsic population growth rate at low population density in the absence of 

human-caused removals (rmax); and maximum sustainable yield (MSY) measured in numbers of 

independent bears under non-selective harvest. 

 

 Scenario 1 Scenario 2 
Sex Mean SE Mean SE 
λ 1.01 0.04 1.05 0.06 

MNPL 0.73 0.05 0.69 0.04 

rMNPL 0.01 0.04 0.05 0.06 

rmax 0.02 0.05 0.07 0.06 

MSY 3 6 13 13 

 

  



Baffin Bay and Kane Basin Harvest Assessment Final Report to the Joint Commission (2017) 
 

86 | P a g e  

Table KB4. Summary of primary simulations for the Kane Basin polar bear subpopulation, 

using Scenario 1 of the vital rates. For each row in the table, parameters are shown for the 

maximum starting (i.e., t = 1) harvest strategy that meets the corresponding Management 

Objective (Table BB1). FO is a factor to calculate the harvest rate using equation (1); SR is a 

factor that specifies the male-to-female ratio in the harvest; Ht=1 is the starting harvest level 

measured in the number of independent bears per year; and ht=1 is the starting harvest rate, 

defined as the fraction of total population size (i.e., including dependent young) that is removed 

each year as independent bears. All simulations followed a state-dependent management 

approach with a 15-year management interval and baseline data precision (i.e., rsd.mod = 1). NA 

indicates that a Management Objective was not met with no harvest. 

 

Management 
Objective 

SR = 0.94 SR = 2.0 
FO Ht=1 ht=1 FO Ht=1 ht=1 

1a NA NA NA NA NA NA 

1b 0.00 0 0.0% NA NA NA 

2a NA NA NA NA NA NA 

2b NA NA NA NA NA NA 
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Table KB5. Summary of primary simulations for the Kane Basin polar bear subpopulation, 

using Scenario 2 of the vital rates. For each row in the table, parameters are shown for the 

maximum starting (i.e., t = 1) harvest strategy that meets the corresponding Management 

Objective (Table BB1). FO is a factor to calculate the harvest rate using equation (1); SR is a 

factor that specifies the male-to-female ratio in the harvest; Ht=1 is the starting harvest level 

measured in the number of independent bears per year; and ht=1 is the starting harvest rate, 

defined as the fraction of total population size (i.e., including dependent young) that is removed 

each year as independent bears. All simulations followed a state-dependent management 

approach with a 15-year management interval and baseline data precision (i.e., rsd.mod = 1). NA 

indicates that a Management Objective was not met with no harvest. 

 

Management 
Objective 

SR = 0.94 SR = 2.0 
FO Ht=1 ht=1 FO Ht=1 ht=1 

1a NA NA NA NA NA NA 

1b 0.48 6 1.7% 0.31 6 1.7% 

2a NA NA NA NA NA NA 

2b 0.32 4 1.1% 0.21 4 1.1% 
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Table KB6. Summary of secondary simulations for the Kane Basin polar bear subpopulation, 

using Scenario 2 of the vital rates. Rows are different levels of rsd.mod, a modifier on the 

baseline relative standard deviation of the vital rates due to sampling uncertainty. Columns are 

different management intervals. Values in the cells represent the upper limits that meet 

Management Objective 1b (Table BB1); where FO is a factor to calculate the harvest rate, and ht=1 is 

the starting harvest rate, defined as the fraction of total population size (i.e., including dependent 

young) that is removed each year as independent bears. All simulations followed a state-

dependent management approach with SR = 0.94. 

 

  Management interval (years) 
rsd.mod 10 15 20 

(Results reported as values of FO) 

0.5 0.64 0.64 0.56 

1.0 0.56 0.48 0.48 

1.5 0.56 0.40 0.40 

(Results reported as values of ht=1) 

0.5 2.2% 2.2% 2.0% 

1.0 2.0% 1.7% 1.7% 

1.5 2.0% 1.4% 1.4% 
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Figure BB1. The polar bear life cycle graph underlying the matrix-based projection model, 

reproduced from Figure 1 in Regehr et al. (2017). Stages 1–6 are females and stages 7–10 are 

males; σi is the annual probability of survival of an individual in stage i, σL0 and σL1 are the 

probabilities of at least one member of a cub-of-the-year (C0) or yearling (C1) litter surviving, f 

is the expected size of C1 litters that survive to 2 years, and βi is the probability, conditional on 

survival, of an individual in stage i breeding, thereby producing a C0 litter with at least one 

member surviving. Solid lines are stage transitions and dashed lines are reproductive 

contributions. 
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Figure BB2. Sample density-dependent curves of the vital rates for the Baffin Bay polar bear 

subpopulation for Scenario 2. Vital rates shown are survival probability for stage 4 (σ4, solid 

line), survival probability for stage 1 (σ1, dashed line), survival probability for cub-of-the-year 

litters (σL0, dotted line), and breeding probability for stage 4 (β4, dash-dot line). Density on the x-

axis is expressed as the ratio of population size (N) to carrying capacity (K). The solid vertical 

line corresponds to N/K = 1 at carrying capacity. The vital rates at this density would result in a 

stable subpopulation (i.e., intrinsic population growth rate [r] = 0) assuming asymptotic 

dynamics. The dashed vertical line corresponds to maximum net productivity level (MNPL). The 

vital rates at a subpopulation size equivalent to MNPL are the mean parameter values for 

Scenario 2 (Tables BB2 and BB3). 
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Figure BB3. Sample replicates (black lines) from population projections for the Baffin Bay 

subpopulation, using vital rates from Scenario 2. The grey shaded area in the background 

represents the upper 95% confidence interval for carrying capacity, measured in number of bears, 

which declined at a rate of approximately 5.5% per decade. The y-axis N is subpopulation size 

referenced to independent bears, and the heavy black line is median subpopulation size. 

