NUNAVUT WILDLIFE MANAGEMENT BOARD

PUBLIC HEARING TO CONSIDER THE GOVERNMENT OF NUNAVUT PROPOSAL FOR DECISION TO THE BOARD CONCERNING THE TOTAL ALLOWABLE HARVEST FOR THE WESTERN HUDSON BAY POLAR BEAR SUBPOPULATION

January 10, 2018
PAGES 201 TO 467
HELD AT THE SINIKTARVIK HOTEL
RANKIN INLET, NUNAVUT
VOLUME 2

BOARD MEMBERS:
Dan Shewchuk Acting Chair
Charlie Inuarak Member
David Kritterdiik
Member
Caleb Sangoya
Jorgen H. Bolt
Noah Makayak
Attima Hadlari
Member
Member
Member
Member

NWMB:

Jason Akearok	Executive Director
Patricia Pearson	Director of Finance \& Administration
Vickie Sahanatien	Director Wildlife Management
Amber Giles	Wildlife Management Biologist
Denis Etiendem Ndeloh	Wildlife Management Biologist
John Fawcett	Communications Coordinator
Michael d'Eça	Legal Counsel
Donna Adams	Interpreter
Louis Taparti	Interpreter
Adele Jones	Stenographer

ENVIRONMENT AND CLIMATE CHANGE CANADA

Rachel Vallender Managing Director of Wildiffe
Dr. Nick Lunn Research Scientist

GOVERNMENT OF NUNAVUT
Drikus Gissing
Caryn Smith

NTI

Paul Irngaut	Director of Wildiffe
Bert Dean	Assistant Director
David Lee	Wildife Biologist

WORLD WILDLIFE FUND
Brandon Laforest Senior Specialist, Arctic Species and Ecosystems

RANKIN INLET HTO
Clayton Tartak Secretary/Manager
Brian Sigardson
Member

WHALE COVE HTO
Simon Enuapik Board member
Jackie Napayok Board member
Gerard Maktar Board member

ARVIAT HTO
Nicholas Arnaukjuaq
Chair
Paul Kablutsiak
Elder

CHESTERFIELD INLET HTO

Harry Aggark Board member
Corey Aggark
Matthew Arnauyok
Board member
Board member

BAKER LAKE HTO
Hugh Nateela
Richard Aksawnee
Secretary/Manager
Board member

KIA
David Ningeongan
President

KWB
Stanley Adjuk
Qovik Netser
Ezra Greene

PUBLIC:
Bobby Oolooyuk
Thomas Comer
David Mercer
Jared Ottenhauf
Cathy Towtongie

6 Nunavut Wildiife Management Board Questions and
7 Comments
8 SUBMISSION BY MS. TOWTONGIE
9 Nunavut Wildiife Management Board Staff Questions314
and Comments

11 Government of Nunavut Questions and Comments330

12 Nunavut Tunngavik Incorporated Questions and 34715 Arviat HTO Questions and Comments359
16 Whale Cove HTO Questions and Comments 369
18 Baker Lake HTO Questions and Comments 384
19 World Wildiife Fund Questions and Comments 389

Kivalliq Inuit Association Questions and Comments

Kivalliq Inuit Association Questions and Comments

Kivalliq Inuit Association Questions and Comments

Kivalliq Inuit Association Questions and Comments 391 391 391 391

Public Questions and Comments

Public Questions and Comments

Public Questions and Comments

Public Questions and Comments 392 392 392 392

SUBMISSION BY KIVALLIQ WILDLIFE BOARD

SUBMISSION BY KIVALLIQ WILDLIFE BOARD

SUBMISSION BY KIVALLIQ WILDLIFE BOARD

SUBMISSION BY KIVALLIQ WILDLIFE BOARD 402 402 402 402
23 Nunavut Wild1ife Management Board Questions and
23 Nunavut Wild1ife Management Board Questions and
23 Nunavut Wild1ife Management Board Questions and
23 Nunavut Wild1ife Management Board Questions and 415 415 415 415
20
20
20
20 21 21 21 21 22 22 22 22

PAGE207251311Kivalliq Wildlife Board Questions and Comments356
Comments
17 Chesterfield In1et HTO Questions and Comments 382

I N D E X
1 Nunavut Wildiife Management Board Staff Questions 431
2 and Comments
3 Nunavut Tunngavik Incorporated Questions and 434
4 Comments
5 Arviat HTO Questions and Comments 436
6 Baker Lake HTO Questions and Comments 438
7 Public/Elders Questions and Comments 440
8 SUBMISSION BY WORLD WILDLIFE FUND 445
9 Nunavut Wildiife Management Board Questions and 449
10 Comments
11 Nunavut Wildiife Management Board Staff Questions 449
12
and Comments
13 Arviat HTO Questions and Comments 451
14 SUBMISSION BY MAKIVIK CORPORATION SPOKEN TO 452
15 Nunavut Tunngavik Incorporated Questions and 453
16 Comments
17 SUBMISSION BY WORLD WILDLIFE FUND 444
18 Government of Nunavut Questions and Comments 450
19 STATEMENT BY PUBLIC/ELDERS 452
20
Closing Remarks 454
21 Stenographer's Certificate 467
(Proceeding commenced at 8:30 a.m.)
THE CHAIR: Good morning, everyone. Thank you
very much for coming back to our hearing.
So we're going to start off this morning.
Charlie, would you say a prayer for us, please.
(PRAYER)
THE CHAIR:
Thank you, Charlie.
So just to do a refresher that the channels on your microphones have stayed the same, so zero is the floor, one is English, and two is Inuktitut. Nothing's changed there.

We're going to start off this morning as we agreed to with Environment Canada presentation to the Board. So Rache1 and Nick are up. And, Rache1, I think you're going to start off with the letter submission, and then Nick is going to give us some additional information. The floor is yours. Go ahead.

SUBMISSION BY ENVIRONMENT AND CLIMATE CHANGE CANADA

 MS. VALLENDER: Okay. Well, thank you very much. So I'd like to start by thanking the NWMB and everyone else here for giving us the opportunity attend this public hearing. And we will, as Dan mentioned, be presenting sort of two parts.The first was a verbal overview of the letter we submitted to the NWMB. I won't go over all the details
just because we have provided that written version which everybody can read, but I will present our opinion, and then Nick will give a presentation, and then we'd be happy to take questions.

THE CHAIR:
Rache1, I'11 just let everyone know it's on tab 13 in the binder.

MS. VALLENDER: Okay. Tab 13.
THE CHAIR: Okay. Thank you. Tab 13. MS. VALLENDER: So I would like to first start by saying that Evironment and Climate Change Canada recognizes that indigenous traditional knowledge indicates that this population of bears has increased in the 1980s, and this finding was based upon sightings of more bears in and near communities. And we also heard this during presentations yesterday.

It's noteworthy, because we rely on this committee, that the available indigenous traditional knowledge has been assessed by the Polar Bear Technical Committee which classified the population has increased based on this source. Furthermore, Environment and Climate Change Canada recognizes that there is concern about an increase in polar bear-human interactions that poses a safety concern. We know that human-bear interactions and conflict must be taken seriously and that appropriate measures must be taken to ensure the safety of people,
their property, possessions, as well as the bears.
We recognize that the Government of Nunavut has a robust and effective polar bear deterrence program and that recent partnerships with organizations such as World Wildiffe Fund and especially the active participation and cooperation of communities has decreased the number of bears that have needed to be killed in defence of life and property in some communities. That said, we echo the sentiment that has been expressed by the NWMB that the Government of Nunavut should continue to work with communities and other parties as appropriate to ensure that the program continues to be effective.

So regarding the scientific knowledge, the new population estimate, as we discussed yesterday, from the survey conducted in 2016 indicated an 18 percent downward adjustment from the previous aerial survey that was conducted in 2011. As you know, both of these surveys were led by the Government of Nunavut, and we understand that local communities were involved in the planning and logistics associated with the survey and that local community members participated in the survey themselves. We would like to note that our department is supportive of the collaborative approach to monitoring, and we were pleased to contribute financially to this effort.

So it's important to note that the 2016 survey
for Western Hudson Bay was conducted during the same season as the Southern Hudson Bay aerial survey and that preliminary results of the Southern Hudson Bay survey showed a 17 percent downward adjustment from the previous estimate, which was 2011-12. So combined, to us, these new population estimates indicate cause for concern as it relates to the population trajectory for these two subpopulations of bears occurring within Hudson Bay.

So we recognize that a trend can't be inferred from the two aerial survey data points, that the population estimate of 842 is currently the best available scientific estimation of population size for Western Hudson Bay. We also note that the 2016 aerial survey results will be considered by the Polar Bear Technical Committee at their annual meeting which will be taking place in early February 2018.

So Nick will elaborate upon the next couple of points in his presentation which will follow me, but just a few notes about other scientific research results.

So this research has indicated decreased reproductive performance compared to other Canadian subpopulations, declines in body condition and survival in association with sea ice decline and previous declines in numbers.

So work of research scientists, including

Dr. Lunn from my department, have contributed to this scientific understanding of the population, and declines in body condition and survival have also been noted for bears in the Southern Hudson Bay subpopulation.

Work by Department of Fisheries and Oceans colleagues has indicated declines in density and blubber thickness of ring seals in Hudson Bay which, of course, are considered to be the preliminary food source for polar bears, although we do recognize that bears eat a variety of other marine and terrestrial food sources.

So concern over the population estimate for Western Hudson Bay is further exacerbated by documented declines in sea ice in this region of the Canadian arctic. As we heard yesterday, breakup of sea ice has advanced by 22 days, and freeze-up has been prolonged by 15 days since 1979. So this equates to about an additional month that polar bears need to spend on land, and this increased time on land increases the probability of interaction with humans and decreases the amount of time that polar bears are able to hunt from the sea ice platform.

So considering all that information, the Government of Canada position on total allowable harvest is that, following results of the previous population estimate in 2011, Environment and Climate Change Canada indicated support for the Government of Nunavut's recommendation at
that time, which was for a removal of 24 bears per year which equated to 2.3 percent of the population at that time, which was 1,030 .

The bulk of available scientific evidence indicates that the arctic ecosystem is changing and that bears are expected to be negatively impacted over the coming years. That said, we recommend that the NWMB consider a precautionary approach when making a decision on a new total allowable harvest for this subpopulation. Furthermore, we recommend that the NWMB consider exploring the option of having the impact of various harvest scenarios in consideration of other factors such as the changing arctic habitat on the Western Hudson Bay population. This exercise was recently undertaken to guide management in Baffin Bay and Kane Basin subpopulations and proved to be very informative.

So as a final comment, it's worth noting -- and this is at the conclusion of our letter -- that in order for polar bear parts and/or pelts to enter international trade, a CITES export permit must be issued. So it's the legal obligation of the CITES scientific authority to be able to prove that trade is sustainable, meaning that the harvest must also be sustainable. So the level of sustainability takes into account multiple sources of information, so including the available science, the
available traditional knowledge, as well as the management objective for this subpopulation of bears.

So I know Paul talked about this very briefly yesterday, but just to note that the nondetriment finding has been positive to date, and trade has been permitted from Western Hudson Bay and that, as when any new decision on total allowable harvest is made, the CITES scientific authority will look at all the information in carrying out their assessment. So I'm not a CITES expert, but if anyone has questions about that, I would be happy answer them as well.

And now I will turn it over to Nick.
DR. LUNN:
I would like to thank the NWMB for providing this opportunity to provide some additional information that we hadn't submitted, but clearly, listening to the talk around the table yesterday there was some more information that we could provide that wasn't because it didn't seem relevant at the time to the letter from the NWMB about the actual aerial survey number. Next slide, please.

So distribution -- I heard someone asking about a tab. There isn't. We didn't put this presentation -but we will provide this presentation both in English and translated. So the distribution abundance of bears are around the world. There are estimated to be approximately

26,000 polar bears worldwide, and they occur in 19 relatively discrete subpopulations, and those subpopulations range in size from a few hundred to a few thousand individuals, and Canada has about 60 percent of all the world's polar bears. So some people say Canada has sort of an additional responsibility for the conservation and management of polar bears because we have so many of the world's polar bears.

People have asked, and it came up yesterday, how those 1 ines on the map were drawn. How do we know we have 19 or so relatively discrete subpopulations? For those that can't see, Western Hudson Bay is at the centre bottom of the map. There it is. And these lines were drawn on the maps when we started talking about quotas and harvests and management units, and that was stuff done way back in the 1960s, way before my time. And they were based -- a lot of it was based on barriers to movement where people thought bears could or could not move, geographical barriers. It was based on tag returns, where people were harvesting bears, had they been tagged before, where they were tagged. More recently it's been based on things such as satellite movement of bears, telemetry, where the bears are generally going.

So the lines on the map aren't fixed, they're not final. The bears can obviously cross them. We all
know that. In Hudson Bay there are three subpopulations that will use Hudson Bay in the wintertime. That's Western Hudson Bay, Southern Hudson Bay, and Foxe Basin. And a little later on I'll show some movement information to show you just how far and where the bears, at least in Hudson Bay, are travelling and using the bay. Next.

So sea ice in Hudson Bay. If you start at the upper left frame, in the middle of winter the bay isn't completely ice covered. There's always areas of open water, leeds and polynyas. So even at maximum ice cover there's areas of open water.

Moving to the upper right, during breakup the winds primarily come out of the northwest, and I think we're experiencing those today. Although I haven't been outside to experience them, I'm told they're quite strong. And the currents move counterclockwise in the bay.

So as the ice breaks up, the winds and the currents generally tend to move the ice down along to the southeast. And it ends up, if you go to the bottom left corner, most of the last remaining ice in the summertime ends up off the coast primarily of Manitoba and Ontario. So generally that's where most of the bears, when the ice is gone, spend the summer on shore in places like Ontario and Manitoba. It doesn't mean they all do, but basically it's the pattern of ice breakup that determines where the
bears are going to spend the summer.
Bears have strong sight fidelity to these summering areas, where we research those. The bears that we catch in Manitoba, year in and year out they continually come back, not necessarily to the same spot of Manitoba but to the same general area. Similarly with bears in Southern Hudson Bay that spend the summer in Ontario, we get some. We catch some bears from Ontario up in Manitoba, but by and large, bears tagged in Ontario stay in Ontario, bears tagged in Manitoba stay in Manitoba.

And then in the fall the sea ice re-forms first in the northwest. So if you're at the bottom right panel, in the northwest of Hudson Bay that's where the ice forms first, and it then proceeds southward, expands southward. And in late October, early November the bears generally start moving northwards along the coast of Manitoba and into Nunavut in anticipation of meeting the sea ice. So where they meet the sea ice really depends on the times when it re-forms. If it reforms early, a number of bears may get on the sea ice before they even make it to Nunavut or into communities like Arviat; however, if sea ice formation is delayed the bears will continue moving north looking for sea ice, and they could end up in communities such as Arviat or further north. Next slide.

Our research in Western Hudson Bay. The
research started back in the late 1960s, and one of the reasons is, at the time, was there was an international agreement signed between the five polar bear countries, and one of the commitments of which Canada committed to was doing research. People really didn't know much about polar bears from a scientific point of view, so Canada had committed to start to do research. And so people looked for places where that was going to be relatively convenient. Rather than having to travel over large expanses of sea ice, were there places where bears congregated that you could do research in a relatively small area that was logistically feasible. And Churchill, because there was a military base through the 1940s and 1950s, there was a rail line, there was a port -logistically it was far easier to get to a place like Churchill, Manitoba, than it would have been to try to initiate a project, say, out of Resolute Bay or on Baffin Bay.

And so we started doing a research program there. The bears were all ashore. Most of the work that we did was focussed in this purple area, the main study which is now Wapusk National Park, that protects what we think is most of the denning area -- not all, but most of the denning area -- of Western Hudson Bay. So our main research focusses in that purple area, but from time to
time will go north, those blue areas. We'll work our way up towards the Nunavut border and will also work eastward towards Ontario. So we work there less frequently, but we do go there periodically. Next slide.

So although the research in Western Hudson Bay began in the late 1960s, that focussed really mainly in and around the town from the 1 imited road system, so they were setting snares, what bears they could catch in and around the town. Once we started using things such as helicopters, it gave us greater access to the Manitoba, the Churchil1 area. And so our current research really began in about 1980 where we were able to get out and survey bears not just in and around Churchil1 but in the denning area along the coast, up the coast, so we could expand that research.

And when we started, I mean, a lot of the stuff we do now we tie into things such as climate change. When this research started back in the 1980s, no one was talking about climate change -- or, at least, not in the polar bear world. And we knew nothing about polar bears. So we started the program really to focus on broader ecological questions that we thought were applicable to polar bears across the circumpolar arctic. No one really knew anything about polar bears, so we decided we would start. Let's get some of the basic information.