Replicates are shaded yellow and red for time steps at which they experienced male depletion or 

extirpation, respectively. Projections are for a harvest strategy with F0 = 0.92, SR = 1.25, a 15-

year management interval, and rsd.mod = 1.0 (management inputs are defined in the main text). 

This harvest strategy equates to a starting (i.e., t = 1) harvest level of 160 bears per year. 
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Figure BB4. Example results from population projections for the Baffin Bay polar bear 

subpopulation, using vital rates from Scenario 2. The left y-axis H is the harvest level, with the 

circles and cross-circles representing the average number of independent male and female polar 

bear removed per year, respectively, under a state-dependent management approach. The right y-

axis is the probability of severe male depletion, values of which are plotted as the dashed line. 

Projections are for a harvest strategy with F0 = 0.92, SR = 1.25, a 15-year management interval, 

and rsd.mod = 1.0 (i.e., the same harvest strategy as Figure BB3; management inputs are defined 

in the main text). This harvest strategy equates to a starting (i.e., t = 1) harvest level of 160 bears 

per year. 

 

 



Baffin Bay and Kane Basin Harvest Assessment Final Report to the Joint Commission (2017) 
 

93 | P a g e  

 

 

 

 
 

Figure KB1. Sample replicates (black lines) from population projections for the Kane Basin 

subpopulation, using vital rates from Scenario 1. The grey shaded area in the background 

represents the upper 95% confidence interval for carrying capacity, measured in number of bears, 

which declined at a rate of approximately 5.5% per decade. The y-axis N is subpopulation size 

referenced to independent bears, and the heavy black line is median subpopulation size. 

Replicates are shaded yellow and red for time steps at which they experienced severe male 

depletion or extirpation, respectively. Projections are for a subpopulation with no harvest. 
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Appendix S1. 

Table S.BB1. Detailed results of primary simulations for the Baffin Bay polar bear subpopulation, using Scenario 1 of the vital rates. Each column corresponds to 

one simulation, with results reported at time steps t = 15 and 36. FO is a factor to calculate the harvest rate using equation (1); SR is a factor that specifies the male-

to-female ratio in the harvest; Ht=1 is the starting harvest level measured in the number of independent bears per year; ht=1 is the starting harvest rate, defined as the 

fraction of total population size (i.e., including dependent young) that is removed each year as independent bears; mgmt.interval is the management interval 

(years); rsd.mod is a modifier on the baseline relative standard deviation of the vital rates due to sampling uncertainty; N is population size referenced to 

independent bears; and K is carrying capacity expressed as numbers of bears. Results for Pcondition are the estimated probabilities of meeting population conditions 

corresponding to: extirpation, male depletion, and Management Objectives 1-3 (Table BB1). All results assume a state-dependent management approach. 

 t = 1 t = 1 t = 1 
FO 0.00 0.41 0.81 1.22 1.63 0.00 0.36 0.72 1.08 1.45 0.00 0.27 0.54 0.81 1.08 
ht=1 0.0% 0.7% 1.4% 2.1% 2.8% 0.0% 0.7% 1.4% 2.1% 2.8% 0.0% 0.7% 1.4% 2.1% 2.8% 
Ht=1 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 
SR 1.00 1.00 1.00 1.00 1.00 1.25 1.25 1.25 1.25 1.25 2.00 2.00 2.00 2.00 2.00 

mgmt.interval 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 
rsd.mod 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 t = 15 t = 15 t = 15 
Nt/N1 1.05 1.05 0.95 0.90 0.89 1.08 1.03 0.99 0.93 0.87 1.07 1.04 0.98 0.97 0.90 
Nt/Kt 0.94 0.91 0.85 0.80 0.78 0.95 0.91 0.87 0.82 0.76 0.94 0.93 0.87 0.86 0.81 

Ht 0 20 40 59 77 0 20 40 58 77 0 20 39 59 78 
Pextirpation 0.00 0.00 0.01 0.03 0.04 0.00 0.00 0.00 0.02 0.04 0.00 0.00 0.01 0.01 0.02 
Pmale.dep 0.00 0.00 0.01 0.04 0.05 0.00 0.00 0.00 0.04 0.07 0.00 0.01 0.01 0.06 0.11 
PObjective1 0.78 0.73 0.66 0.58 0.53 0.81 0.78 0.69 0.60 0.51 0.81 0.79 0.69 0.68 0.57 
PObjective2 0.83 0.79 0.72 0.67 0.63 0.86 0.82 0.77 0.69 0.60 0.87 0.82 0.76 0.76 0.67 
PObjective3 0.86 0.83 0.77 0.71 0.69 0.89 0.86 0.82 0.74 0.66 0.91 0.85 0.80 0.81 0.73 
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Table S.BB1. Continued. 

 t = 36 t = 36 t = 36 

Nt/N1 0.88 0.83 0.65 0.42 0.37 0.90 0.82 0.69 0.45 0.30 0.89 0.83 0.63 0.39 0.25 

Nt/Kt 0.93 0.85 0.68 0.45 0.38 0.94 0.87 0.72 0.47 0.32 0.94 0.88 0.66 0.41 0.27 

Ht 0 27 39 41 46 0 28 39 40 38 0 27 31 35 33 

Pextirpation 0.03 0.05 0.07 0.21 0.22 0.02 0.03 0.06 0.20 0.26 0.03 0.04 0.06 0.25 0.33 

Pmale.dep 0.01 0.04 0.11 0.18 0.20 0.02 0.03 0.12 0.20 0.22 0.01 0.05 0.23 0.26 0.25 

PObjective1 0.53 0.30 0.13 0.07 0.05 0.55 0.34 0.15 0.08 0.05 0.55 0.37 0.15 0.09 0.07 

PObjective2 0.78 0.72 0.49 0.31 0.26 0.81 0.77 0.53 0.33 0.24 0.81 0.77 0.48 0.33 0.26 

PObjective3 0.78 0.71 0.47 0.28 0.23 0.80 0.76 0.50 0.29 0.21 0.80 0.76 0.45 0.29 0.22 
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Table S.BB2. Detailed results of primary simulations for the Baffin Bay polar bear subpopulation, using 

Scenario 2 of the vital rates. Each column corresponds to one simulation, with results reported at time 

steps t = 15 and 36. FO is a factor to calculate the harvest rate using equation (1); SR is a factor that 

specifies the male-to-female ratio in the harvest; Ht=1 is the starting harvest level measured in the number 

of independent bears per year; ht=1 is the starting harvest rate, defined as the fraction of total population 

size (i.e., including dependent young) that is removed each year as independent bears; mgmt.interval is 

the management interval (years); rsd.mod is a modifier on the baseline relative standard deviation of the 

vital rates due to sampling uncertainty; N is population size referenced to independent bears; and K is 

carrying capacity expressed as numbers of bears. Results for Pcondition are the estimated probabilities of 

meeting population conditions corresponding to: extirpation, male depletion, and Management Objectives 

1-3 (Table BB1). All results assume a state-dependent management approach. 

 

(a) male-to-female sex ratio in harvest (SR) = 1.0 

 t = 1 
FO 0.000 0.516 0.646 0.775 0.904 1.033 1.162 1.291 1.420 1.549 1.679 
ht=1 0.0% 2.8% 3.6% 4.3% 5.0% 5.7% 6.4% 7.1% 7.8% 8.5% 9.2% 
Ht=1 0 80 100 120 140 160 180 200 220 240 260 

mgmt.interval 15 15 15 15 15 15 15 15 15 15 15 
rsd.mod 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 t = 15 
Nt/N1 1.14 1.03 1.01 0.97 0.95 0.87 0.85 0.77 0.73 0.57 0.47 
Nt/Kt 1.00 0.91 0.89 0.86 0.83 0.78 0.75 0.68 0.64 0.51 0.41 

Ht 0 82 102 122 142 162 180 198 220 220 225 
Pextirpation 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.03 0.16 0.21 
Pmale.dep 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.10 0.12 0.21 0.26 
PObjective1 1.00 0.98 0.92 0.83 0.68 0.45 0.31 0.17 0.09 0.04 0.03 
PObjective2 1.00 1.00 0.99 0.95 0.91 0.79 0.66 0.45 0.34 0.19 0.14 
PObjective3 1.00 1.00 1.00 0.97 0.96 0.90 0.80 0.62 0.55 0.36 0.27 

 t = 36 
Nt/N1 0.96 0.86 0.84 0.80 0.78 0.72 0.69 0.62 0.57 0.39 0.20 
Nt/Kt 1.00 0.90 0.88 0.85 0.81 0.77 0.72 0.65 0.59 0.41 0.21 

Ht 0 72 86 97 104 105 107 105 108 94 90 
Pextirpation 0.00 0.00 0.00 0.00 0.01 0.03 0.07 0.14 0.18 0.35 0.43 
Pmale.dep 0.00 0.00 0.00 0.00 0.02 0.04 0.05 0.08 0.11 0.13 0.13 
PObjective1 0.75 0.32 0.22 0.13 0.08 0.05 0.03 0.02 0.02 0.01 0.00 
PObjective2 1.00 1.00 0.99 0.95 0.84 0.71 0.55 0.40 0.30 0.18 0.11 
PObjective3 1.00 0.99 0.97 0.91 0.80 0.66 0.50 0.33 0.24 0.14 0.08 
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Table S.BB2. Continued  

(b) male-to-female ratio in the harvest (SR) = 1.25 

 t = 1 
FO 0.000 0.459 0.574 0.689 0.804 0.918 1.033 1.148 1.263 1.378 1.492 
ht=1 0.0% 2.8% 3.6% 4.3% 5.0% 5.7% 6.4% 7.1% 7.8% 8.5% 9.2% 
Ht=1 0 80 100 120 140 160 180 200 220 240 260 

mgmt.interval 15 15 15 15 15 15 15 15 15 15 15 
rsd.mod 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 t = 15 
Nt/N1 1.12 1.06 1.00 0.96 0.96 0.92 0.88 0.80 0.75 0.59 0.41 
Nt/Kt 1.01 0.92 0.89 0.87 0.85 0.82 0.78 0.71 0.66 0.53 0.37 

Ht 0 81 101 122 142 161 181 198 211 212 205 
Pextirpation 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.07 0.18 0.28 
Pmale.dep 0.00 0.00 0.00 0.00 0.01 0.03 0.05 0.14 0.23 0.34 0.39 
PObjective1 1.00 0.98 0.93 0.86 0.75 0.59 0.43 0.26 0.16 0.07 0.03 
PObjective2 1.00 0.99 0.98 0.96 0.93 0.85 0.73 0.55 0.42 0.25 0.12 
PObjective3 1.00 1.00 0.99 0.98 0.97 0.92 0.85 0.72 0.58 0.39 0.24 

 t = 36 
Nt/N1 0.94 0.88 0.85 0.81 0.78 0.75 0.71 0.65 0.56 0.37 0.14 
Nt/Kt 1.00 0.91 0.89 0.87 0.82 0.79 0.74 0.68 0.58 0.39 0.15 