So we started programs of studies that generally lasted two to five years, and I've started, listed sort of alphabetically some of the things we've looked at. We've looked at polar bears' denning habitat, diet, energetics, effects of disturbance, we've looked at genetics, population delineation, dynamics, and seasonal movements. Next slide.

And one of the common features of all that work was a requirement to sort of capture and handle bears to take measurements and/or take samples. So what do we do? I think most people know we locate them from a helicopter, they're immobilized, we put tattoos and tags so that each individual is identified in case we capture them in subsequent years. Or, if it's harvested in a subsequent year, the hunters are very kind and they provide us with information of a tagged bear that they've harvested.

We have taken a number of standard measurements from every bear. And standard measurements are just things like a straight line length, we measure -- take a rope and measure its girth right behind its shoulders to get a measurement there, we measure the skull, both the width and the length, and we take a subjective fat index, and we feel along the spine and hips for how much body fat is over there, and on that we would give a score or fat index of one to five. And a bear that we would score one would
virtually have no fat, and you would see -- you would actually see the spine, you'd see the ribs, a very, very thin, very poor condition bear. Or it could go up as high as five, which would be an exceedingly obese typically fat female, pregnant female. And I've got a slide a little bit later that shows sort of the difference between the two. And then all that data was recorded. Next slide.

And by handling, it also allowed us to take some standard samples. So when we punch the ear to put a tag in, we get that little tiny disk of skin, and from that we can look at genetics of bears. So we're using it now to -we know a lot about who the mothers of bears are because you catch females with cubs. But we don't know a lot about who the fathers are. Mating occurs out on the sea ice in the springtime, and that's the end of it. We're not out there catching bears, we don't see it, so we don't know who the fathers are.

But through the genetics, we're starting to build up a database to look at how many bears, how many male bears are producing the cubs. Is it every bear has an equal chance, or are there certain qualities? Are there certain really big bears or some feature of bears, male bears, that they get to produce most of the mating? So it's a question of how many males do you need, and what are the qualities of those males to produce cubs. So we can
start looking at that through things such as genetics.
We've taken blood samples in the past, and from that we can look at whether or not a female bear is pregnant. Obviously a very fat bear we can tell is pregnant. But there are a number of bears that are thinner that we don't really know. Looking at them, it would be a guess. But we can take blood, and we can measure hormones in the blood and determine if a female is likely pregnant or not. And you can use the blood to look at things such as disease in polar bears.

We do take hair. Where we take fat, we shave we a little bit of hair off about the size of a Toonie. And from that hair we can look at levels of mercury, what are the levels of mercury doing. And we're starting to look at things such as stress hormones, cortisol, looking at both short-term and long-term stress. We take a tiny fat core from the rump of the bear, and that allows us to look at the diet of bears, the different types of marine mammals that polar bears are eating, and the relative proportion of those marine mammals in the diet. And for the Western Hudson Bay, about 60 percent of the diet of polar bears in Western Hudson Bay are ringed seals. So that's the predominant prey species in Western Hudson Bay. That's not necessarily the same proportions in bear species everywhere. It just depends what's available. And we can
look at things such as contaminants, and we archive all these specimens for our future study.

Next we take a vestigial premolar. It's a little tiny tooth right behind the canine. It's very much like our appendix; it doesn't really have a function that we know of for polar bears anymore. It probably did for ancestral bears, but polar bears today it has no function. It's very shallow. It's got a very shallow root, and we can pull that tooth in probably about five seconds. And we get that tooth, and we can take it back to our 1 ab or a lab anywhere, and you can section it. And just like you count rings in a tree, you can count similar rings in polar bear teeth.

And there on that one there's a slide, and that's got three distinct dark 1 ines numbered one, two, three, and a fourth one starting on the edge. So that bear would be a three-year-old bear for us. And how do we know that? We11, we catch bears as cubs of the year, so we know how old they are. And later on in life if you catch them again and pull a tooth, you can age that bear, and from that we could determine that each one of those dark lines matched exactly one year in the life of a polar bear.

So knowing the age of a polar bear is quite powerful in terms of management looking at the age structure; when do bears first reproduce, when do they stop
reproducing, how long do they live, those sorts of things. Those are very powerful pieces of information, and that's something we can get from our handling bears. And it's also obtained from you guys when you harvest bears if you, you know, turn in a tooth for aging purposes.

Next I've put this slide up -- I've tried it once and failed miserably, but you can take milk -- you can milk female bears just like you would milk a cow. You can take a milk sample, and from that you can look at the fat content of polar bear milk, and you can look at contaminants. And this was done probably about 20 years ago now, and it was done through the University of Saskatchewan. And their concern was that polar bear cubs who weren't feeding on their own, they were relying entirely on mother's milk, were showing certain types of contaminants in their bodies. And so the question was, where were they getting these contaminants? And so we collected some milk samples, and we determined that the pathway for those contaminants was primarily coming through the mother's milk. She would take her fat stores, use that fat energy, produce milk, and those contaminants would be incorporated into milk and transferred across to the cub. We haven't done that for many years. I can't even do it. So it takes a very special skill.

But those are the sorts of samples that we can
collect and the sorts of information we get by handing bears. And some of these samples have proven to be very valuable over time, and not because we analyze every single sample every year, but new techniques are always being developed, and people always want to know, well, what was it like in the past?

And one of the examples, you know, is the genetics. Those little plugs of skin initially we used to just throw on the tundra because genetics wasn't a big science at the time, and anyone that did genetics was doing it through blood so we didn't think there was any value in keeping those little plugs of skin. Now it turns out that that's a very valuable tissue for looking at genetics, and we're kicking ourselves for throwing those little pieces of skin and not storing them.

The fat we have been archiving, and that's been very valuable in going back and comparing diets of polar bears back in the $\quad 80$ s to what their diets are now and also very valuable in looking at contaminant levels, because not only do you get contaminants from bears, say, in the 1980s and the 1990s, but you can get it from individual bears because, when we catch a bear, again, we'11 take another fat sample. So if we caught her in 1985, we'11 have a fat sample. If we caught the bear again in 2000, you'd have two fat samples, and you could look at contaminant levels,
and you could say, are contaminants stable in this bear, increasing, decreasing? So archiving a lot of these samples, as new techniques get developed, people are always looking, well, what was it 1 ike 20 years ago?

And in addition to the samples, we have a lot of baseline information just on the bears themselves; how old they were, how heavy they were, what were some of the measurements. So you can start building up these models and start trying to explain a lot of things by having a lot of historic baseline data of what it was like back in the early 1980s. Next slide.

We talked a little bit about telemetry yesterday. And we put collars on bears primarily to see how polar bears use sea ice habitat. In conjunction with researchers at the University of Alberta, we put out 10 to 12 of these GPS satellite-1inked collars deployed each year.
As I said yesterday, we can on1y put them on adult females. Adult males have that traffic cone shape. We can't get a collar to stay on a male, adult male. And although we could on subadult bears, because they're still growing, we're very concerned about putting a collar on tightly so it won't come off and then having a subadult bear grow and that collar won't expand, and cut into the bear. So we don't put them on subadult bears.

The collars themselves, they weigh about 1.6 kilograms, which is less than 1 percent of the weight of an adult female. So, yeah, if you were to hold one, it feels heavy, but compared to the weight of an adult female, it's very, very light relative to an adult female.

These collars provide us with the locations of bears for up to two years without any disturbance. So that's a benefit. We hear that people don't want bears -they don't want all this work being done, they don't want bears to be disturbed. Putting the satellite collar on gives us up to two years to follow that bear and leave it completely alone. We don't have to fly over the sea ice to find it, we don't have to fly over it on land. We just leave it alone. We know where it is because we're getting the GPS locations.

And the collars have a release mechanism that we set to release on a predefined date. And that's the bottom picture. There's a collar that released, and it's just sitting on the tundra in Churchill, and I can pick it up. And it means that we only ever have to handle the bear once just to put the collar. Or the collar releases on its own and just drops off on the tundra. We don't have to -- as I said, we don't have to disturb it over two years trying to figure out where it is. We know that.

So it means if, you know, a bear happens to go
to a place where we're not working, the collar is going to come off. We don't have to worry about bears having collars on it forever. And that was some of the concerns not only of people around this table but also of researchers. You don't want to have a collar sitting on a bear that doesn't come off and just stays on there forever. So this is one way to help ensure that these collars come off and the bears aren't encumbered with collars for life. And that information provides information on how bears use sea ice, where they feed, and how far and how fast they might travel. Next slide.

And here's a map of 20 collared bears in a two-year period. So Churchill is buried in the middle of the left frame, and that's simply the one -- the big frame on the left is simply all the tracks that we have the information from 20 bears over two years. So Churchill is buried there. You can see - hopefully you can see Arviat. So you can see, out of those 20 , there's one or two that moved up towards the coast, off the coast of Arviat. Some made it up as far as Whale Cove, but none of those collared bears went as far as Rankin Inlet. And then they moved out across into the sea ice.

Most of the locations are within sort of what is considered the management zone, that line on the map for Western Hudson Bay. But, clearly, bears are moving right
into sort of the management zone of Foxe Basin there. It's sort of the southern part of Coats Island, and they're moving into Quebec, Southern Hudson Bay, so into Ontario. One even went close to Wapusk -- to Wanisk (phonetic). And so they moved across, and then they all come back into Wapusk National Park the following summer.

And if we can sort of zoom back out to look at the panels on the right, each of those panels is one bear and what it did -- the different colours are what it did in the two-year period. So the top bear, two years it headed off into the north, sort of the northeast across into Foxe Basin, into different areas and different the sort of area that it moved. But that bear did something similar two years in a row, headed out towards Quebec and Foxe Basin.

If you look at the figure on the bottom there's a female that did quite different things. One year she did something similar going out towards -- went out towards Foxe Basin, but another year she moved up the coast, intended to spend a fair bit of time sort of up the coast off Kivalliq.

So those colours give us a little bit of information of individual changes, individual differences, how the females are using the sea ice. And what we're starting to look at or what we're interested in now is,
with changes in breakup dates and freeze-up dates, how does that impact polar bears per se? Will they just sit on the ice and just let it float, and they'11 just come off wherever the last ice remains? Will they walk sort of like going up a down escalator? If a bear wants to be in Manitoba for the summer, will it walk and spend extra energy to keep itself off the coast of Manitoba despite the ice continuing further south, or will they follow it further south, get on shore and walk all the way up? We're hoping that we'11 get some answers from that, from the satellite collars, sort of their rates of movements and what their behaviours are. Next slide.

And this concern with how bears use sea ice in climate change. This is dates of breakup and freeze-up. These are determined from satellite imagery of sea ice across the arctic. So we take those imagery and we put the Western Hudson Bay, the line that are the boundaries of Western Hudson Bay, and we look at the date at which the sea ice cover in the spring gets to 50 percent. So it's starting to melt. When does it get to 50 percent? And for us and ice scientists, that's sort of a trigger for, quote, "breakup."

So when we talk about breakup we're talking when the sea ice cover is about 50 percent. And those dots, the satellite record goes back to 1979. So that's as far back
as we can go. And those black dots are that 50 percent breakup date over time through to 2016 when the last aerial survey was done. And there are a couple of things to notice.

Those dots are all over the place. One year isn't worse than the year before and worse than the year before or better. There's a lot of noise. There's ups and downs. Sometimes it's early, sometimes it's later. But if you look at the long-term trend, you look at the whole data set from 1979 to 2016, there's that downward trend. And that works out to be approximately a 22-day change.

So breakup is occurring -- in the early 1980s it was occurring sometime in early to mid-July, and down at the bottom right of that panel it's now somewhere in about mid-June. And you can see in 2015 a very, very early breakup in Western Hudson Bay, which was on the 18th of May, so quite a very early breakup, 50 percent. But the following year it bounced right back up. So a lot of variability, long-term trend towards earlier and earlier break-up.

The bottom, if we look at freeze-up, what are we seeing in timing of freeze-up? A very similar sort of pattern. Freeze-up is when is there 10 percent ice on Hudson Bay. So that's what we call freeze-up. When is there 10 percent cover on Hudson Bay.

If you look back at the early 1980s, that was in early November. So there was 10 percent ice cover in early November, and as you move along, again lots of noise. Some years it comes early, some years it comes late. But over time the trend is towards a later freeze-up, and it's about 14, 15 days later now than it was back in the 1980s. And so now it's sort of more late November than it is early November. And in 2016, it was the 7th of December. So that was the latest freeze-up in that entire 1979-to-2016 period. So a very, very late freeze-up. Next slide.

And if you look at the difference between when the ice begins to break up and when it starts to freeze up, and you just take the difference between the two, you get the number of days. And, again, if you look in the early 1980s, that period was somewhere on the order of, you know, 130 days to 140 days, and now over time it's closer to sort of 165,170 . So there's about 35 days longer now, this period between breakup and freeze-up than there was back in the early 1980s, so a 35 -day period of less ice that bears have to deal with. Next slide.

So how does the condition -- there's a slide, the top one -- these are just for exaggeration purposes. The top one is a very, very thin male bar. We would say that that's a one out of five. What does a bear that's a one out of five look like? You can see, even at a
distance, you can see his hips, his spine. There's not a lot of body fat on a bear like that. We don't see many bears like that, but that's what a one out of five -- and that actually has a cannibalistic -- it's got a cub in its mouth there.

And the bottom is an exceedingly fat pregnant adult female, and a bear like that we would say is a five-out-of-five fat, exceedingly fat. And pregnant females need to be fat. They're going into dens, they're going to be on shore for eight months, they're going to produce cubs and provide milk for those cubs, so they need to be as fat as possible.

So, generally, once sea ice breakup occurs earlier, the bears tend to come ashore with less body fat. And when breakup occurs later in the year, they tend to come ashore with more body fat, and that's simply a function, you know, of how long they're out on the sea ice hunting seals before they have to come across. If it breaks up early, they don't have as much time to hunt seals, so they don't have as much fat. Next slide.

And it also relates to survival. So the work that we published in 2011 at the time of the first aerial survey of 1,030 , we did sort of a complex sophisticated model with all our capture data, and one of the variables we looked in was looking at survival of bears in relation
to date of sea ice breakup.
And the top panel is for young independent female bears aged one to four -- subadults, teenagers, whatever you want to call them, young bears -- and you could see that in years when breakup is really early their rate of survival is somewhere in the order of .75 , but if breakup is later they have a better chance of survival, and it was closer to .85 .

And if you look at the bottom pane1, this is for your prime adult females with cubs. Again, early breakup, survival of those age groups of females was in the order of $.85, .86$ and when breakup is later in the year. So more time on sea ice, better condition when they come ashore, they have much better survival, up at . 95, . 96 . So break-up has an impact on survival of bears. Next slide.

And that work also led to looking at the demography and population trends, and it showed that initially from sort of the late 1980s the population was fairly high, somewhere around 1,200 bears, and then it declined through to somewhere around the late 1990s. You can see that decline, a period of decline. But afterwards it seemed to stabilize, the population there. There were the numbers, the point estimates from the simulations. You know, they go up and down from year to year, but there's no trend. It's not declining, it's not increasing. It's
stable. And that's the information that's being used currently in, you know, status tables in a lot of these management plans. This is sort of what we're suggesting is why the polar bear population currently seems to be stable at least through to 2011. Next slide.

So this is a series of slides, and this is from our research work, and this is; how much do bears weigh when we catch them? So this is the mean mass of adult males from 1980 to 2016. And, again, there's lots of variation, ups and downs. They're not always lighter or heavier, depending on which year you look at. They were heavier, sort of an initial pulse of very heavy bears in the early 1980s and sort of a period of stability from the 1ate 1980s through to about 2000. And then we had some good ice conditions, and the weights of bears went up of adult males.

And since then, if you look at 2010 onwards, the weights of adult males that we're catching have dropped again. And those numbers are sort of in the 2000s, that period of stability, roughly they were in the 400 to 420 kilogram range, and since then they're down to about a range of about 375 kilograms. Next slide.

If you look at the mean mass of solitary adult
females -- so these are the bears that we presume are pregnant and are going to produce cubs -- similar sort of
thing; long-term decline. They were heavier back in the 1980s than they are now, lots of noise. So you get a good ice year, and they pick up their condition.

That dashed line, that's the minimum mass of a female we've ever caught in the fall that we know produced a cup the following spring. And that number is 189 kilograms. It doesn't mean that's the absolute minimum, but we've never caught a bear lighter than 189 kilograms that we know produces cubs. So the purpose on that is that at some point if a bear gets too light, is not in good condition, an individual bear won't reproduce, and that probably happens in most years that there's some females that don't reproduce because they weren't a good hunter that particular year, whereas most of the females were.

But this line, this graph is showing that over time more and more bears, the solitary adult females, are getting lighter and lighter. And so you can see again in that period of 2000 to 2010 this period of stability what we think were probably good ice conditions, there was quite a change in weights of adult females, quite high, well above some of the other values earlier on in the '80s and '90s. But since then, since 2011, since that first aerial survey, those numbers are back down again. Next slide.