Ht 0 71 81 89 93 94 98 100 99 96 93 
Pextirpation 0.00 0.00 0.00 0.00 0.02 0.04 0.11 0.16 0.25 0.36 0.45 
Pmale.dep 0.00 0.00 0.01 0.02 0.08 0.12 0.14 0.20 0.22 0.21 0.23 
PObjective1 0.76 0.39 0.28 0.21 0.13 0.09 0.06 0.04 0.03 0.02 0.01 
PObjective2 1.00 1.00 0.99 0.95 0.84 0.74 0.64 0.51 0.37 0.25 0.17 
PObjective3 1.00 0.99 0.97 0.93 0.81 0.69 0.57 0.42 0.29 0.18 0.12 
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Table S.BB2. Continued  

(c) male-to-female ratio in the harvest (SR) = 2.00 

 t = 1 
FO 0.000 0.344 0.430 0.516 0.603 0.689 0.775 0.861 0.947 1.033 1.119 
ht=1 0.0% 2.8% 3.6% 4.3% 5.0% 5.7% 6.4% 7.1% 7.8% 8.5% 9.2% 
Ht=1 0 80 100 120 140 160 180 200 220 240 260 

mgmt.interval 15 15 15 15 15 15 15 15 15 15 15 
rsd.mod 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 t = 15 
Nt/N1 1.12 1.04 1.02 1.01 0.99 0.94 0.85 0.78 0.60 0.41 0.15 
Nt/Kt 1.01 0.94 0.91 0.89 0.87 0.83 0.76 0.69 0.54 0.36 0.13 

Ht 0 81 102 122 142 161 181 195 198 197 181 
Pextirpation 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.08 0.16 0.26 0.42 
Pmale.dep 0.00 0.00 0.00 0.01 0.03 0.17 0.32 0.46 0.57 0.60 0.51 
PObjective1 1.00 1.00 0.96 0.92 0.81 0.63 0.39 0.24 0.09 0.06 0.02 
PObjective2 1.00 1.00 0.99 0.98 0.94 0.83 0.69 0.51 0.31 0.20 0.11 
PObjective3 1.00 1.00 1.00 1.00 0.97 0.89 0.79 0.61 0.41 0.27 0.15 

 t = 36 
Nt/N1 0.94 0.88 0.85 0.83 0.79 0.73 0.68 0.61 0.48 0.22 0.00 
Nt/Kt 1.00 0.93 0.90 0.87 0.82 0.77 0.72 0.64 0.51 0.23 0.00 

Ht 0 64 66 68 67 73 87 94 101 92 77 
Pextirpation 0.00 0.00 0.00 0.01 0.05 0.09 0.14 0.19 0.27 0.40 0.55 
Pmale.dep 0.00 0.02 0.08 0.17 0.25 0.29 0.34 0.34 0.33 0.34 0.27 
PObjective1 0.76 0.47 0.37 0.28 0.20 0.14 0.10 0.06 0.04 0.02 0.01 
PObjective2 1.00 0.99 0.93 0.85 0.74 0.66 0.60 0.47 0.36 0.21 0.11 
PObjective3 1.00 0.98 0.92 0.83 0.72 0.62 0.53 0.39 0.28 0.15 0.08 
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Table S.BB3. Detailed results of primary simulations for the Baffin Bay polar bear subpopulation, using 

Scenario 3 of the vital rates. Each column corresponds to one simulation, with results reported at time 

steps t = 15 and 36. FO is a factor to calculate the harvest rate using equation (1); SR is a factor that 

specifies the male-to-female ratio in the harvest; Ht=1 is the starting harvest level measured in the number 

of independent bears per year; ht=1 is the starting harvest rate, defined as the fraction of total population 

size (i.e., including dependent young) that is removed each year as independent bears; mgmt.interval is 

the management interval (years); rsd.mod is a modifier on the baseline relative standard deviation of the 

vital rates due to sampling uncertainty; N is population size referenced to independent bears; and K is 

carrying capacity expressed as numbers of bears. Results for Pcondition are the estimated probabilities of 

meeting population conditions corresponding to: extirpation, male depletion, and Management Objectives 

1-3 (Table BB1). All results assume a state-dependent management approach. 

 

(a) male-to-female ratio in the harvest (SR) = 1.0 

  t = 1 
FO 0.000 0.598 0.797 0.996 1.196 1.395 1.594 1.793 
ht=1 0.0% 2.1% 2.8% 3.6% 4.3% 5.0% 5.7% 6.4% 
Ht=1 0 60 80 100 120 140 160 180 

mgmt.interval 15 15 15 15 15 15 15 15 
rsd.mod 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 t = 15 
Nt/N1 1.14 1.05 1.00 0.98 0.94 0.87 0.82 0.73 
Nt/Kt 1.02 0.93 0.90 0.87 0.83 0.78 0.72 0.66 

Ht 0 60 80 100 119 136 153 172 
Pextirpation 0.00 0.00 0.00 0.01 0.01 0.04 0.06 0.06 
Pmale.dep 0.00 0.00 0.00 0.01 0.01 0.01 0.05 0.06 
PObjective1 0.97 0.94 0.88 0.80 0.68 0.48 0.35 0.21 
PObjective2 0.99 0.97 0.94 0.89 0.84 0.73 0.60 0.48 
PObjective3 1.00 0.98 0.97 0.92 0.89 0.81 0.70 0.59 

 t = 36 
Nt/N1 0.94 0.84 0.79 0.73 0.68 0.64 0.61 0.57 
Nt/Kt 0.99 0.88 0.83 0.77 0.72 0.68 0.64 0.60 

Ht 0 51 66 76 79 80 82 80 
Pextirpation 0.00 0.00 0.00 0.02 0.04 0.07 0.12 0.15 
Pmale.dep 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.02 
PObjective1 0.72 0.26 0.17 0.11 0.07 0.06 0.05 0.03 
PObjective2 0.97 0.94 0.86 0.68 0.54 0.46 0.41 0.36 
PObjective3 0.97 0.93 0.83 0.64 0.49 0.41 0.36 0.31 
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Table S.BB3. Continued 

(b) male-to-female ratio in the harvest (SR) = 1.25 

 t = 1 
FO 0.000 0.531 0.709 0.886 1.063 1.240 1.417 1.594 
ht=1 0.0% 2.1% 2.8% 3.6% 4.3% 5.0% 5.7% 6.4% 
Ht=1 0 60 80 100 120 140 160 180 

mgmt.interval 15 15 15 15 15 15 15 15 
rsd.mod 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 t = 15 
Nt/N1 1.15 1.05 1.02 0.99 0.94 0.87 0.83 0.79 
Nt/Kt 1.01 0.93 0.91 0.87 0.83 0.78 0.74 0.70 

Ht 0 60 80 99 119 136 156 167 
Pextirpation 0.00 0.00 0.00 0.00 0.02 0.03 0.05 0.09 
Pmale.dep 0.00 0.01 0.00 0.00 0.03 0.04 0.07 0.06 
PObjective1 0.96 0.92 0.88 0.80 0.69 0.52 0.42 0.33 
PObjective2 0.97 0.94 0.92 0.86 0.82 0.71 0.64 0.56 
PObjective3 0.98 0.95 0.94 0.89 0.86 0.79 0.73 0.66 

 t = 36 
Nt/N1 0.95 0.85 0.82 0.77 0.73 0.69 0.66 0.67 
Nt/Kt 0.99 0.89 0.86 0.80 0.76 0.73 0.70 0.70 

Ht 0 52 63 74 79 82 86 89 
Pextirpation 0.00 0.01 0.00 0.01 0.06 0.08 0.10 0.13 
Pmale.dep 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.04 
PObjective1 0.70 0.33 0.23 0.17 0.12 0.09 0.07 0.06 
PObjective2 0.96 0.93 0.88 0.75 0.66 0.58 0.52 0.51 
PObjective3 0.96 0.92 0.86 0.72 0.62 0.53 0.47 0.45 
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Table S.BB3. Continued  

(c) male-to-female ratio in the harvest (SR) = 2.00 

 t = 1 
FO 0.000 0.399 0.531 0.664 0.797 0.930 1.063 1.196 
ht=1 0.0% 2.1% 2.8% 3.6% 4.3% 5.0% 5.7% 6.4% 
Ht=1 0 60 80 100 120 140 160 180 

mgmt.interval 15 15 15 15 15 15 15 15 
rsd.mod 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 t = 15 
Nt/N1 1.14 1.07 1.05 1.02 0.98 0.94 0.91 0.84 
Nt/Kt 1.0 0.9 0.9 0.9 0.9 0.8 0.8 0.7 

Ht 0 60 80 99 118 136 153 171 
Pextirpation 0.00 0.00 0.00 0.01 0.02 0.03 0.06 0.06 
Pmale.dep 0.00 0.00 0.00 0.03 0.04 0.07 0.12 0.17 
PObjective1 0.97 0.94 0.91 0.84 0.80 0.67 0.59 0.42 
PObjective2 0.99 0.96 0.95 0.89 0.86 0.80 0.72 0.60 
PObjective3 0.99 0.97 0.97 0.91 0.89 0.85 0.77 0.69 

 t = 36 
Nt/N1 0.93 0.89 0.86 0.82 0.77 0.74 0.72 0.71 
Nt/Kt 0.98 0.93 0.91 0.86 0.81 0.79 0.76 0.74 

Ht 0 50 65 68 73 75 79 80 
Pextirpation 0.00 0.00 0.01 0.03 0.07 0.09 0.14 0.14 
Pmale.dep 0.00 0.00 0.02 0.05 0.09 0.13 0.13 0.14 
PObjective1 0.70 0.47 0.38 0.29 0.22 0.18 0.16 0.14 
PObjective2 0.96 0.96 0.94 0.82 0.74 0.68 0.62 0.59 
PObjective3 0.96 0.95 0.93 0.80 0.71 0.64 0.58 0.54 
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Table S.BB4. Detailed results of secondary simulations for the Baffin Bay polar bear subpopulation, 

using Scenario 2 of the vital rates. Each column corresponds to one simulation, with results reported at 

time steps t = 15 and 36. Results are presented for the highest strategies that meet Management Objective 