And, again, these are adult females that have
cubs of the year in September. So that's what this graph shows. And this is their weights. And similar to the last two slides, long-term downward trend in their weights in the fall time in September when we're catching them. In the 2000s, again, when their periods seem to be stable and things seem to be good, the weights of females with cubs were quite high, again, you can probably see exceeded some of the weights back in the '80s and '90s. But since then, they're down there. As you can see, in the bottom lower right, they're down at the bottom end of that. They're quite low. And for females with cubs in the 2000s, that good period, they were sort of in the 200 to 220 kilograms, and from 2011 onwards they're closer to the 175, 180 kilograms. So they're not as heavy as they were at the time of that last aerial survey in 2011. Next.

Adult female productivity. How do these things relate to productivity? Well, here's a table that has a 16-year period starting in 2001 and grouped into four-year bins, 2001 to 2004 and, as you can see downwards how many adult females there were. So in 2001 to 2004, there were 178 adult females captured. How many of those 178 had cubs of the year with them? It was 92 . So that's 51.7 percent of the females in that period had at least one cub of the year.

And then you can go and look at the next year or
the next bin: 131 females; 53 of them had cubs of the year, and that works out to only 40.5 percent. The next four years there were 127 females caught, 49 had at least one cub. That's 38.6 percent of the females had cubs of the year with them, and then the last four years, 2013-2016 -- so ending in the year of the recent aerial survey -- we had 108 females. Only 36 had cubs, and that's 33.3 percent of the females. So a drop in the number of females that had cubs of the year over time.

The mean litter size, that changes. It fluctuates. The mean litter size was 1.533. It went up to 1.485 , dropped to $1.469,1.5$. So it fluctuates, but there's no real trend in litter size over time.

And then that last column simply is a sort of crude measure of recruitment, and it's simply a calculation. If you took all of those females in 2001-2004 that had cubs, if you count up all the cubs that they had and divided them evenly amongst all those 178 adult females, each adult female would have about .8, . 792 of a cub. And over time -- and you can do those calculations -now the number of cubs out there for the females is down to .5. So it's another way of showing that cub productivity has declined. There aren't as many cubs being produced in this population. Next slide.

Human-bear interactions. The bottom graph
handles Manitoba conservation activity in Churchill, how many bears they have to handle in relation to the date of sea ice breakup. And, again, there's lots of noise. Some years it's good, some years it's bad. But the general take-home message is, in years when sea ice breakup is early -- which is on the left end of that axis -- they tend to handle -- have more problem bears or they handle more problem bears in and around the town of Churchill. When breakup is later in the year, bears are out on the sea ice longer, presumably coming ashore in better condition, they don't seem to handle as many bears.

Now there's a lot of caveats associated with that. There are different conservation officers over time, how they respond to different policies. So it's not -each year you can't compare directly, but it's sort of an indication, and it's one of the reasons why Manitoba does that coastal survey that we talked a little bit about yesterday. Every September they fly that coast from the Manitoba-Ontario border up the coast and just count how many bears they see, and they use that as a crude sort of indicator of what they might expect for bears in and around the town of Churchill in the fall time.

So there are a number of reasons why we have increase in safety concerns. And there's not going to be one. There's not a single answer that's going to explain
it all because there will be numbers of variables. Some of the bears that come into communities are in bad condition, particularly subadults. Out on the sea ice, they might not be as skilled a hunter as, say, an adult female or adult male so they might have a harder time. And if they do hunt and kill a seal, it might be taken away by a bigger bear that comes along. They're growing, they have more energy demands, so you might get some of those subadult bears being in poor condition. So you might get some stressed bears coming into town, some of them.

Bears are on shore longer, so there's a greater probability of interacting with people -- not that you'11 get those interactions, but if bears are on shore, you know, for an extra three, four weeks the chances of there being an interaction just simply goes up because they're there longer. How many times -- how often would you see me in the town of Rankin if I'm here for one day? If I'm here for a week? In one day you may never see me. If I'm here for a week you might see me once, or you might not see me at a11. But the longer a bear is around on shore increases the probability that an interaction could occur.

Delay in freeze-up may allow more bears. We know that, you know, in the fall time bears start moving up the coast trying to anticipate and intercept the sea ice as it comes down. Well, if the sea ice is delayed and the
bears keep moving up the coast, in a community such as Arviat, which is just up the road from Churchill, a lot of bears may actually reach Arviat before there's sea ice to get out. And then in Arviat we talked about there's things like community attractants.

In Churchill they used to have an open garbage dump. When I first went to Churchil1 in 1981 there was an open-pit garbage dump right near the coast, and it was not uncommon to see 30 to 40 bears at a time in the garbage dump. It was a big tourist attraction. People could drive to the Churchill garbage dump and look at polar bears just like I used to do as a child with black bears. My parents would drive to a garbage dump so I could see a black bear.

So community attractants; garbage dumps. We heard about beluga harvesting in August, and, you know, the incident is that you sink the beluga. But that doesn't always happen. So if you have an attractant near a community, that will bring bears in. So community attractants.

And bears remember. Bears would come back to the Churchill garbage dump even after it had been closed. For a few years there were bears that would continually come back anticipating there to be garbage there because that's what they remember. So I know WWF -- and there have been, you know, work done on diversionary feeding, maybe
bears are remembering that, hey, the last time I was there there was these food resources for me. I'm going back there. And they just walk to those areas. And if it's not there, maybe they're going to go start looking somewhere else, wander into communities, sites and smells.

And then another thing which I didn't put on, communities are increasing. There are more people in a lot of these communities, more people out on the land. So if you have more people out on the land, bears are around longer, people engaging in, you know, hunting, fishing activities along the coast, again, bears are on shore longer, more people out there just, you know, the probability that you're going to get -- interactions are going to increase.

So, you know, safety concerns are huge. They are big, and no one is diminishing them. But there's lots of reasons, you know, why bears -- and another one is, you know, the perceptions that bears, the actual population is increasing. So there's lots of explanations for why it's going, why it's happening. And I don't think there's a single one. I don't think you can say the only reason you have problem bears is because they're all starving. We know that's not true. You're telling us that. There are bears that are nice and fat. Those might be bears that remember Arviat or Whale Cove because they were there
before and there were beluga bone piles that they were able to feed on.

So there's a number of reasons why, and I don't think there's going to be a single one, which makes it hard to manage. Next.

So what do we know about Western Hudson Bay polar bears? A lot of this stuff is not new. You've been telling people, you've been telling us that. Numbers of bears in the 1940 s and '50s were low. There weren't that many bears. And probably one of the reasons is that there was an unregulated harvest, there was a big military presence, there was harvesting in Manitoba by Dene local people. But there weren't any regulations. So you could show what you wanted, when you wanted, how many. You could go shoot females with cubs. You could do whatever you wanted. So there was this large unregulated harvest, and that probably kept bear numbers low.

And as we've heard around the table, people found that, you know, things started to change, bears started to increase in the '60s and '70s. Well, what are some of reasons? We11, in the 1950s, Manitoba put in game regulations that stopped harvesting in Manitoba, essentially, so there was no more harvesting done in Manitoba. The York Factory trading post was closed, so there was no longer an economic market, that people weren't
being able to take hides to these trading posts. The military base closed. So you know, 5,000 military personnel who did manoeuvres all over the denning area and all over that, they were gone. So you didn't have that pressure from military people out on the 1 and.

And then in the late 1960 s was sort of the initiation of the current quota system was instituted. And I was looking through my notes just to see what I could find, and the only reference I could find in my notes back then was a recommended quota for Arviat of four. So back in '67, '68, that's what people were talking about. But, you know, quotas were introduced a long time ago, back in the'60s '70s. So all those factors contributed to getting this unregulated harvest under control. And that's likely what led to an increase in bear numbers through the '60s and '70s.

So the first scientific estimate how many bears are there in Western Hudson Bay came from the late 1980s, and that was 1,200 bears, and that's what the initial -- or the quotas were then adjusted to. So heard around the table people said they remember when it was 55 or 56 . That's true, and that was based on 1,200 polar bears. That's where the quotas came from.

And the subsequent declines based on sort of mark recapture work, recent ones, work that I've done back
in the early 2000s showed declines that were linked to earlier breakup of sea ice. And I showed some of those slides how survival is linked to timing of breakup. And then we come to the two aerial surveys, the one in 2011 which was 1,030 and new one, 832 , which is part of the reason we're here, is 842. What do people think is a suitable total allowable harvest? Next slide.

And we talked about this yesterday, a number of people raised the question, and, you know, that we're just just talking about polar bears. I mean, polar bears eat seals; right? And what's happening to seals? And one of the problems is that it's very expensive, it's a lot of work to study these sort of huge ecosystems. People tend to pick an apex predator, something at the top of the food chain, because if you have healthy polar bear populations, then it's likely everything underneath is probably healthy, as well, because it's supporting healthy polar bear populations.

If you start noticing a change in your polar bears, whether it's numbers or the condition of bears, just some change that they're no longer like they used to be, that's an early warning sign that there's some change somewhere in the system, but we don't necessarily know where that is. It might simply be seals, but it could be fish, it could be some of those invertebrates, it could be
the phytoplankton. We don't know where without having these comprehensive long-term studies on an entire ecosystem, and those aren't feasible. So we study polar bears because it tells us something about the whole arctic marine system. Next slide.

One of the concerns with climate change and the loss of sea ice changes is you get a shift in species. So arctic cod are adapted for living in the arctic under sea ice, they're high energy, high fat content species. As you lose -- if the climate continues to change and you lose sea ice, that might allow other species to come into places like Hudson Bay. And some of those subarctic species, which we know are here -- things such as sand lance and capelin. And then if you go even further, I mean, you get into more temperate fish species, things such as rainbow smelt. So the fish that are present in Hudson Bay will have an impact on the seals because that's what they're eating, and they in turn will have an impact on polar bears. Next.

So recent changes in ring seals. And this is not my data. This is data given to me by Steven Ferguson at Fisheries and Oceans in Winnipeg who had been looking at ring seals in Hudson Bay. And the top slide is simply from the hunter harvests that he did with Kivalliq communities, is looking at the percent blubber of the seals. And it's
over a period of time. And there's this downward trend in how fat the ring seals are.

And it's about 55 percent in the early 2000s, and when he stopped in 2011 -- so at the time of the first aerial survey -- they were 48 percent fat, blubber. So sort of look at the polar bears. Less fat, so too with the seals, less fat. So for a bear, if you caught one seal in the early 2000s, the amount of fat you got back was more than you're going to get in 2011, so a deciine in fat content.

Spring hunting is the critical time for polar bears. That's when seal pups are weaned, they're naive, they're easy to catch. So most of the energy that polar bears need for an entire year they get during the springtime, sort of the order of 70 to 75 percent of the energy. So springtime is important. So if they're doing a lot of foraging and feeding on seals and the blubber thickness is changing on seals so they're thinner -- so they are thinner -- the bears aren't getting the same bang for the buck. They have to catch more seals. And there was some concerns in communities that they're not seeing as many seals. The seals are gone.

And the bottom is some aerial surveys. They're not every year so there are gaps and holes. We don't know what happened in between, but these are some density
estimates of ring seals. And ring seals are very hard to count because they're in the water most of the time, so you can only count them when they're hauled out on the sea ice. And so these surveys are typically done in the springtime when the seals are molting, and they molt and they come out on the sea ice and they're molting on the sea ice. So this is sort of an index of the density. It's not an absolute because we know there are a number of seals that aren't there.

But back in the sort of mid 1990s their survey suggested there was somewhere between 1 and 1.2 ring seal per square kilometre, and over time down to 2013 that dot at the very bottom right, that's about . 2. So quite a dramatic drop. Whether that's a one-year blip -- there's lots of holes, as I said. There was not a lot of work done, nothing from about 2001 to 2006. We can't fill in the middle, and we can't fill out in what's happened since. So we don't know if that was just one bad year for ring seals and if we did it again, they would be up again, or whether ring seals numbers are still low. But these data suggest possible declines in numbers of ring seals in Hudson Bay. Next slide.

Southern Hudson Bay polar bears. I mean, we saw the movements. I mean, Hudson Bay is a single entity. We know bears. Despite putting lines on the maps, bears
aren't stopping at the Western Hudson Bay and turning around and going back. They're using the whole of Hudson Bay. So what's happening to Southern Hudson Bay seals?

When they look at sea ice they've noticed that there's an increase as well. Just like we noticed in the western half, they're seeing an increase of about 30 days in the ice-free period on the eastern side of Hudson Bay from 1980 to 2012.

In Ontario they don't do work every year, they do it in chunks. So they have body condition of bears from the mid 1980s, and then they did it again in 2000. And when they looked at the body condition, bears of all age and sex classes, their body condition declined between those two periods of time. So they were in better condition in the mid 1980s than they are in the 2000s.

The first real sort of estimate of bears in Southern Hudson Bay; 2005, 900 to 1,000 bears. They did an aerial survey. Just like there was an aerial survey done here in 2011, there was an aerial survey done in Southern Hudson Bay, but they did it in two years, 2011, 2012, and they came up with a number of 943 , which was not dissimilar from what it was in 2005.

But in 2016, at the same time that the Western Hudson Bay aerial survey was going on, they did another
complete aerial survey of Southern Hudson Bay. And they came up with 780 bears. And, again, there's the confidence intervals are quite large, and they overlap. But Southern Hudson Bay declined by about 75 percent, the change, the step change in those two -- five-year period, which is very similar to what the aerial survey data seemed to suggest for Western Hudson Bay.

That could be a coincidence, you know, just happens to be. But from a science perspective, the weight of evidence, there is a lot of changes that seem to be going on in Hudson Bay with changing in breakup, breakups occurring earlier, freeze-ups occurring later. Some evidence that there aren't as many ring seals as they used to be, they're not as fast as they used to be. We're seeing changes in condition of bears, how fat are bears, you know. And it does fluctuate, I agree. And there are changes in, you know, some of these productivity things.

So we think that perhaps it's an indicator that there's a bigger change happening in Hudson Bay. It's not just something specific to Western Hudson Bay polar bears in Churchill or Western Hudson Bay polar bears in the Kivalliq community, but it's symptomatic of perhaps a bigger change that is occurring in Hudson Bay in general that's impacting at least Western Hudson Bay and Southern Hudson Bay.

I don't have any information that I can provide on Foxe Basin. There hasn't been a recent survey. I don't know when the next one is, but we don't have recent information for Foxe Basin on how that population is doing, which uses sort of the northern part of Hudson Bay and Foxe Basin. So we don't know about Foxe Basin. But what we do know is Western Hudson Bay and Southern Hudson Bay there are some strong signals that there are changes going on, and each piece by itself may be not, but it's just this growing weight of evidence that we're seeing, and some of the things that people are commenting on around the table. Next slide.

And with that, I don't know if I went over our allotted time slot, but I'm happy to answer what questions I can around the table or at coffee break or whenever. And as I've said, we will be providing this presentation to the Board and to everyone here at the table so they' 11 have that same document, and we will be getting it translated. So you are going to have that.

And again I would really like to thank the NWMB and the others around this table for allowing us to make this presentation when we had not submitted it as part of the package.

Thank you.
THE CHAIR:
Thank you very much, Rache1 and

Nick. And thank you for that valuable information. And, Nick, I'll just say on behalf of Board, it's nice that you're here, and know you're sort of the 1 ead researcher on the Western Hudson Bay and have been for many, many years, so it's valuable to have you here in person presenting this information to us. Thank you very much.

I'11 open it up for questions, then, to Nick. I think don't worry about going over in your presentation. We might go over on the question period here. There's going to be lot of questions, I think, so I'll open it up for questions from Board members first.

NUNAVUT WILDLIFE MANAGEMENT BOARD QUESTIONS AND COMMENTS THE CHAIR:

MR. BOLT: Jorgen.

Thank you, Mr. Chair.
Just some questions here. You mentioned about your collar there. What kind of information are you getting from these collars? Like, where they're going, direction? Because I know in some of the - I've read some research around the world where in Africa they're using collars on some of these lions that they put the accelerometers on them to see how often these lions are hunting, stalking, eating, and they can tell how much hunting a lion's been doing during that week or during the day with this accelerometer on their collar. I just want
to know what kind of information you guys are getting from these collars.

Thank you, Mr. Chair.
DR. LUNN:
Thank you, Jorgen.
THE CHAIR:
Go through the Chair, Nick. Go ahead.

DR. LUNN: These satellite collars, they come as sort of a Chevette version with basic features, and you can get and build on these things such as accelerometers, and you can add as many various devices and pieces of equipment to monitor a number of variables and things in the environment. The ones that we put on, our interest is more where the bears are and getting information on whether they're active or not active. So there's just a mercury switch that, when they're not active, it gives a reading; when they're active it sort of counts how many times the mercury switch switches.