2b, for each unique combination of mgmt.interval and rsd.mod. FO is a factor to calculate the harvest rate 

using equation (1); SR is a factor that specifies the male-to-female ratio in the harvest; Ht=1 is the starting 

harvest level measured in the number of independent bears per year; ht=1 is the starting harvest rate, 

defined as the fraction of total population size (i.e., including dependent young) that is removed each year 

as independent bears; mgmt.interval is the management interval (years); rsd.mod is a modifier on the 

baseline relative standard deviation of the vital rates due to sampling uncertainty; N is population size 

referenced to independent bears; and K is carrying capacity expressed as numbers of bears. Results for 

Pcondition are the estimated probabilities of meeting population conditions corresponding to: extirpation, 

male depletion, and Management Objectives 1-3 (Table BB1). All results assume a state-dependent 

management approach. 

 t = 1 
FO 1.148 0.976 0.861 1.033 0.918 0.804 0.918 0.804 0.746 
ht=1 7.1% 6.0% 5.3% 6.4% 5.7% 5.0% 5.7% 5.0% 4.6% 
Ht=1 200 170 150 180 160 140 160 140 130 
SR 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 

mgmt.interval 10 15 20 10 15 20 10 15 20 
rsd.mod 0.50 0.50 0.50 1.00 1.00 1.00 1.50 1.50 1.50 

 t = 15 
Nt/N1 0.86 0.89 0.93 0.88 0.90 0.96 0.92 0.96 0.96 
Nt/Kt 0.76 0.78 0.82 0.78 0.81 0.85 0.81 0.84 0.85 

Ht 159 173 153 163 161 142 154 142 132 
Pextirpation 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 
Pmale.dep 0.03 0.02 0.01 0.01 0.03 0.00 0.01 0.01 0.00 
PObjective1 0.25 0.47 0.62 0.41 0.55 0.77 0.55 0.75 0.79 
PObjective2 0.62 0.77 0.87 0.75 0.80 0.93 0.85 0.92 0.93 
PObjective3 0.89 0.88 0.95 0.92 0.89 0.98 0.96 0.96 0.97 

 t = 36 
Nt/N1 0.74 0.77 0.78 0.74 0.75 0.76 0.76 0.77 0.77 
Nt/Kt 0.77 0.80 0.81 0.77 0.79 0.79 0.79 0.80 0.81 

Ht 126 97 122 115 94 130 107 90 113 
Pextirpation 0.00 0.03 0.01 0.01 0.04 0.02 0.01 0.05 0.03 
Pmale.dep 0.10 0.11 0.12 0.14 0.10 0.18 0.10 0.10 0.13 
PObjective1 0.02 0.06 0.12 0.07 0.09 0.14 0.12 0.14 0.18 
PObjective2 0.76 0.80 0.83 0.71 0.76 0.77 0.73 0.76 0.78 
PObjective3 0.68 0.76 0.76 0.65 0.71 0.70 0.68 0.71 0.72 
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Table S.BB5. Detailed results of post hoc simulations for the Baffin Bay polar bear subpopulation, using 

Scenario 2 of the vital rates. Each column corresponds to one simulation, with results reported at time 

step t = 15. Management strategies BB_S1 and BB_S2 are described in the main text. FO is a factor to 

calculate the harvest rate using equation (1); SR is a factor that specifies the male-to-female ratio in the 

harvest; Ht=1 is the starting harvest level measured in the number of independent bears per year; ht=1 is the 

starting harvest rate, defined as the fraction of total population size (i.e., including dependent young) that 

is removed each year as independent bears; mgmt.interval is the management interval (years); rsd.mod is 

a modifier on the baseline relative standard deviation of the vital rates due to sampling uncertainty; N is 

population size referenced to independent bears; and K is carrying capacity expressed as numbers of 

bears. Results for Pcondition are the estimated probabilities of meeting population conditions corresponding 

to: extirpation, male depletion, and Management Objectives 1-3 (Table BB1). 

  

 Management strategy  
BB_S1 BB_S2 

 t = 1 
FO 1.58 - 
ht=1 8.7% 8.7% 
Ht=1 245 245 
SR 1.00 1.25 

mgmt.interval 5 - 
rsd.mod 0.50 - 

 t = 15 
Nt/N1 0.75 0.55 
Nt/Kt 0.67 0.49 

Ht 180 212 
Pextirpation 0.00 0.23 
Pmale.dep 0.01 0.30 
PObjective1 0.05 0.07 
PObjective2 0.22 0.24 
PObjective3 0.73 0.36 
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Table S.KB1. Detailed results of primary simulations for the Kane Basin polar bear subpopulation, using 

Scenario 1 of the vital rates. Each column corresponds to one simulation, with results reported at time 

steps t = 15 and 36. FO is a factor to calculate the harvest rate using equation (1); SR is a factor that 

specifies the male-to-female ratio in the harvest; Ht=1 is the starting harvest level measured in the number 

of independent bears per year; ht=1 is the starting harvest rate, defined as the fraction of total population 

size (i.e., including dependent young) that is removed each year as independent bears; mgmt.interval is 

the management interval (years); rsd.mod is a modifier on the baseline relative standard deviation of the 

vital rates due to sampling uncertainty; N is population size referenced to independent bears; and K is 

carrying capacity expressed as numbers of bears. Results for Pcondition are the estimated probabilities of 

meeting population conditions corresponding to: extirpation, male depletion, and Management Objectives 

1-2 (Table BB1). All results assume a state-dependent management approach. 

 t = 1 t = 1 
FO 0.000 0.645 1.289 1.934 2.579 0.000 0.417 0.834 1.251 1.668 
ht=1 0.0% 0.6% 1.1% 1.7% 2.2% 0.0% 0.6% 1.1% 1.7% 2.2% 
Ht=1 0 2 4 6 8 0 2 4 6 8 
SR 0.94 0.94 0.94 0.94 0.94 2.00 2.00 2.00 2.00 2.00 

mgmt.interval 15 15 15 15 15 15 15 15 15 15 
rsd.mod 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 t = 15 t = 15 
Nt/N1 1.10 1.02 0.90 0.79 0.79 1.09 1.02 0.98 0.83 0.75 
Nt/Kt 0.78 0.72 0.64 0.56 0.56 0.76 0.70 0.69 0.58 0.53 

Ht 0 2 4 6 7 0 2 4 6 7 
Pextirpation 0.00 0.01 0.01 0.02 0.06 0.01 0.00 0.01 0.01 0.07 
Pmale.dep 0.10 0.16 0.26 0.34 0.37 0.10 0.15 0.34 0.39 0.46 
PObjective1 0.74 0.64 0.52 0.46 0.43 0.71 0.61 0.63 0.48 0.42 
PObjective2 0.59 0.46 0.37 0.33 0.30 0.56 0.45 0.45 0.34 0.28 

 t = 36 t = 36 
Nt/N1 1.12 0.82 0.44 0.28 0.22 1.12 0.79 0.54 0.29 0.24 
Nt/Kt 0.80 0.59 0.31 0.20 0.16 0.79 0.55 0.38 0.21 0.17 

Ht 0 3 4 4 4 0 3 3 3 3 
Pextirpation 0.02 0.09 0.19 0.28 0.38 0.04 0.08 0.17 0.31 0.36 
Pmale.dep 0.20 0.36 0.45 0.47 0.43 0.27 0.45 0.59 0.50 0.51 
PObjective1 0.70 0.48 0.21 0.13 0.10 0.68 0.43 0.25 0.14 0.10 
PObjective2 0.64 0.33 0.14 0.08 0.07 0.61 0.31 0.16 0.09 0.06 
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Table S.KB2. Detailed results of primary simulations for the Kane Basin polar bear subpopulation, using Scenario 2 of the vital rates. Each column corresponds to 
one simulation, with results reported at time steps t = 15 and 36. FO is a factor to calculate the harvest rate using equation (1); SR is a factor that specifies the male-
to-female ratio in the harvest; Ht=1 is the starting harvest level measured in the number of independent bears per year; ht=1 is the starting harvest rate, defined as the 
fraction of total population size (i.e., including dependent young) that is removed each year as independent bears; mgmt.interval is the management interval 
(years); rsd.mod is a modifier on the baseline relative standard deviation of the vital rates due to sampling uncertainty; N is population size referenced to 
independent bears; and K is carrying capacity expressed as numbers of bears. Results for Pcondition are the estimated probabilities of meeting population conditions 
corresponding to: extirpation, male depletion, and Management Objectives 1-2 (Table BB1). All results assume a state-dependent management approach. 

 t = 1 t = 1 
FO 0.000 0.159 0.319 0.478 0.638 0.797 0.956 1.116 1.275 0.000 0.103 0.206 0.309 0.412 0.516 0.619 0.722 0.825 
ht=1 0.0% 0.6% 1.1% 1.7% 2.2% 2.8% 3.4% 3.9% 4.5% 0.0% 0.6% 1.1% 1.7% 2.2% 2.8% 3.4% 3.9% 4.5% 
Ht=1 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 
SR 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

mgmt.interval 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 
rsd.mod 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 t = 15 t = 15 
Nt/N1 1.28 1.31 1.26 1.28 1.19 1.16 1.10 1.06 0.99 1.34 1.28 1.26 1.23 1.20 1.16 1.13 1.08 1.01 
Nt/Kt 0.92 0.91 0.88 0.88 0.83 0.81 0.78 0.75 0.70 0.92 0.91 0.89 0.86 0.84 0.82 0.78 0.76 0.70 

Ht 0 2 4 6 8 10 11 13 13 0 2 4 6 8 9 11 13 13 
Pextirpation 0.00 0.00 0.02 0.02 0.04 0.03 0.04 0.09 0.18 0.00 0.00 0.00 0.02 0.03 0.04 0.06 0.09 0.18 
Pmale.dep 0.06 0.10 0.13 0.12 0.16 0.20 0.24 0.26 0.18 0.05 0.08 0.14 0.15 0.23 0.28 0.31 0.32 0.36 
PObjective1 0.85 0.85 0.78 0.78 0.73 0.74 0.69 0.63 0.57 0.86 0.85 0.78 0.78 0.72 0.73 0.70 0.63 0.57 
PObjective2 0.77 0.77 0.72 0.69 0.64 0.64 0.58 0.53 0.48 0.79 0.78 0.71 0.70 0.64 0.65 0.61 0.54 0.49 

 t = 36 t = 36 
Nt/N1 1.26 1.29 1.20 1.19 1.07 0.97 0.84 0.72 0.59 1.33 1.26 1.21 1.14 1.03 0.91 0.78 0.54 0.48 
Nt/Kt 0.92 0.90 0.85 0.83 0.75 0.68 0.60 0.52 0.42 0.93 0.90 0.87 0.81 0.73 0.65 0.55 0.39 0.34 