We don't have accelerometers. There are people in the U.S. that are putting that on polar bears. They're more interested in things such as swimming, you know, in the Beaufort Sea. Polar bears could do a lot of long-distance swimming. We can't get some of that information ourselves simply because of the positioning of the transmitter is underneath. So when the bear's in the water it can't transmit to a satellite. So when we get no
information from the satellite on the bear, we're assuming that that bear is in the water.

But what we're basically getting are GPS locations where the bear is, so we get a lat and a long, and from that we're plotting it out to the sea ice. We're looking at what are the features of sea ice where the bear is, and then we can look at rates of movement because we'11 then have the next location, and we can calculate the distance, we can calculate how quickly the bear moved from point A to point B and get rates of movement.

So we're not -- we're not deploying collars really that give us a greater glimpse into things such as hunting, the frequency of hunting, that type of information. We assume that if they're in a localized spot -- so we're not getting lots of movements and great distances -- that they're probably hunting. But we don't have the sophistication to determine that. There are collars that actually have cameras on, and some people are starting to deploy those collars. We're not deploying them. We haven't put them out, but that would be, I think, a very interesting thing to be able to look at video feed of a bear out in the middle of Hudson Bay or wherever and what it's doing.

So long answer to your question, no, we're not looking at that stuff. We're just getting basically
locational data, and then we're using that to look at rates and activity switches.

Thank you.
THE CHAIR:
Thank you, Nick.
Jorgen, any other questions? Noah.
MR. MAKAYAK: I would like to ask regarding I saw one of the collars on the bears. What kind of effect does this have on the bear? Sometimes they have -- they have to sometimes jump and attack seals through a very small hole. This is their hunting technique, and no doubt these collars can scratch, damage their necks. Just in their hunting techniques, how much damage is done on the bears with these collars?

THE CHAIR:
Thank you, Noah.
Nick.
DR. LUNN: Thank you. That's a very good question. A lot of concerns of hunters, and it's a concern to researchers as well. We don't want to put a device -we want to study an animal in its natural behaviour. We don't want to put a device on an animal that's going to change the way it behaves or injures the bear. So the collars themselves, again, one of the reason we just put them on adult females, we can't put them -- we don't put them on smaller bears is because those smaller bears will grow into them and they will cut. We know that, so we
don't do that. So we restrict to adult females.
There's a bit of an art to fitting the collar. So you don't want to put it on really tight, because you can really cinch them up, if you want. But that leads to the concern that you raised of cutting in. So for us, we can get a collar on, and I can fit my fist this way, so there's that much room, whatever that is, three inches of room for the collar to move. And that allows the female, you know, to change weight, to put a bit of weight on if she needs to once she gets back out on the sea ice.

And when we do recapture them in the future we can usually see that they've worn a collar because there's a bit of compressed hair around, so you can sort of see. Sort of like if you, you know, take a belt off, you can see sort of where there was a belt. We can sort of see where there was a collar, and over time that disappears as the bear molts.

In terms of injuries, over the years we have had one female where there was a slight cut, and by slight I mean maybe an inch long, very superficial just right behind the ear, and we think what happened is the collar just got pushed up and cut a little bit behind the ear.

We don't see a lot of injuries. We don't see that in the bears that we put collars on. I know that they have had problems other places where some bears have come
with cuts, and we think that's just a method of how tightly they put the collar on, or maybe the bear grew.

Does it have any effect on hunting ability, being able to feed cubs? Well, we don't see it. We're not out on the sea ice, so we can't actually see a bear hunting and how that collar may or may not impact a female. But what we do have is, when we catch those bears again, we can get their weights, and we can look at the weights of adult females and their cubs that have had collars versus females that have not had collars, and we don't see any change. We don't see that any female that's worn a collar is always lighter than a female that's never worn a collar. We can't -- we haven't been able to pick up, really, any real negative impact of the collars. After three or four days -- once we drug them, after they've sort of come out of the drug three or four days later, their behaviour seems to be similar to other bears.

The only negative impact that we were able to detect with our handling, and it was sort of aided by the use of collars, was in the early days to catch pregnant females in dens we used to land on the dens. If we saw a bear in a den, we would land on the den. That's what people did to get a bear out of the den. And then when it popped out, you'd tag it and put a collar on and leave it alone.

What we found was that, in the springtime when we came back to the places that we caught them they weren't anywhere near that. So although they were in the den in the fall time, where they ended up actually denning and producing cubs was someplace completely different, and we felt that was an impact of us landing a helicopter, getting them out of a den. So we don't do -- we haven't done that for 25 years.

So that's sort of an impact of our research that the collars helped. But we really don't have any information, good information that there's a real negative impact. I know it's a concern of hunters, you know, of bears going in crashing through holes and how would that impact. The collar itself, you know, it doesn't stick out way outside of the neck to make their neck a lot wider. The bulk of the device is hanging low, so their head would go in first and break that hole.

So we don't -- the answer is we don't have any good information to say that it doesn't, but looking at things such as weights of adult females and cubs with or without collars, there doesn't seem to be any change in weight, which to us suggests that there's probably not -it's not impeding their ability to hunt.

THE CHAIR: Okay. Thank you, Nick.
David K.

MR. KRITTERDLIK: Thank you, Mr. Chair.
I understand that research into polar bear began in 1980, and I am thinking that collar used -- of course, research started from that time, too, on polar bears. I'm just curious about number of collars that were used on polar bears and if there were any loss, and if there were any unrecovered collars.

And the other question is that I think you said that, to release the collar can be done by technical from your office actually or from somewhere on the 1 and or on the ice. Those are some of my questions.

Thank you.
THE CHAIR:
Thank you, David.
Nick.
DR. LUNN:
To answer the first part, collars have been used periodically from the start to now. Not every year. It depends on the research question, what people wanted to know.

In the early days of collars, at least for affordability -- I mean, GPS satellite-type collars did not exist when the work started, so the very first collars that went out were smaller devices, and they were VHF. So you found them by putting antennas on aircraft, and so we had to disturb the bear every time we wanted to find out where it was. We had no other way of tracking it. So these
collars would be put on, and people that were doing the work would fly once a week through the area, you know, listening for those signals and then zeroing in.

So those collars back then, they did not have release mechanisms, and the release mechanisms that we use now those are a recent innovation, and they're programmed by the manufacturer. We tell them what date we want them to set it to, and they set it for us. And so it's -- there is the technology that, if we saw a bear, you could release it. We don't have those types of release mechanisms, but they do exist that you could fly around, and if you saw a collar and wanted to release, you could hit a button and, poof, it would open and drop. That's not what we're using.

We using release mechanisms that are predefined. And we set them for the 1st of September two years after we put the collar on, and we do that because we want to make sure the bears are on shore, because if we recover them, any missing data we can download, it's stored on the device. So we can send it back and get the complete data. We might have misses that didn't get transmitted up to the satellite, so we can get the complete data, and we can reuse the collar. We can send it back, and they can strip out, put in new batteries and give us that collar back for cheaper than it would cost to buy a new one.

But back in the early days we didn't have those
technologies. We had to catch the bears again. So we had to go back and drug the bear again to pull the collar off when the work was done.

And I don't have the number, when you asked how many didn't get picked up. We do keep track of that because it's an important thing that people want to know. You know, how many bears are out there with collars that you never find again? And it's important. You don't want -- that's one of the reasons we went to release mechanisms. We don't want bears to have collars for the rest of their life.

So for those VHF collars, the early-day one, I would say we're probably at 90 to 95 percent recovery, and that's because we had to -- we had to fly and find them to get them to get the collar off. So there were some that we never found again. And sometimes you catch the bear again without the collar on, so you know that the collar came off. I mean, they were designed -- the fabric would break down in sunlight, so over time they would come apart and fall off. And so you do catch some bears without collars, and you never get the collar back. So we know at least the collar's off. But I would say it's 90 to 95 percent we got back in the early days.

For satellite collars, that's a little bit different. We started putting satellite collars out in
about 1993, 1994, and for those collars that we put out in our study area in the main Wapusk National Park, we got them all back. But we did some work down in that area, close to the Ontario-Manitoba border, because of the, you know, information that there may be some denning going on.

So we put some collars out, and we put out five -- I think it was five collars -- down in that area, satellite collars. They didn't have release mechanisms, and we never found -- I think we got two of the five back. So there were three that we never heard of again from the satellite collar, never caught the bear again without the collar. We have no idea what happened to it. Those bears now are so old that they're not even going to be alive anyway, but they were bears we didn't know about.

With these release mechanisms, for the ones that we've deployed in Western Hudson Bay we probably have or close to knowing about 85 percent of the fate of them. Sometimes it's the collar we find on the tundra, sometimes we've -- we had one this year that failed early. We put it on, and six months later it had stopped working. We11, we found the bear in the fall time, and we were able to pull the collar off the bear. Even though the release mechanism still had another year to go, we weren't getting any useful information. We pulled the collar off.

We found bears and not the collars. So, again,
the collars come off. We don't know if the release mechanism worked on the day it was supposed to. We assume it did because the bear doesn't have the collar on, but we're at about 85 percent recovery of all those collars.

And we have -- because we're working every year, there's a VHF beacon on those collars that lasts for five years. So the satellite stuff goes for two years, and the collar drops off. But the VHF beacon lasts for five years. So even though we're not getting any more collar information, we're scanning the old-fashioned way with antennas, and we do pick up collars just sitting on the tundra that we never found it before, and we found it because the bears were still working in the area. And we caught bears without collars, so we know the collar came off, but we never recovered the collar itself.

Thank you.

THE CHAIR:
David.
MR. KRITTERDLIK: Thank you.
Another simple question. The collars, were they similar to the ones that they were using on caribou? And the other part; is it possible to know that collar is not from the polar bear when you're trying to find information on caribou? Thank you.

THE CHAIR:

Thank you, David.

Nick.
DR. LUNN:
I'11 answer the second part first. The collars all have individual frequencies, and hopefully there's sort of communication, at least within perhaps government departments and researchers -- if you're going on a big caribou collaring program and there's polar bear collaring going on -- that the groups would talk together to ensure that you don't have the same frequency. The idea is that every animal would have a different frequency.

If that did happen, you hopefully might be able to tell based on the location. So if there's a collar on a bear and a collar on a caribou and you're getting locations from the middle of Hudson Bay, probably a good chance that that's the polar bear (verbatim), whereas if you've got it on a polar bear and the collar seems to suggest it's in northern Saskatchewan -- although there have been at least one polar bear in Northern Saskatchewan -- you can probably assume that it's on the caribou.

But we have had -- through mixups we've actually put collars of the same frequency on two bears in the same subpopulation. And so you can -- because you know where you put the collar on you can sort of track the movements and determine which bear is which. But if you're using the VHF to locate it, all you're picking up is a signal of a certain frequency. So if there are two with the same
frequency, you wouldn't know until you caught the bear or there was some other information that allowed you to figure out which one it was. But it happens very, very infrequently.

In the polar bear world we coordinate that from when we were putting collars on. A lot of organizations, we would coordinate that. We would send a list and say, okay, if you want ten collars, use these frequencies, we'11 use those frequencies.

THE CHAIR: Thank you, Nick.
Okay. I know there's more questions for sure from the Board, but we're going to take a coffee break-up for 15 minutes, and we'11 all come back to the table.
(ADJOURNMENT)
THE CHAIR: Okay. Thank you all for coming back. We'11 continue, then, with questions from Board members. Next on my list is Jorgen.

MR. BOLT: Thank you, Mr. Chair.
Yeah, just a couple questions. Have you ever overdosed bears? Overdosages? Has there ever been situations like that where you've overdosed a bear and you can't bring it back around?

And then the other question is, do you drug pregnant females, too? Because that's going to have some kind of effect on the embryo. I'm sure it will.

Thank you, Mr. Chair.
THE CHAIR: Thank you, Jorgen.
Nick.
DR. LUNN:
Yeah, overdosing of bears. Over the years when we first started -- and I use the word "we" loosely because I wasn't around when we first started. But in the '60s when people started getting into polar bear research, they had to come up; how do you immobilize, or what drugs do you use? So in the early days there were probably -- I couldn't give you a number, but there were definitely bears that died because they were overdosed. And a lot of the drugs used in the early days, you really had to know how much a bear weighed. You really had to measure it carefully. So if you misjudged you could easily overdose a bear that didn't need as much. So that definitely happened.

We now use a drug, and we have been since probably '86, '87, somewhere around there -- a drug called Telazol Zolatel, depending on when you buy it. And the advantages of that drug are twofold. One, it's very safe for the bears. And by that I mean, if I see a bear and I say, hey, there's a big adult male, and I give it a dose for an adult male and it turns out that it's actuality an adult female -- it's not as big as I thought it was -- all that happens is I've given it more drug. It just takes a
little bit longer for it to metabolize. It doesn't overdose and die. So it's very safe. I can underdose, overdose -- safe for the bears from that perspective.

And from my perspective, it's very safe for me and for my field crews because how the bears react to the drug, it's very predictable. So the stages that they go through are very clear, and they're well defined.

And so I know before I even land that a bear is immobilized, and they start running, as you would expect, from a helicopter. Once the dart is put in, we back off and just watch from a distance, and eventually the bear will just stop where it is, and its head will go down, so it can't keep its head up. So its head starts to slump, and then it sort of wobbles a bit, and it will sit down on its behind end with his front legs keeping it up, and then the front legs go down, and so the head is sort of moving around. Eventually the bear goes down with no head movement.

And when they come out of the drug, they come out in the exact same opposite way. So the first thing that happens is they're able to start moving their head slightly. Then they'11 be able to sort of stand up a bit on their hind legs, their back legs, and then they walk off.

So I know that the work that we do, when I land
in a helicopter, I'll know before I even approach it that the bear is immobile. I don't have to worry about the bear jumping up on me. And in reverse, I know how much time, I've got lots of time by the time we're done. And we can process, do what we need to do on a single bear in 30, 40 minutes. And if it's a family group, it's about an hour just because there's more bears. We do the same things, but it's just there's maybe three bears instead of one, so it takes us a little bit longer.

So after about an hour, the cubs are already coming out, so they're already sort of up and moving around a bit, staying with mom, and the older bear, the mom is lifting her head and looking around. So we have about an hour, and then we're done. So it's a very good drug.

And I went on too long here that I forgot what the second part of the question is. Oh, pregnant females. Yes, we do. A lot of them we probably won't know from the air. We'll say she looks fat, we think she's pregnant. We'11 still immobilize them.

In terms of impacts on cubs, the birth weights -- we catch bears in springtime in March when they're three months, and the weights of cubs from females that have been handled multiple times and females handled for the first time, the spring weights of their cubs aren't too different. So they're similar. So what the impacts

4 THE CHAIR: Jorgen.

MR. BOLT:

THE CHAIR:
Nick.
DR. LUNN: cubs.
are or what the effects are we don't have answers for, but we don't think they're significant enough to have impacts

Thank you, Mr. Chair.
My last question. If a female polar bear feels that her body cannot sustain an embryo, can she discard this embryo like a grizzly bear?

Thank you, Mr. Chair.
Thank you, Jorgen.

Yes, we think that happens as well
in polar bears that they mate out on the sea ice, you know, then they go hunting seals, and in the fall time that's when the fertilized egg implants. They have delayed implantation, and it implants in the fall time, and it's at that time where hormonally they'd be able to assess what condition they're in. And we think that if they're in really, really poor condition it just won't implant and they won't be pregnant. And if they are in certain condition, they will. And they will either carry it through to full term, come out with cubs, or carry it partway through and come out of the denning area without

Thank you.
THE CHAIR: Thank you, Nick.
Charlie.
MR. INUARAK:
Thank you, Mr. Chair.
My question, the polar bears that you do research on, when you had that map in your presentation, you saw a number of polar bears that you counted, and when you started counting again you counted them, one, two, three and found out how many there are and a short decline.

My question: The polar bears travel very vast distances. The ones with cubs don't go very far because the young males go very far when they start travelling, and the ones that are coming out of the dens or are going into the dens, do you try and find out how many are leaving their dens and coming back, how many are out of their dens? Where you did your survey, do you include where they come out of the dens and come back into the dens?

If you answer this question, I'11 ask another one.

THE CHAIR: Thank you, Charlie.
Nick.
DR. LUNN:
Okay. In terms of long-distance movements in bears and were we counting or do we think we were counting all the bears, the different methodologies that scientists use have different assumptions. And the
aerial surveys -- so the 842 and the 1,030 -- that's a snapshot in time. So they fly, and they count and they see what they see. And that would be very similar to someone coming into this room right now and seeing who's here, and they would come up with a number of people.

The work that we do by tagging -- there's another way that you can get this information, population estimates, and it's through a process of what we call mark recapture. You have tagged animals in a year. You go out and you catch in the second year, and you look at how many tagged animals there were, and you do those over a number of years.

And the assumption in that is a bear doesn't have to necessarily be in that area in a particular year that you're capturing so long as in some of the other years that you're capturing it's there. So it has to be available for capture at some point during that process in the mark recapture.

If it's a bear that spent its entire life, say, at Chesterfield Inlet, we would never catch that bear. It would never be in Manitoba, and it would never be counted as part of that survey. But if it was a bear that we tagged in Manitoba and the next year it happened to be spending the summer outside of Arviat where we never caught it, never capture it, and then to the following year it's
back in Churchill and we capture it again, it's counted, it does get counted.

So depending on which method you use will determine whether or not -- or the implications of whether a bear is in the area that we're working or not, whether that's important or not. So that's the first part.

Bears in the denning area. Are the areas that we survey? Yes, we will survey that entire denning area, including dens. We don't get pregnant females out of dens anymore, but very similar to what David said and what some of you may -- if you were on the aerial surveys, you can tell a bear in a den. You can either see it or you can see the fresh peat diggings, so you know that's an active den. So we would record that.

We will catch females with cubs in the denning area if they're in dens. So a female with cubs, we will catch them. They have to be in safe areas. Bears that aren't in safe areas - either they're in the middle of a lake, we don't really try to push them out of the lake. We just make a note that we saw a female with two cubs or a single female. A lot of capture work has to be done in a place that's safe, but bears that aren't in safe locations we just make note that we saw them.

I don't know if that answers your question.
THE CHAIR:
Thank you, Nick.

Charlie.
MR. INUARAK: Thank you, Mr. Chairman.
You answered part of my question. However, in 1970, '71 and '72 I started being on the board. When I was young, I was on HTO. I don't know whether I was chair right away or just a director. In the past when I first started sitting as a director with, the government came to our community, polar bear studies were done, and they were talking to us about what their studies have been done. And they showed us their work, and they said that our polar bears are in a decline, and the population is -- because I was young, I couldn't smile very -- I wasn't happy with hearing that. We started thinking that we were decimating our polar bears, and we really believed at the time that that was what was happening.

And then once they said that they're declining and are almost extinct, since then they've been always declining, declining every year, and you're saying today we hear your report saying the same thing. If another person heard you that's been around the table for a long time, you would probably think they're deciining, the Hudson Bay's polar bears there's on1y a few left.

In the past if it was the same that said that the polar bears are in a crisis up to today, it's been like that, and our Nunavut government and Canada, federal
government have been saying that the polar bears are in decline. And I'm an Elder now, and they're still around, there's still lots. Your reports that you see polar bears coming out and coming in, I don't think you get the whole picture, only what you see, and it's only a short period of time that you're dealing with the polar bears, because I think that's the reason why it's always in a decline.

And another thing. If we ever hear that the polar bear are increasing, we would hear because our people have been travelling by dog team. In the Kivalliq Region, only travel by dog team. I know a person who used to live in Arviat travelling to Churchill and Whale Cove, they're still alive today, some of them. If they say that there used to be lots of polar bears in the past and there's nothing today, not as much today, I would believe that, your reports.

Our hunters are the ones who are first to find out, and they're saying the other thing. There used to be no polar bears as much as there are today, but today there's a lot more. And I know we don't have dog teams anymore. If you have a machine, I know we get home faster and travel faster. And they don't have food caches anywhere else. Your reports that you report to us, it would be a lot more beneficial to us if we heard the other side of the story where there's more, not less.

Thank you, Mr. Chairman.
THE CHAIR: Thank you, Charlie.
Nick.
DR. LUNN:
I don't know if there's a question in there or a comment. But I think we -- I mean, while we understand your concerns, what you're seeing -- you know, you're seeing more bears on the land, you're seeing more bears in the communities, you feel that the populations are increasing.

As a scientist, I can only evaluate what I see from a science perspective. And the work that we're doing -- I mean, weighing bears, that type of stuff -- the information that I get when I weigh a bear is showing that the bears are lighter now than they were in the past. You may or may not agree with that from what you see, but that's what the science says. I weighed a bear back in the 1980s or in the 2000s that weighed a certain amount, and it doesn't weigh that anymore.

I count cubs, how many -- what is the litter size of cubs in Western Hudson Bay now compared to in the past, and there now are declines.

So there is concern and expression that the bears are in decline, and part of that is, I think, a time frame. As scientists, we're looking out probably a lot further than perhaps the hunters are. We're not sort of
looking out to tomorrow or next week. We're looking down the road, 5, 10, 15 years. And we look at the data, and we say, if these trends continue, if we see this, this is where our concern is coming $5,10,15$ years into the future -- we're not talking about how many bears, you know, be will there be tomorrow or next year. So there's a time scale element.

In terms of, are we surveying the right places, we know we are missing bears. I mean, one of the reasons that things such as the aerial survey that was flown and the work that we do is done when we do it, August-September time, is that generally there's no sea ice on Hudson Bay. So the bears, the majority of bears are on shore. There may be some swimming about, and we saw that from the aerial survey, there were some observations of bears swimming in the bay. But there weren't that many. It didn't seem like it from the aerial survey that there were lots of bears spending the entire summer out in the bay.

So we think by working when we do -- and the aerial surveys covers a lot more area than I do in my work -- the aerial survey covered that entire what we call the Western Hudson Bay subpopulation zone. And they did their counts, and I think they based it a lot on what, you know, community members, where they thought bears would be. I mean, I heard talk about flying out to islands because
people say that's where bears spend the time.
So I think people -- the surveys were done to reflect what people are saying, but you see what you see on any particular time. And it goes without saying that you might miss a bear. Are you're missing a large number of bears? I don't think you're missing a large number of bears, but undoubtedly you probably will miss a bear here or there; right? It just happens to be. A bear that's dived in the water is underwater at the precise time you fly over it, you may not see that. So, yeah, you probably miss a few, but I don't think that you're missing a lot.

And a lot of the science, that comes with these confidence intervals. So when you do the analysis you end up with first with what's called a point estimate, which is the best number that comes out of the analysis. But it comes with these what are called these 95 percent confidence intervals. So we think the best number is this, but it could be as low as this, or it could be as high as that. We're not saying categorically from an aerial survey that there are exactly 842 polar bears. What that says is, from that survey and what we're seeing, that's the best estimate, but it could be as high as this, or it could be as low as that. There's some uncertainty, but that's the best point estimate that we get.

So I'm not sure that that really answers your
question, per se, but concern for polar bears is longer term than the next two or three years. It's looking at the projections of what sea ice is projected to be doing 10 , 15, 20 years into the future, how much sea ice there's going to be in a place like Hudson Bay and what are bears going to do if the sea ice isn't there long enough.

So the concern is more down the road than it is necessarily today that the bears are all disappeared today or they won't be here tomorrow. It's a time -- I think it's a time scale. I think we're talking different time scales.

Thank you.
THE CHAIR:
Thank you, Nick.
Charlie.
MR. INUARAK: My final question. Just let me reiterate, yes, I understand your comments, and they're good.

I've been a Board member for a while. I have to hear your concerns, and I will use those in my deliberations; however, I want to say briefly, Inuit traditional knowledge, it's not just tomorrow that we consider. When there was no caribou on the northwest end of the island, our grandfather used to say there's going to be lots of caribou in the future. There was lots of caribou in the past, there's going to be more caribou in
the future. And I became an adult without ever hardly seeing caribou, and then they started coming into my area. My grandfather's words came true.

He mentioned when they finish the food around this area they're going to move to a different area on the island. And you look way forward into the future, and we believe that because we heard from our grandfather in the past there was no caribou, then there was more caribou in certain years, and once the food is gone, then they move, and once the Nunavut government said caribou are in decline, then that's when we started getting a quota system. We know that they're not in decline. They just move to a different area. And we were happy when we heard that they just moved to a different area.

I think the polar bears have the same habits. They're going to be in this area right now, and then they're going to move to a different area when their food sources change.

My question is, in your research, in your reports it's always saying that the polar bears are in decline. Us as board of directors when we are going to be affected and we make decisions that affect everybody that wants to harvest polar bears, we would like to hear something. If you say they're not in decline and maybe just they're stable, we're not worried about the
population. You have to say something to us that is not in a negative perspective that they're in decline but they're stable or might be more.

THE CHAIR:

Nick.
DR. LUNN:
Thank you for that.
I mean, certainly our research said from at least the period 2000 to 2011 when the first aerial survey was done, our research and the aerial survey suggested the population was stable. And we've said that, research showed that. That's what everyone is saying is stable. It's what's happened between now or between then and the latest aerial survey.

And my research -- we don't have -- we haven't generated a new number. I don't have a new number to give you how many new bears my research says there is. You know, we're deferring now to less invasive methods, and we're just basing it, this is what the aerial survey said. It came out with a number that's lower with confidence intervals. And at the same time, my research shows that the bears, you know, they weigh less now than they did before. They're having fewer cubs now than they had before. Can I give you a date? People like dates. People like having projections, when is something going to happen? And we don't have that answer. I can't tell you, you know.

You know, when is there going to be the last polar bear in Western -- I can't tell you that.

One thing we have learned is that things change. I mean, yes, we looked at that trajectory before we got to this period of stability, and we saw this decline. And I showed it on there, and we thought, yeah, it probably would continue, but it didn't. There were other factors at play that made it go stable. So I don't want to sit here today and say -- and I know it's difficult. I know people are looking for answers. I can't as a scientist, without any data, come and say that on such and such a day, -- whatever that day would be -- that you're not going to have any more polar bears or they're going to switch from this to that. I don't have that information.

What I can say is that, you know, the
information we do have, whether it's the aerial survey information that shows that there are, you know, fewer polar bears from a point estimate now than there was in 2011, I can say that cub production isn't as good in Western Hudson Bay than other populations. Bears don't weigh as much. I can say that all those things aren't good for polar bears, and they can't continue forever without having an impact at some point. When that impact is I don't know.

> If you remember, I showed a graph of solitary
adult females, and there was a dotted line that showed the lightest weight of a female that we've ever caught that produced a cub. There's a line coming down meeting it, but I have never projected to say what year are those data going to cross that line. Things change. We know that. I mean, things on the land.

So I understand your frustration. All I can do is interpret the science in the best way that I can interpret what my science and other science is saying and present that to the Board as but one piece of information for consideration in this process. It's not the only piece of information. It's but one piece. And it's the best -it's the best that I can do as a scientist is say these are things that, as a scientist, are concerning for me. And it's why as a department we suggested taking a precautionary approach.

We didn't say how much you should take or whatever. We just said, you know, that these are things that are causing some concern from a science perspective. You may want to consider that and perhaps look at a precautionary approach, and it will be up to the Board to decide what they want to decide in respect of whatever the TAH may be. I can just present my information as I have. And again, I thank the Board for having that opportunity, but I can't really say a date when you need to be really
concerned. I hope I'm wrong.
Thank you.
THE CHAIR:
Thank you, Nick.
I got a couple questions, Nick, and then maybe more Board members have, too.

But as you know, in Nunavut there was great concern about handling wildlife and being invasive when research is done. So Nunavut has adopted a policy that they're reducing that as much as possible as they can when they do research.

Now, with Western Hudson Bay population it probably is the most studied bear population in the world, maybe, or one of in the world for sure, and it's studied on an annual basis. You do denning surveys, you collar and drug many bears. Manitoba has their polar bear program where they drug many, many bears, they detain bears.

So I'm saying, with this population, it probably has the most stress on it than any other population ever does when it comes to that. And I'm asking your opinion, how can that not have an impact and the stress levels on these bears, and how can it not have an effect on these bears when it's done every year and it has been for 25 years?

Just give me your opinion on that. Thank you.
DR. LUNN: We11, first of al1, I think you
have to leave Manitoba out of that equation because that's a management action. That's much like you have a problem bear in a community, you're going to take some sort of management action. So what Manitoba does -- they're not doing research, per se, like we're doing research. They have bears in town. They've got to do something with them, so they either harass them and scare them out of town or they catch them and put them in jail. So that's not research. So I'm not going to talk about what Manitoba does because that's a management, specific management action that they've decided to take.

Our research, yes, it's true that bears have been handled since 1980 every year and that bears get collars, and samples are taken.

In the early days in the '80s, hundreds of bears were caught every year. On the order of somewhere between 200 and 300 bears in the very early days were caught. So there was a lot of bears being handled, and there was concerns for handling bears.

Today we don't handle anywhere near that number of bears. We're restricted by permit, we're restricted by animal care protocol. So we're only handling a small fraction of the population in any one particular year.

We're catching somewhere between 75 and 95 bears a year. So out of a population of 1,000 or 800 maybe 10
percent. It's not the same bears every year, so we're not catching the same individual bear. Most bears when we do catch them and if they've been tagged before, they have somewhere between three or four previous captures over their history, which includes Manitoba.

So when I look at how many times has a particular bear has been handled in the past, I include both the Manitoba handling and our handling. So most of the bears now are only on the order of three or four times in their lifetime.

Collaring. We had big collaring programs in the past in the ' 80 s where there were large numbers of collars, 30 or 40 collars being put out in a year. And we are concerned about the impacts of those things, so we have reduced it to the minimum. And as I've said, we've used the release mechanisms so that we don't have to disturb the bears every single year flying over them once a week. And in the '80s, that's what they did. They would fly once a week. So if they were there for two or three months, which they were, they used to start work in July, and they'd end in October. So there were people there all the time flying back and forth and, you know, tracking out bears.

We don't do that anymore. We're there for a three-week period, 75 to 95 bears, and then we put the collars on and we monitor remotely.

So we've really tried to reduce whatever impacts we may be having. In the short-term, are bears impacted? For sure they are, and I wouldn't try to lie. When you're in a helicopter and you're coming up to a bear, it's not just standing there looking at you. It is running. You know, there's this helicopter coming. The bear; short-term stress. It's stressed. You know, we put limits on how long we will chase a bear. So if we've been -- from the moment we sight the bear, if we don't have it immobilized, don't have a dart in it within three minutes we leave it alone. We go on to the next bear.

So we're constantly going through our handling procedures, and it goes through vets and communities, through people like Parks Canada, and we're continually trying to improve our handling techniques and the minimum number of bears that we need. But one of the values -there are certain things, certain management questions, and as long as I'm being asked to provide the answers, there's only certain ways that I can do it. And collars -- for the certain questions that my department want to know, the only way I can get those answers is by putting a collar on a bear, and that involves handling.

There was the question the other day about, are there alternate ways? Well, there are alternate ways, and people are exploring them. Are there ways you can do it
without collars? I mean, people are even looking at satellite imagery. Is the satellite imagery good enough that you can pinpoint a bear from a picture? Could you count every single bear in a subpopulation? I mean, that sort of stuff is in its infancy.

So people are always looking for new ways to minimize what we do on bears, the handling, the collaring. But there are certain questions that require bears to be handled. If we have to put a collar on, I know of no other way than to actually catch the bear. You're not going to send someone out and say, there it is, try get the collar on. You have to immobilize it.

I think long-term research, can you -- you know, do you need to do it every year? I think one of the values of long-term research -- and this population is by far the best studied anywhere in the world. I don't know if that's something to be proud of or not. I guess it depends on which side of the fence you're sitting on. But it's provided we think from a scientific perspective a lot of valuable information that can be used for management purposes.

Some of the things or some of the concerns with things such as, you know, earlier breakup of sea ice and impacts on bears comes from the long-term research. You need baseline information. You need to know what the bears
were like in the '80s to know if there's been a change in the '90s and the 2000s. And maybe it's something that has decadal scales for its cycles. So it goes down and up and down and up. The only way you know that is if you do long-term studies continuously. So we think there's tremendous value in continuing the long-term studies.

In terms of, does our activity impact bears? On all the things that we can measure -- so whether it's weights of bears or whatever that we can measure to look at, handle bears, versus non-handle bears -- there's nothing that we can detect to suggest that it's having a long-term impact on the bears, so whether you've been handled only once for the very first time or 15 years, 15 times. And there's some bears -- Manitoba; not us -- but Manitoba has caught some bears 15 times in its lifetime. That's a lot. And the bear's still there, still alive, still has weight, still all those information.

There's nothing that we can measure apart from, as I mentioned, the disturbance factor, if we tried to get a bear out of the den and it left the denning area. That's the only thing that we can find long term in all the research. So we don't believe that there are long-term impacts.

The only other thing -- and I hear it, and I understand it, and the concern is, is the drug in the meat?

People that hunt and want to eat it, they don't want to eat meat that's from a drugged polar bear. They say it tastes different. I've never eaten polar bear. I probably never will eat polar bear. Studies have been done from an actual chemical side of things -- not the taste of polar bear meat -- but the chemicals are out of the body within about 48 hours. So sort of 48 hours after, any detectible trace of that drug is gone.

Now, that doesn't play to how it tastes, but that is a concern of communities, and we are cognizant of that. We are aware that, yeah, that is an issue for people, that polar bear meat, they don't like eating polar bears that have been drugged.