Ht 0 3 5 7 8 9 9 9 10 0 3 4 6 6 7 7 6 7 
Pextirpation 0.03 0.03 0.05 0.06 0.07 0.08 0.14 0.22 0.29 0.03 0.03 0.05 0.06 0.10 0.12 0.17 0.26 0.32 
Pmale.dep 0.11 0.16 0.18 0.17 0.22 0.29 0.32 0.33 0.25 0.13 0.15 0.22 0.27 0.36 0.43 0.47 0.47 0.44 
PObjective1 0.81 0.83 0.75 0.73 0.66 0.60 0.50 0.42 0.37 0.84 0.83 0.75 0.72 0.61 0.56 0.46 0.36 0.33 
PObjective2 0.78 0.79 0.70 0.66 0.57 0.48 0.39 0.31 0.28 0.80 0.78 0.70 0.65 0.53 0.46 0.36 0.28 0.25 
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Table S.KB3. Detailed results of secondary simulations for the Kane Basin polar bear subpopulation, 

using Scenario 2 of the vital rates. Each column corresponds to one simulation, with results reported at 

time steps t = 15 and 36. Results are presented for the highest strategies that meet Management Objective 

1b, for each unique combination of mgmt.interval and rsd.mod. FO is a factor to calculate the harvest rate 

using equation (1); SR is a factor that specifies the male-to-female ratio in the harvest; Ht=1 is the starting 

harvest level measured in the number of independent bears per year; ht=1 is the starting harvest rate, 

defined as the fraction of total population size (i.e., including dependent young) that is removed each year 

as independent bears; mgmt.interval is the management interval (years); rsd.mod is a modifier on the 

baseline relative standard deviation of the vital rates due to sampling uncertainty; N is population size 

referenced to independent bears; and K is carrying capacity expressed as numbers of bears. Results for 

Pcondition are the estimated probabilities of meeting population conditions corresponding to: extirpation, 

male depletion, and Management Objectives 1-2 (Table BB1). All results assume a state-dependent 

management approach. 

 t = 1 
FO 0.638 0.638 0.558 0.558 0.478 0.478 0.558 0.398 0.398 
ht=1 2.2% 2.2% 2.0% 2.0% 1.7% 1.7% 2.0% 1.4% 1.4% 
Ht=1 8 8 7 7 6 6 7 5 5 
SR 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

mgmt.interval 10 15 20 10 15 20 10 15 20 
rsd.mod 0.50 0.50 0.50 1.00 1.00 1.00 1.50 1.50 1.50 

 t = 15 
Nt/N1 1.12 1.19 1.22 1.15 1.25 1.24 1.17 1.19 1.24 
Nt/Kt 0.80 0.82 0.86 0.82 0.89 0.88 0.84 0.84 0.87 

Ht 10 8 7 9 6 6 8 5 5 
Pextirpation 0.01 0.02 0.03 0.00 0.02 0.01 0.01 0.01 0.02 
Pmale.dep 0.17 0.15 0.11 0.13 0.11 0.14 0.10 0.09 0.09 
PObjective1 0.74 0.76 0.77 0.79 0.82 0.80 0.79 0.77 0.79 
PObjective2 0.61 0.66 0.69 0.69 0.74 0.72 0.69 0.67 0.70 

 t = 36 
Nt/N1 1.08 1.10 1.11 1.10 1.17 1.15 1.12 1.15 1.18 
Nt/Kt 0.78 0.77 0.79 0.80 0.84 0.82 0.81 0.82 0.84 

Ht 9 9 9 8 7 7 7 5 6 
Pextirpation 0.04 0.06 0.07 0.05 0.05 0.07 0.05 0.05 0.08 
Pmale.dep 0.23 0.21 0.19 0.21 0.18 0.21 0.16 0.14 0.15 
PObjective1 0.70 0.72 0.72 0.75 0.79 0.75 0.74 0.72 0.74 
PObjective2 0.59 0.61 0.64 0.66 0.71 0.67 0.66 0.66 0.68 
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Table S.KB4. Detailed results of post hoc simulations for the Kane Basin polar bear subpopulation, using 

Scenario 2 of the vital rates. Each column corresponds to one simulation, with results reported at time 

step t = 15 and t = 36. Harvest strategies KB_S1 and KB_S2 and the simulation conditions on which they 

are based, are described in the main text. FO is a factor to calculate the harvest rate using equation (1); SR 

is a factor that specifies the male-to-female ratio in the harvest; Ht=1 is the starting harvest level measured 

in the number of independent bears per year; ht=1 is the starting harvest rate, defined as the fraction of 

total population size (i.e., including dependent young) that is removed each year as independent bears; 

mgmt.interval is the management interval (years); rsd.mod is a modifier on the baseline relative standard 

deviation of the vital rates due to sampling uncertainty; N is population size referenced to independent 

bears; and K is carrying capacity expressed as numbers of bears. Results for Pcondition are the estimated 

probabilities of meeting population conditions corresponding to: extirpation, male depletion, and 

Management Objectives 1-2 (Table BB1). All results assume a state-dependent management approach. 

 Management strategy  
KB_S1 KB_S2 

 t = 1 
FO 0.80 0.60 
ht=1 2.8% 2.2% 
Ht=1 10 8 
SR 0.94 0.94 

mgmt.interval 15 15 
rsd.mod 1.00 1.00 

 t = 15 
Nt/N1 1.20 1.19 
Nt/Kt 0.85 0.83 

Ht 10 8 
Pextirpation 0.02 0.00 
Pmale.dep 0.07 0.11 
PObjective1 0.82 0.79 
PObjective2 0.69 0.65 

 t = 36 
Nt/N1 1.09 1.08 
Nt/Kt 0.80 0.77 

Ht 10 8 
Pextirpation 0.04 0.04 
Pmale.dep 0.21 0.18 
PObjective1 0.71 0.70 
PObjective2 0.56 0.55 

 
 