We keep the number of bears down. We minimize. As I said, we don't handle 200 to 300 bears a year. We're catching a fraction of that now. We're trying to do just the minimum to allow us to answer the questions that we're being asked that require us to handle bears. If other techniques come along that we can improve that even better, we will be looking at that. We will be, you know, looking at ways to reduce further or change the way we get information.

But it comes -- you know, we're asked to provide information to answer certain questions that at the moment can only be answered by handling bears. So we try to
minimize that, do the best we can, but it doesn't satisfy everybody. So it may not be the answer you want to hear, but it's the best that we can do.

I mean, if we give it up altogether, then people have to be prepared that we won't have the answers for a lot of questions. So is it important to know that the weights that I showed you have declined? If you don't think it's important, then you don't have to handle bears. But if you need to know that number, you want to know how much are bears weighing now, you're only going to get that by handing them to get their weights.

If it's important to know how bears move, the only way you're going to get that now is putting on these satellite devices. Maybe down the road you won't have to, but currently that's the only way now we can get that information.

So it comes down to sort of management questions. What do people want? What are the questions that they want answered? And that dictates largely what sort of techniques we do or do not use.

Thank you.
THE CHAIR:
Thank you, Nick.
A follow-up that you had mentioned before is, you know, bears can potentially be acclimatized to behaviour, and as you've heard Arviat and Whale Cove talk
about public safety and bears coming into communities, that does happen in Churchill somewhat yet and did happen very much so with the dump before. But through the tourism industry there's still the dog issue where bears are attracted to dog teams for tourism purposes. I think it's still going on there. And this might be a drawing factor to communities with dog teams in their communities, that they're acclimatized; when they hear a dog team, it means food.

So I would just 1 ike to get your opinion on that, and if there could be any deterrence done with those bears in Churchill that are coming up the coast north to put a damper on that. You know what I mean?

Thank you.
DR. LUNN: Thank you.
There hasn't been a lot of work on acclimatization of bears. I mean, I know -- at least in Churchi11 -- you're right; when there was a Churchil1 dump, an open dump, there were 30 to 40 bears that would go to the dump, and they would go there faithfully every year. And, in fact, I did my master's degree looking at bears that went to the Churchill dump.

And it was so ritualized that a11 the bears had a particular spot that they went to around the dump. So when they weren't feeding at the dump, they'd walk away,
and they'd each have a particular spot around the dump that they would rest overnight. And they never changed. They went to that, and every morning they all got up at the same time, long before the garbage truck came from town to the dump. So they were either hearing it coming that I couldn't hear it coming, or they got so used to it that it just was engrained; we get up and we go to the dump when the garbage truck arrives. So there's no doubt that they do get accilimatized.

The degree of the problem, no one's doing any work on that. The tourism industry, as you will probably know, there is a tourism industry with tundra buggies. It's restricted to a smal1 area where the bears are, but there's no doubt that those bears that are in that area, they know tundra buggies. They're not afraid of tundra buggies. When the buggies come in, they get up and they walk. And some will approach the buggies and stand up, and the tourists like that.

So, yeah, the tourism industry is definitely based on, you know, bears being acclimatized to at least the movements of tundra buggies. Some will come to vehicles, some won't. I mean, one argument is if the bears don't like it, they can leave, which is true. There's nothing prevents a bear in the tundra buggy area from moving away, but they don't seem to be stressed. Most of
them that stay have become acclimatized. They know about the tundra buggies.

The dog team one. I only know of one individual -- I'm not saying there aren't more, but I only know of one individual who keeps dog teams in, I guess, a prime area along the coast of Manitoba. And, yes, he provides -- that's where he stakes his dogs, and he does feed them there, and he feeds them frozen chunks generally of seal. And that does bring bears in, and tourists do go to see that. That's the only one -- I only know of one person that does that of all the dog teams.

I know that in the past Manitoba has tried to stop that and charged the individual, but there wasn't a conviction in the court. So that's about all I can say about that. I don't think it's a widespread activity. I don't think all the dog teams -- some of the dog team owners are making a living with their dog teams. I don't think they knowingly want to bring bears into their enclosures and lose their dogs.

Is there a way to deter that? Are bears getting used to the sounds of dogs and people, and then they move up the coast and they've lost that fear? Again, I don't have any data one way or the other. I mean, it makes sense that they probably are used to sounds of people. They are curious, you know, they're used to dumps. They have dumps
in Churchill, they have, you know, places in Arviat. You have people out on the land hunting, fishing, storing food outside. Bears are attracted to smells.

I'm not sure I really have an answer for your question other than recognizing that, yeah, it is a big problem, and human safety is a problem, and we recognize that.

Thank you.

THE CHAIR:

Thank you, Nick.
One more thing -- two more questions. The next one is I think you started out with the target population of 1,200 when your studies began, or that was the population. What is a healthy population for the Western Hudson Bay? What level, in your opinion, is a stable number, a healthy number for the total population? DR. LUNN:

Well, that's a loaded question that, really, I'm not sure has an answer because part of, we can talk about climate change and decline of sea ice and, you know, the impacts on bears. And, you know, it's very difficult to come up with a, quote, "healthy number" if a population is in decline. But you can also talk about things such as social carrying capacity, which might be less than what the biological carrying capacity could or would be.

So, you know, in terms of Hudson Bay, a lot
really depends on what is the management? When I started -- and 1,200, you're right, that was a population estimate. That wasn't a target. But at one point there were MOUs in Nunavut where the target population size was 1,400. That's what people wanted or thought that there could be. I mean, it's a changing thing. I don't have an answer of what is a good number because the environment, to me, is changing, and we don't have a -- we don't have a good handle on how it's changing and the rate of change. Other than sort of monitoring sea ice breakup dates, we don't have a good handle on the biological carrying capacity. People aren't studying a lot of what needs to be studied at the oceanography of Hudson Bay. That work isn't being done.

So being able to say 800 is a good number or 1,000 is a good number or 500 is a good number, I don't have a means to tell you what that number is because the data doesn't exist to really say what it is. But, you know, there are certainly issues of, you know, social carrying capacity. Some of these newer models of looking at risk assessment you can run a variety of scenarios of different harvest levels, of a different target population.

If we wanted to have 2,000 bears in Hudson Bay, what would it take? What would we have to do? If we wanted 500 , how could we harvest? So there are ways to
sort of help guide those decisions, but I don't think there's a magic number that says Western Hudson Bay, the best number is this, or Baffin Bay, the best number is that. It's a combination of factors, and you have to weigh, you know, public safety concerns, you have to look at, you know, what the population -- what the science says maybe the population is doing, what the community says -there's so many pieces of information that it's not like it was.

I guess I often refer to the good old days before sort of all climate change impacts where you went out and you calculated a number and you applied four and a half percent, and you said: There, there's your TAH. And you forgot about it for 15 years. I think things in some populations in Western Hudson Bay, I think things are changing, and I don't think you can afford just to simply do that anymore. But I can't tell you what the best number would be.

THE CHAIR:
Okay. Thank you.
My final question is, in your actual research you're doing -- and since we're dealing with the population that does spend a lot of time and affects Nunavut -- just wondering if you have considered or you have in the past or will in the future use Inuit and the people from communities in Nunavut in your research when you do your
research.
Thank you.
DR. LUNN: We haven't yet. No, we haven't incorporated taking Inuit people out with us. Our helicopter is small, so that's one thing. We have a small field crew.

The other thing is that where we work is we're working in a national park, and just like the Nunavut Wildlife Management Board, there's also Wapusk Management Board that has scientists and has local people and has First Nations people. And they want to go out. So it's sort of we can't take everybody out with us. So, no, we haven't taken people out.

We've usually taken more people from the Manitoba area out with us, but it's not something we do routinely, and it's simply a fact of the helicopter fits so many people in it, and we can't bring -- it's not something that we have a field camp per se where we go out and then we can ferry people back and forth to a bear that we have down. We just don't have that capacity. And we're not doing aerial survey where we just get a charter aircraft and get everyone inside and fly.

It's very, you know, requires a small machine so we can get into some of these tight spots. So it's just -so far, hasn't facilitated -- I've been asked before, and I
have said I would consider it, but to date I have not taken anybody from a Nunavut community, brought them down to Churchil1 and have them come out. THE CHAIR: Okay. Thank you.

Any other questions? Caleb.
MR. SANGOYA: Thank you, Mr. Chairman.
I want you to know that I'm not against anyone. I'm not prejudiced or racist, and I'm not rebellious against any governments, but as a Board member, I'd like to hear complete truth with no part of falseness in it.

So the researchers -- I shared this in 2013 -people like David Suzuki aired shows and documentaries all over the world about polar bears losing so much ice the way it walked over the ice because it's starving. This is false.

My first question is, what have you done regarding those people who give false information on our polar bears, first of all?

The other one, researchers often say that we're losing a lot of ice, and so polar bears are in danger. And as an Inuk in the north, this is not true. Up in Lake Hazen, part of that area I've gone to, the ice never goes away. There's no bears there. Lots of ice, no bears.

But where the ice breaks up in the summer, in an area where the ice breaks up in the summer, then that would
affect the polar bear. But why are polar bears fatter in the summer and more active in the summer when there is no ice? It's actually the opposite. They become thinner and lose weight when there's a lot of ice.

Also, with the research, you do not include -when it's getting darker and in April when they're mating, when the seals have their pups, they start going to the patches of ice. This hasn't been a part of your research. And wind direction changes wintertime and springtime. We often see wind direction according to the season, and this also affects where polar bears migrate. They go against the wind. They tend to travel more against the wind, and they are more at the same place when there's less wind. So what we've been around for 4,000 years, and the non-Inuit who come up for a short time and carry their weight as though we have less truth or knowledge, and so this bothers me.

Inuit knowledge, if the research is done, if we did our own, it would be better, but we do not have the finances. Researchers, scientists have so much more funding, and in order sometimes to gain financially, they give false information. I shared this same thing in 2013.

Have you helped fund other scientists, or have you done anything about all the false information, misconceptions that's been shared around the world on our
lands and wildlife? THE CHAIR: Thank you, Caleb.

Nick.
DR. LUNN:
A lot of questions make extreme statements that are incorrect and broadcast it as if it applies everywhere. And you may or may not have seen recently there was an Instagram of this starving bear, and it was put out there and said this is the face of starving bears in climate change.

And you're right; the fact of the matter is we know very little. We can see a bear very thin. We don't know. Nobody knows why it was thin. Maybe it was sick, maybe it just happened not that year being a good seal patch so it came ashore in very poor condition. And if it survives, maybe we'11 get that -- so I agree that there's a lot of misinformation by groups that want to further an agenda, whether it's to stop sealing or stopping harvesting, or the end of polar bear is coming, we need to do things.

That is a very wide circle. It's very difficult because a lot of the times. I personally don't even see any of that stuff. I don't hear it. I don't move in those circles. There are meetings -- and Rachel might be able to speak to this -- Canada collectively attends a number of these international meetings, arrange dates or meetings,
and Canada typically always brings a strong indigenous delegation along with them to get the messaging across. And I think collectively Canada does a good job at trying to dispel a lot of the misinformation that's out there. The harvest in Canada is constantly under criticism that we shouldn't be harvesting bears; right? And Canada collectively has been defending. And even scientific groups, the Polar Bear Specialist Group, harvest is not a concern. It's not a threat. And we've come out and supported that.

Unfortunately, we can't control what individuals may or may not say or the pieces of information. Can I go out and be critical and abut every single piece of false information that is out there? No, I can't. I don't have the time to be able to do that.

But in response to that recent Instagram of that starving bear, there were lots of inquiries of our department, and we actually wrote, you know, a response and set the record straight that we have no idea, you know, that we didn't think it was a climate change impact because it happened in Baffin Island where there are close to 3,000 bears, and that's the only one. I mean, if it was a real climate change impact, how come there weren't more being reported? It was a single one. So where we can, we will correct people.

But there's too many. There are too many people out there that use information and say either part of it, you know, part of what was said without providing the full context to, you know, further their message, you know. And those groups will always be there. Those individuals will always be there, and it's difficult because we're always fighting an uphil1 battle.

Personally, do I do that? No. I have nothing to gain coming here and providing my research. I'm not gaining extra money. I would like to be one of those research scientists that has lots and lots and lots of money to do my research. The fact is I don't. And, you know, I have a very, very small budget. My budget is probably less than the number that Drikus was telling me this meeting might cost. I have a very limited budget. I don't have the luxury to go out and do these sorts of things, and I don't go out soliciting money from groups by saying: The end of the polar bear is coming, please give me more money so I can continue doing that.

I go out and do my research. I have to be impartial. I work for the government. I provide the best information that I can, but I can't control how it gets used by others. I can correct it when I have an opportunity, but I can't correct it all. And I think that's probably true for a lot of scientists that go out
and do research; they correct it when they can, but they can't control it all.
THE CHAIR:
Thank you, Nick.
DR. LUNN:
And I think Rachel might have more to add.

THE CHAIR:
MS. VALLENDER:
Rachel, go ahead.
Yeah, if I could just add a little more. I mean, I agree with what Nick said. I also agree it's a huge problem with people miscommunicating information about polar bears.

Our group at the Canadian Wildlife Service -like, I've worked on this for almost a decade now, and we've spent a huge amount of time working with the jurisdictional governments and Inuit organizations to try and correct that misinformation that's out there. You know, we as a department really believe in the co-management system, we believe in using TK science to make management decisions, and we've travelled all over the world to try to get that message out there, but it's something we're going to have to keep doing. But we recognize that, and we're committed to keep doing that. We work on a really regular basis with representatives from the four Inuit organizations and the governments, and I think it's going to keep being an uphill battle, but certainly we're committed to keep getting appropriate
messaging out there.
THE CHAIR: Thank you, Rache1.
Charlie.
MR. INUARAK:
Thank you, Mr. Chairman.
As you mentioned earlier about what you would like to see, we are this way when we have a big meeting with people that have the knowledge and then the researchers and their knowledge, we try to hear them both. And we follow more the researchers' findings, and we hold our traditional knowledge in reserve.

I would like to see more in the Kivalliq Region, the hunters be more involved or even the HTOs to work together closely. And you have the reports that come and are more collaborative together. When you have two different views with traditional knowledge and science, they should mesh more. And we hold the scientific research more than the traditional knowledge even though we have more information in the Kivalliq Region. The hunters, if you work closer and more collaboratively with them and ask them how the research should be done, whether it's counting or population estimates, if you work together more closely, there's always going to be an organization that is available for that. I would like to see that.

Thank you, Mr. Chairman.
THE CHAIR:
Thank you, Charlie.

I think more of a comment, but if you'd like to respond or not.

DR. LUNN:
No, I know that this department shares that view of sort of getting science and traditional knowledge sort of working together to come up with common answers. And I know that -- I mean, Rachel may want to speak to it because it's on the management side. We know we put money and time trying to get that moving. I don't know the status of that, trying to get that type of working arrangement together.

I mean, it was nice to see for the aerial surveys that David presented and the GN has led where, yeah, there was direct involvement participation with community members in helping to design places to go. So, I mean, we're moving that direction. I think that's where people want to go. I think it's just one of those things that takes time and just have to keep working at it, and it will come little by $1 i t t 1 e, ~ a n d ~ w e ' 11 ~ g e t ~ t h e r e . ~$ THE CHAIR: Thank you, Nick.

David K.
MR. KRITTERDLIK: Thank you, Mr. Chairman.
For this Board, majority of us are Inuit, and as Inuit I guess we all know what IQ is, the IQ that we got from our ancestors, from our parents.

What I want to say is this: Being a board, a
public board to approve or look at, disapprove or approve some situation in regard to wildiffe management, we as the Board members, it's very hard for us, majority of us being Inuit, to weigh the balance between scientific and IQ. And our responsibility, our mandate is to make a decision on the best possible for the whole table all around. And whatever technical knowledge, scientific knowledge we hear that are presented to us at every meeting from our government, from our other organizations. We may be saying that -- a lot of people say it this way, we're against the technical and scientific. It's not that. It's just that we need to start looking into or working towards balancing the IQ and the scientific, because what we've been trying to do in Nunavut ever since Nunavut was created, we need that balance between that $I Q$ and scientific. We want to do that.

So I just want to make sure that all the technical scientific knowledge and our communities and the public know that this Board had to weigh everything to make a decision.

Thank you.
THE CHAIR:
Thank you very much, David. Good comments. Caleb.

MR. SANGOYA:
It's my final comment. I will not mention it again.

I had a great-grandmother or great-grandfather Katchu (phonetic), and he has this song that he wrote about polar bears not being scarey anymore. You can even have one as a pillow. And he's happy now.

Right now in the Kivalliq Region in Arviat I want to go sleep over to go hunting. I can't sleep out there because there's polar bears and grizzly bears. I know Inuit don't have that habit of being scared to go sleep out on the land. But as an Inuk I want to see my future children and grandchildren they be able to sleep outside anywhere on the 1and. Right now it's not like that.

It is not our habit to sleep inside a house all the time. And in the past they would be able to sleep outside anywhere, even if they were adult. Right now you can't do that. Even though the polar bear we're told are in decline, but in this area there's hardly anybody that just goes out hunting and relaxes out there, just to go relaxing. I'm coming here to caribou hunt.

Thank you.
THE CHAIR: Thank you, Caleb. More of a comment. Attima.

MR. HADLARI: Thank you, Mr. Chairman.
I know the expert is going to speak. Even if I try to speak on something I don't know, I know Inuit
traditional knowledge, I know our youth that go out hunting, they only use their knowledge when they go out hunting. And researchers, I think this is the way it is. It is unsure, and I want to hear things that are believable when it comes to research results. And if you speak confidently -- when we talked about traditional knowledge, we do not guess. We know what we are saying, and it is true what we know is true, and it's not guesswork.

When you're talking about research and you only speak about parts of it, I don't know what you believe in that, so it's hard to gauge what I'm hearing. And we're going to decide on what is being asked. I would like to have more confidence in the results that you are giving us before you give it to us.

THE CHAIR: Thank you, Attima.
More of a comment, again, Nick. Would you like to say anything?

DR. LUNN:
Well, I guess my response to that is, if you want to know how many polar bears there are, the only way you can do that is to count every single polar bear. So if I want to know how many people are in this room, you would have to go around, and you would count. I don't know how many people are in this room, but to get an exact number, to be absolutely confident, you'd have to count every single polar bear there is. And that's not
possible.
So these methods, whether it's an aerial survey or mark recapture, the scientific methods, they do the best job possible based on whether you fly and count in certain spaces, transect widths, or whether you sample a number of bears. And they end up giving you a point estimate, 842, but they also give you that error estimate because you're not counting -- you can't possibly count every single polar bear in Western Hudson Bay. The area is too big. And bears, as we've heard, they can be in dens, they can be swimming, they can be here and there. So you're never going to get from science an absolute that there are exactly 842 polar bears here.

That's the best point estimate that we can get from the aerial survey that was done, and it comes with this wide range. And that's just a fact of the way science is. Unless you can count every single animal, and you know you have, that's the only way science can give you an exact number that you would be absolutely confident in.

You can minimize that error of variance either by handling a lot more bears or making your transect lines tighter. You can do and try and narrow that confidence interval, but without counting absolutely every single bear, you can't come up with a single number and say that is it. We can give you the best estimate, and this is how
certain we are about it, but that's part and parcel of science.

Again, I can tell you how many people are in this room because the room is small, and as long as I know how to count, I can count every single person. But if someone told me how many people live in Rankin Inlet, I could guess or I could knock on doors and try and come up with an estimate, but unless I spoke or saw every person that lived in Rankin Inlet, I wouldn't be able to give you an exact number. I might be able to come close.

So I understand what you would like. I understand that decisions are difficult, especially in a situation like this where perhaps traditional knowledge is saying one thing and the science is saying something else, but the science can't be any more exact than what we can -than what we provided. It's a number with a variance around it. We simply can't count every single polar bear there is.

THE CHAIR:
Thank you, Nick.
Attima.
MR. HADLARI: Thank you, Mr. Chairman.
As you said earlier, the females that are pregnant are not getting as many cubs, and you do put them to sleep even when they're pregnant. Do the drugs that you use -- are they affecting the fetus, the drugs that you're
using to put them to sleep? You mentioned earlier that they are not dangerous for the polar bears, but I think the fetus or the embryo -- I'm sure not all of them would be born after being affected by the drugs that you are using to put them to sleep. I know that we don't have all the data available for that to say for sure whether that drug is safe or not.

Thank you, Mr. Chairman.

THE CHAIR:
 Thank you, Attima.

Nick.
DR. LUNN:
Yeah, the drugs that we use now, Telazol or Zolatel, depending on where you buy it, has been used since the late 1980s. It's used in a variety of species. It's not a polar bear drug, per se, so it's used elsewhere. And I'm not aware of any information that suggests that using it reduces productivity so that you have fewer cubs or whatever species we're talking about. I don't know of any information that would suggest that that's a problem so that's the best that I can answer. No one's doing studies specifically on pregnant female polar bears in dens and taking measurements of growth rates of fetuses in a den and those types of studies. That's way too invasive. No one is doing that stuff. There's no information suggesting that it is an issue, but that's as best of an answer as I've got.

THE CHAIR:
Thank you, Nick.
Any other questions from the Board? We're getting close to lunch, but we're going to make an exception here. We have a process in place where the public can ask questions later, but the MLA for Rankin Inlet is here, and she has other commitments this afternoon, and we're going to make an exception and allow her to ask questions.

So, Cathy, can you go to the mic and state your place, please.

SUBMISSION BY MS. TOWTONGIE

MS. TOWTONGIE: Thank you, Mr. Chairman.
My name is Towtongie, Cathy Towtongie. Thank you for giving me the opportunity. I really would iike to speak.

I'm a seamstress as a woman and, in the traditional way, I make clothing. I use everything from the whales, seals, and wildlife. I know right now I'm not really anything.

But for our males I would like them to be aware that the polar bears that are caught in different months, when you're going to make clothing out of it; October. It's the same; in August we hunt caribou for the fur. So if you could change it to a different time, open the season. As a seamstress and you are trying to tan the hide
of a polar bear that we're receiving, it's not the same as it used to be.

And when we're working on the hides, it's very evident that their cubs were taken away. When you're dealing with the furs and when their cubs are gone, the fur starts molting, and they're no good for making kamiks anymore. It's something that we've noticed when we hear about the polar bears being put to sleep and how it's affecting the polar bear's hide. And in the summertime, they do get sunburn.

And then the next one; I had parents that really knew traditional knowledge. The fat of the caribou, I've noticed myself, in the middle when they turn it into a liquid and it would be used as a salve for a cut or things, it's traditional medicine, and if you use it for your skin on your face, it affects it. I've seen a person who used the oil of a polar bear fat on their skin, and they're, like, their skin is very young. I know you know there are a lot of the uses for them.

I know that they don't do research on the diseases that are being affected by polar bear. I found an Elder who got sick with cancer. When they harvested a polar bear out of season, he asked his son-in-law to get a polar bear and get the gall bladder. We've lost a lot of traditional knowledge, medicine knowledge. I know that.

You know this for a fact. But you don't know what we remember.

As you mentioned earlier, the easiest way to find out from the local people, which way to go for polar bears. My father told us, if you go this way, that's where their food is. If you go that way to the northwest, not to the east; if you follow them, you will see them. I've seen my father walking, and he walked to Coats Island without a knife, and he harvested a polar bear when it was -- he wanted us to learn.

I said I was going to be brief. It's something I remember why their diseases or the uses of polar bears are not being used, and us seamstresses should not be forgotten. The seasons are not the same, and the female polar bears, if they take their cubs away, you can tell. The body continues to produce things for the cubs. They start molting. It's the same way with people and with polar bears. If you stop the process of the fetus growing and you put them to sleep, it affects them.

I'm going to have a meeting this afternoon, so I thank you for the opportunity for speaking. Thank you. THE CHAIR:

Thank you, Cathy, for your comments and information.

We'11 just maybe allow staff. Any questions for -- go ahead, Vickie.

NUNAVUT WILDLIFE MANAGEMENT BOARD STAFF QUESTIONS AND COMMENTS

MS. SAHANATIEN: Thank you, Mr. Chair. I'm going to have a few questions.

So the first one, just to find out a bit more about nondetriment findings. I'd just like to -- so we can know what triggers a new assessment of a nondetrimental finding, you referred to new total allowable harvests maybe would trigger that, or maybe it doesn't. Maybe they come periodically every five, three years or whatever. So if you could let us know what the process is and how it could affect Western Hudson Bay with the new TAH that decision that we had in December and while we're looking at it right now as well.

Thank you.
THE CHAIR: Thank you, Vickie.
Rache1.
MS. VALLENDER:
Okay. Yeah, great. Thanks for the question.

So these nondetriment finding assessments are carried out by the CITES scientific authority, which is part of Environment and Climate Change Canada and not my group, but I certainly work with them.

So they have what is called a standing nondetriment finding where they're constantly looking at
changes to management in general. And it's on the Environment Canada website. But, basically, every time there's new information they will update as to whether it changed and the issuance of permits for trade is necessary or not.

And as I mentioned, they take into account both the available, all the scientific data that's available, as well as all the traditional knowledge, and as also a management objective. So, for example, if a management authority sets an objective to increase the population, then they would consider that in their assessment. And, ultimately, they're trying to determine if trade is sustainable. And so sort of the covariate of that, if you will, as well is, is harvest sustainable?

So I don't know that they've started a process at all for the recent change in the TAH. They would be looking at that, taking into consideration all of the available information. If they determined that trade continued to be sustainable, nothing would change. If they determined that trade was no longer sustainable, that's when they would stop issuing permits for Western Hudson Bay. And so we did see that for Baffin Bay between 2010 and then this past summer where they didn't permit international export from that subpopulation. And that has now been lifted based on new information.

So if the Board wants more detailed information from the scientific authority, I could certainly put you in touch, but that's kind of the general process of how it works.

THE CHAIR:
 Thank you, Rache1

Vickie.
MS. SAHANATIEN: Thank you. And I'11 perhaps request that just so we have that at our hands.

So my second question is related to history, probably for Nick to answer. But you referred to the early impacts of harvesting in Manitoba and generally, I guess, throughout the Northwest Territories on polar bears when there were no regulations and particularly in Manitoba, so referring to Western Hudson Bay here, how the closing of the York Factory reduced harvest impact and also closing of the military base, and then the Manitoba regulations came into effect.

So I guess what I'm just wondering -- because I don't know what level of hunting was happening out of the military base -- were they permitted to do that if there were no regulations? If you have that information. You might not.

And also, York Factory itself, I'm assuming it was a Hudson Bay post where the polar bear hides were taken for sale, and I'm assuming there was some encouragement of
hunting in order to get those. And again to provide the historical context of, I guess, the potential population reduction in the past before the management came into play as a way to also understand the rebound that has happened, I guess, since then and the observations that people are bringing forward.

Thank you.

THE CHAIR:
Nick.
DR. LUNN:
A lot of that early history is more anecdotal. How many did the military take? No one knows. No idea. There are stories of, you know, people doing whatever the military did at that time, and there were stories of shooting bears, I mean, because no one had to report anything, so the size and the complexity, how much, when, no one really knows. It's anecdotal information.

York Factory, yes, the Hudson Bay Trading Post that closed in the late 1950s. So there are, through the Hudson Bay sort of trading records, how many polar bear hides were traded each year. So a lot of the early stuff is anecdotal and assumed to have been occurring, but the extent of it because it was unregulated and, you know, no one had to report it, the magnitude of it probably will be forever unknown.

THE CHAIR:
Vickie.
MS. SAHANATIEN:
Thank you.
And just one more question. Again, it's a broad question just so everyone can understand, because we use a lot of terms all the time. "Precautionary approach."

You've referred to that a few times, and other organizations did too. So it would be, I think, helpful for everyone if you could explain what that is. And I guess it's within the context of Hudson Bay.

And I'm not sure if you want to provide a comment on, I guess, our last decision we applied 4.5 percent off-take from the point estimate, and would you consider that as within a precautionary sort of level, and if not, what would you suggest? I don't know if you can do that right now, certainly, but that kind of thing. So how should we be looking at the total allowable harvest within that context of precautionary approach and the percentage that we've applied in December? Thank you. THE CHAIR:

Thank you, Vickie.
Nick or Rachel.
DR. LUNN:
I'11 take a stab at it.
The four and a half percent, it was developed through a number of models, polar bear reproductive rates. Population estimates back sort of in the late 1970s, early
'80s the data was collected, and it was worked up into the 1980s. And it was basically looking at what would be the maximum sustainable harvest you could take from a population. What sort of ratio? A one-to-one female -what sort of level could you take?

And one of the assumptions of that -- and 4 and a half percent is the number that came up, two males to one female. And if you took more males than that, I mean, eventually you deplete males, so you don't have -- most of the females aren't being bred. So you don't want to just exclusively just hunt males. You can't do that. And if you took out just females, you would end up with no bears to produce the cubs. So there have to be -- and the attempt was to find out what's the best ratio to do.

It was developed at a time when the environment was considered stable. People knew that you had good years and bad ice years, that sort of stuff. But there wasn't at the time a unidirectional change in the environment that we're seeing in some populations now with the climate change, loss of sea ice. So that sort of a change that the environmental has the natural part goes up and down. But there's this long-term, over time, change.

So it was assumed that the environment was stable, and it was assumed that polar bear populations themselves was stable. So you had a healthy polar bear
population, and all you really needed to do was just track your harvest, and so you start off at 4 and a half percent and then you adjust it up and down as you went along.

But the two things that were required was a population that was stable itself -- it wasn't a population in decline or a population increasing -- and that the environment itself was stable, that you weren't seeing huge changes in some of the things that we're seeing with respect to sea ice in, say, places by the Beaufort Sea or Western Hudson Bay. So that's where the 4 and a half percent came from. And it has been applied for many years, and it seems to work generally well. There are many populations, you know, in Canada where the impacts of climate change, we're not detecting them, and people have made those comments that people aren't seeing it.

There are few populations where we can definitively say that there are these concerns with climate change impacts on bears. Western Hudson Bay we're seeing impacts, Southern Beaufort Sea we're seeing impacts, we're seeing impacts in Southern Hudson Bay. Kane Basin, which is just north of Baffin Bay, it was an area of multi-year ice that seals and bears didn't seem to like. Climate change is now shifting it to one where it's more annual ice that seems to be better for bears. And Kane Basin is an example where the number of bears from the science, anyway,
is increasing. That's what the science has said; this population is increasing.

So not everything is doom and gloom, but that 4 and a half percent was based on a population that was stable, wasn't going through these environmental bottlenecks, and the environment itself was stable. So the 4 and a half percent you can't necessarily apply across the board to every single population because they're not all -they don't meet those assumptions that the 4 and a half percent was developed under, you know, back in the 1980s.

So the precautionary approach is more along the lines of when you're considering setting it, don't necessarily -- when there's a bunch of stuff that is unknown, you know, things could be changing, and we're not certain -- don't necessarily just assume everything is fine and maximize that harvest. So we would say a precautionary approach would not be just applying 4 and a half percent across the board.

What the right number would be, I mean, it's got to be balanced. There have to be management objectives. You can't sort of set a harvest level if you don't have a management objective. I mean, if you said you wanted 1,400 bears here, you would set your harvest differently than if you said you only wanted 200 bears here. If you wanted 200 bears here, well, then, there's room to harvest; right?

You could have a higher harvest than if you wanted to maintain it at 800 or you wanted to make it grow to 1,400 .

So one of the key things is defining a management objective or a target population size. And that might be as simple as saying, 840 bears, that's what we want, and then you can work around that.

One of the, you know, advantages of this new approach to harvest that was applied in Baffin Bay, you know, is that you have those sorts of opportunities to now do some modelling that uses environmental change. The earlier models were based on getting a population number and just assuming it applied across the board for 15 or 20 years and that nothing changed in between. So it was just set and fixed.

This approach allows you make some adjustments so you could include in the model -- if sea ice was declining at a certain rate, you could include that in the model and move it forward and say, if we continue with this harvest level and this is what's happening to sea ice, what does that mean in the future?

So these new models are trying to assist and provide advice on management decisions when you're dealing with harvest. So precautionary is just, you know, don't necessarily assume that everything is fine and we're just going to go along at 4 and a half percent in a situation
where there's some evidence that the environment's changing and, you know, some 1 ines of evidence, but not all, that there are potentially impacts on the bears themselves.

I don't know if that answers the question. I think Rachel might have something to add. THE CHAIR: Go ahead, Rache1. MS. VALLENDER: Just a little something else to add.

So I think, you know, in terms of whether our department could accept that, I mean, I think you're probably coming at that from the CITES angle, like, would they consider that level to be sustainable? And so I don't want to trump their process because certainly that's something they have to carry out.

I will just note that, as a department, we have supported removal rates of both lower and higher than 4 and a half percent. That's not, like, not necessarily a solid line for us. So our goal is not always to minimize harvest, and it's that something we try and take into account all of the available information, as well. And so certainly, you know, our group at CWS would be working with the colleagues in SNT -- so like Nick -- and working with the scientific authority looking at scientific authority. But as to what they ultimately will decide, I think it's too premature to kind of say what they would think. They
haven't done that analysis yet.
THE CHAIR: Okay. Thank you.
Quick, Vickie. We want to break for 1 unch.
MS. SAHANATIEN: Very quick. Thank you.
That's very helpful, all your answers, and I guess I wanted to thank you, as wel1, for that presentation. I think it really helps fill out the context for us about Western Hudson Bay polar bears overall, and I appreciate you putting it together. It will be helpful in our decision-making.

Thank you.
THE CHAIR:
Thank you, Vickie.
Al1 right. You're going to be on the block after lunch yet, so we're going to break for lunch, and then I think we've just got our legal counsel, and then we'11 start with communities around the table for questions.

So we'11 be back here at 1:15. Thank you very much.
(Proceedings Adjourned at 12:04 a.m.)
\qquad
PROCEEDINGS ADJOURNED TO 1:15 P.M.)

THE CHAIR:
Welcome back, everyone. Thank you for coming back, and I hope you had a good lunch.

So we left off, we were just about done our Board questions. I think the last is from our legal counsel. Michae1, you're up.

MR. D'EÇA:
Qujannamiik, itsivautaaq.
My question is with respect to the management side of the issues we've been talking about. I note that a lot of the focus in the morning was on information and even advice that aren't necessarily compatible with one another, making the NWMB's decision difficult. But what I want to turn to is what I think is an issue that there is a consensus under the table, and that is the concern over public safety.

Under the terms of the Land Claims Agreement public safety can serve as the basis or at least part of the basis for the NWMB's decision-making with respect to limitations on Inuit harvesting for polar bears. And just for everybody's information, that falls under the decision-making kind of test under the Land Claim, section 5.3.3. And one of the elements that the NWMB can look at is public safety in terms of what would be an appropriate decision. And my question probably goes to Rachel, but Nick may have something to say about it as well. I guess I have a couple of elements.

First of all, does that issue inform your advice to the NWMB, public safety? We know conservation is
obviously a big element, but does public safety work its way into your advice? And, also, what jurisdictional responsibility, if any, does Environment Canada have with respect to addressing those kinds of very practical and serious concerns? And whatever your response to that, in any case, if you are working with the Government of Nunavut -- you mentioned a little bit about it, Rachel, in your opening remarks -- but, you know, what measures are you taking or working on or advising on? Just what actions is Environment Canada taking with respect to that public safety issue?

Taima.
THE CHAIR:
Thank you, Michae1.
Rache1.
MS. VALLENDER:
Thank you for that.
Some very good questions in there, so I'11 try and go through your questions one by one.

So does public safety inform advice to the NWMB? Certainly that's something we recognize as being a concern, and I think that's -- you know, I can't ultimately speak to the full departmental position. This letter was signed by the assistant deputy minister of both Canadian Wildiffe Service and the Science and Technology branch, so I'm kind of speaking for them in some ways. But I think that is -you know, we recognize that there's multiple sources of
information that the Board is going to have to consider. And certainly, you know, in this subpopulation in particular, the expertise within our department is very heavily science focussed.

And I think -- so one of the reasons we didn't put an explicit TAH recommendation, which we have done in the past for this subpopulation and for others, is out of recognition that there are multiple things that need to be considered by the Board, and we didn't really feel comfortable putting down a hard number for that reason.

In terms of jurisdictional responsibilities, we have -- I mean, I'm sure everybody here knows what the primary responsibility for terrestrial species, which is what polar bear is classified as in Canada, falls to the provinces and territories and, of course, the management system under the under Land Claims Agreement in the north. So we certainly -- we, like, Canadian Wildlife Service -and Nick may want to add some from his side, from the Science and Technology branch, but we do work with the jurisdictional partners and mostly provide funding.

So we have, for example, a contribution agreement in place with the Government of Nunavut which gives them \$250,000 a year, and that's typically used for monitoring. We've also supported a collection of traditional knowledge studies in different parts of the
arctic. So that's probably how we can contribute sort of on a more regular basis.

And I think for a situation like this where decisions are not going to come to our minister, we would just like to be involved in the process and have our information submitted and considered along with everything else that is put in front of the Board.

THE CHAIR: Rache1, can I just ask you to slow down a little bit for the interpreters. Thank you. MS. VALLENDER: Sorry.

And then in terms of action our department is taking with respect to public safety. So we do a lot of work at the circumpolar level. So Nick had mentioned earlier we have this 1973 agreement on the conservation of polar bears. That's a treaty in Canada that came into force in 1976. So we have a very active conflict working group under that agreement, involves representatives from all of the five countries, including Government of Nunavut, Government of Manitoba. And so that group is involved in a number of initiatives. I was the chair of that group for a little while and stay involved to a certain degree at this point.

And so they are looking at, for example, best management practices for deterrence techniques. And that's whether the countries can learn different things from each
other. I would say that Canada is a leader in this and that the program in Nunavut is a really successful one, as well as with Manitoba, too. But we certainly can learn from some of our colleagues in Alaska, for example, who deal a lot with public safety concerns as well.

And so from that we're sort of feeding back to the jurisdictions on strategies or means to mitigate some of those interactions. So again, if there was a specific need for the department to act in a certain way, whether that would be provide funding, it's certainly something that would be appropriate to put forward to CWS for consideration, I would say.

I can't ever speak to budgets, certainly not before we get our budget for the next fiscal year. But it has definitely been a concern, and it's something we have heard many times over the years.

So I don't know if Nick has anything else to add.

DR. LUNN: No, I have nothing to add to that.
THE CHAIR:
Okay. Thank you, Rache1.
Michae1.
MR. D'EÇA:
Thank you, Mr. Chairman. That's it for me.

And thanks, Rache1.
THE CHAIR:
Okay. Thank you.

That concludes the Board's questioning, then. Next in line is the Government of Nunavut.

Drikus, the floor is yours. GOVERNMENT OF NUNAVUT QUESTIONS AND COMMENTS MR. DRISSING:

Thank you, Mr. Chair.
I just want to start off by thanking Nick for coming to this meeting, Environment Canada sending Nick here. You know, this is something I think the Government of Nunavut and the Board and a lot of communities in the Western Hudson Bay has been asking for many years is to actually have the biologist here. And I think it has been very productive. It's really good to hear from Nick. It's really good sharing that information, and I think it's a good exchange of information both ways from the communities to Environment Canada so they have a better understanding of the expectations from communities but, also, for them to understand the nature of the work that Environment Canada is doing in the Western Hudson Bay. That's just an observation and a comment.

One of the questions I have is, based on the work that Environment Canada and Nick specifically is doing in Western Hudson Bay, as you mentioned, is looking at habitat and how the habitat is changing of the bears and how that might influence the productivity of the bears over time.

And I know, Mr. Chair, you this morning also asked this question about carrying capacity of the population and trying to set management objectives or management goals for this population. And I think Nick already answered it to some degree, but the question I have is that, with the observations of declining habitat, bears spending less time on the sea ice, would it not be better to try and -- and especially the discussions that Michael just mentioned about bear-human conflict, would it not be better to manage this population at a lower level where it's still abundant, where there's still maybe more productive, having less bears in that population, and that might address a lot of these issues.

I was just wondering what your thoughts are about identifying a management objective that, as I say, with a much lower target number -- let's, for example, say 500 or 600 -- and manage towards that and try and manage it at that level with the objective of maybe creating a more healthy population. That is some of the comments -- and I'm asking that because that is some of the comments I've heard recently in discussions around Baffin Bay is that the high harvest in Baffin Bay between Greenland and Canada may have resulted in that population staying quite healthy over the period of time, in a period of time where there's observations of declining sea ice due to climate change.

Just your thoughts around that.
THE CHAIR: Thank you, Drikus.
Nick.
DR. LUNN:
Yeah, first of all, thank you very much, Drikus, for those kind comments of my attendance. We try to come to these meetings, but it doesn't always happen that way. You know, I know the last NWMB meeting on Western Hudson Bay I was unable to attend because my father had passed away, so we sent someone that wasn't able to, you know, maybe answer all the questions. But, you know, we try when we can, and we're available to come and answer questions. Maybe we don't do it as frequently as we should, but we are available. So thank you for those kind words.

In terms of, you know, a lower number of bears, that's certainly one -- definitely one management objective, one way to look at the problem, and it's a social carrying capacity issue. I mean, there's how many bears, you know, will the environment support, but there's also, as we've heard, a lot of safety concerns, public safety concerns in communities. And one way to address that that's entirely valid is, you know, manage for some lower level of bears, a reduction, whether that's 500 or 600 , to alleviate some of these concerns.

I think back in the early days, in the '80s when
the population was 1,200 , the harvest was 55 bears, and I think some of the perhaps lack of human-bear interactions at that time was that there were a high number of bears being taken before they got to communities, before they came into places like Arviat. And with low quotas now I think that makes it difficult. You don't have as many bears being intercepted, so more and more coming through the communities. So it's certainly, in my opinion, one strategy to deal with the issue is to manage for a reduction.

But that comes with some level of, you know, additional management oversight, you know, frequent surveys, and they're being done now anyway, so they would go hand in hand. I don't think you could certainly say we'll just set it at a lower level and forget about it for 15 to 20 years. I think it would require a bit more frequent monitoring, but that's being done by aerial surveys. And, you know, if you're doing them every five or six years you would quickly be able to determine, you know, where you're at and how things are happening. And with community-based monitoring harvest, I mean, there's a wealth of information in the harvest data, you know, that could be used to also monitor how the population is going. So I don't see that as a -- as a bad thing, necessarily, as one of the options that the Board might want to consider.

Thank you.
THE CHAIR: Thank you, Nick.
Drikus.
MR. DRISSING:
Thank you, Mr. Chair.
I have quite a few questions for you on that, but just to follow up on that -- and maybe Rachel might be in a better position to answer that.

And I'm not suggesting that we manage for a lower population. It's just I can see this happening in other subpopulations in future is I know that Environment Canada has expressed concerns with that approach under SARA because it really conflicts with SARA where under SARA management plans you're actually trying to recover populations to historic levels, and managing for a decline is problematic. So just from that perspective if, in future, we identify we're managing for a reduction to address concerns, how would that be addressed under SARA? Would there be concerns under SARA, and would it result in possibly NDF decisions?

THE CHAIR: Thank you, Drikus.
Rache1.
MS. VALLENDER:
Thanks, Drikus.
So as to whether there could be concern under SARA, that's a bit difficult for me to answer given that I'm not in the SARA group; however, I will say -- and I
think maybe most people in this room know -- so polar bears were 1 isted as special concern in 2011.

The approach taken for developing a management plan was to actually take a compilation of the jurisdictional plans, recognizing that the populations of bears and their status varies across the arctic, the listing under provincial or territorial legislation varies across the arctic. So we really, in that sense, are kind of deferring to the management that is going to be carried out by the jurisdictions, and so that's why for the SARA management plan we will be adopting those jurisdictional plans, and then just sort of writing a federal chapeau, if you will, that would just make sure things are SARA-compliant. So that's kind of the one part of that is we do recognize that that management authority lies with the territory in this case.

As for implications for an NDF, you know, again, I won't speak to whether the CITES scientific authority -I mean, they haven't started a process for this subpopulation yet, but they certainly do take into account management objectives. And if there was a rationale for setting a management objective specifically for a decline, then they would need to take that into consideration.

So again, our goal is not always to minimize harvest. Our goal is not always to have, like, a 4 and a
half percent maximum. Like, we do try and take all of the information into account, including what the jurisdiction has set as a management objective.

THE CHAIR:
Thank you, Rache1.
Drikus.
MR. DRISSING: Thank you, Mr. Chair.
Another question I have -- a comment and a question together -- is about the telemetry and the collaring.

As you know, there's a lot of opposition to collaring in Nunavut and handling of polar bears, and those comments were made this morning by some of the Board members, as well. But at the same time, we do have in certain regions, especially in the Kivalliq Region, a good example where we do have a lot of support for collaring for caribou, for instance, where the communities here has been supporting collaring -- I don't know -- David Lee could help me right if I'm wrong or -- but 20 or more years that we've been putting collars on some of these migratory caribou herds, and they provided some really good information that helps support management decisions.

And I think the reason -- and I might be wrong -- but my impression is that the reason why the communities support collaring of caribou is because that information is shared to the communities on a very regular
basis. They can see the benefits of collaring, and they can utilize that information.

And the same with the work that
Environment Canada is doing. A bit of criticism from our side is that that is such useful information that we could use for decision-making, and it's not shared. I have put forward through our biologist to the Polar Bear Technical Committee meeting a number of times if there's a possibility to have that information written up in reports and shared with people -- and not just Western Hudson Bay -- but there's really good work being done by Ontario in Southern Hudson Bay, as well. And I believe that that information would be able to advise the Board and the government and answer a lot of questions that we get at these meetings about population delineation.

Every meeting I've been to on polar bears people want to ask questions about the boundaries, how can we change the boundaries? And I think if these reports are available we could show to community why the boundaries could not change or maybe why they should change, and a lot of times it might support community requests to change boundaries based on community observations.

And especially now with the changing environment, as you've identified, and changing sea ice, you might see changes in bear movements which can only be
identified through collaring projects. But there is such dislike in it, and people have lost a lot of faith in it because we have not been able, I think, to do a good job.

And I'm not just pointing a finger at
Environment Canada. I think Nunavut could do a better job of that, but sharing that information on a more regular basis with the communities. And I'm sure a lot of people when they saw those movements this morning on the map found it interesting and useful, and I just request that maybe be shared more often with the communities.

THE CHAIR: Thank you, Drikus.
Nick.
DR. LUNN:
Yeah, that's always been our
intention is to share that information, and currently there's maps that are being produced sort of every three to four days, and there's a wide distribution list, and it's a map that plots where the bears are at any particular time, both Southern Hudson Bay and Western Hudson Bay together, so people can see. And it's got a wide distribution list.

And there's nothing sensitive about the data. It's generated and sent through the University of Alberta, and I believe your biologist is one of the people that receives it, but it would be useful perhaps if somebody could give me a list of the emails that I could -- maybe in each community or to someone -- and I'11 make sure that
that name or names gets added to that list so they would then be receiving these maps every three to four days of where the current locations of the bears are. So, yes, I agree we could do a better job.

That map slide that I put up, we're developing a poster of similar stuff with information of why we do it and movements of individual bears, and our intention is that those posters would be translated, and we would provide them to the communities in the Kivalliq and also in and around Churchill. So we're moving on it. We recognize we need to get more information out. It's just that we are moving probably slower than other people would like.

But certainly as a first step if I can get a list from somebody of all the emails that should go on -and it doesn't really go out to individuals, per se, so I don't want a list of a hundred emails to send it to -- but if there's one contact, whether it's, you know, the head of each HTO or the NWMB, that it could then be distributed, or through, you know, the KWB -- just some contact that we could start getting that information out to people.

Thank you.
THE CHAIR:
Thank you, Nick. Very helpful.
Drikus.
MR. DRISSING:
Thank you very much.
No, we'll definitely provide that contact
information, and then I'11 speak to Marcus about it as wel1.

In your presentation this morning you also provided some information from DFO on seals. Is there a report on that available?

THE CHAIR:
Thank you, Drikus.
Nick.
DR. LUNN:
To the best of my knowledge, if there is, it's likely a report made to the NWMB. I asked Steven about it, and he said he came up to give some presentation in the Kivalliq on the seal research, and those were slides that he had used. So I can double-check who he gave that talk to and whether there's a written report.

There isn't, say, a publication, a scientific publication yet on those changes. There is some information on seal surveys, but not the seal blubber thickness. But I can double-check with Steve to see if, in fact, there is a report, and if there is, is it accessible to the NWMB and others other here?

Thank you.
THE CHAIR:
Thank you, Nick.
Drikus.
MR. DRISSING:
Thank you, Mr. Chair.
My last question is just to get Nick's thoughts.

And it was mentioned this morning, as well, around modelling and, you know, if we start talking about managing for reduction or managing for increase.

When I started in Nunavut in 2003 and 2004, at least up until quite recently, there was a lot of always reference and a use of RISKMAN as the mode1 to use for polar bears, and it seems like now RISKMAN -- nobody really likes RISKMAN anymore, and people believe it's not giving good information. And there's a new model that Eric Regher, I think, developed now for Baffin Bay. I just have a concern, personal concern with how useful that modelling would be in such a changing environment, that you mentioned this morning that you see changes almost on an annual basis.

I remember when our biologist did the study in Baffin Bay over that three-year period, the first year they came back and said, oh, this is a disaster. There's no cubs. You know, we're not seeing cubs of the years. And the next year they went back, and there was lots of cubs. So it changes almost from year to year, and the ups and downs -- even in the maps that you showed this morning and changes, you have these variables.

And I'm concerned about the amount of trust we put into these models to make decisions, and just your thoughts around that. I know very little about modeling.

I'm really -- but I have some concerns when it comes to environmental changes, how much faith we put into these. THE CHAIR: Thank you, Drikus.

Nick, go ahead.
DR. LUNN:
I've got a couple of parts of way to answer that.

One of the use of models is because people want to know what's going to happen in the future, and so that's one of the reasons that people develop models. And they don't have to be polar bear-specific. People want to know what the weather's going to be like, people want to know whatever is going to happen. People want to have some information on what is on for the future. I mean, people have asked me what do I think is going to happen? When is the quota -- when do we lose bears in Western Hudson Bay? The only way you can get answers to that is through the development of models, right, if you really want to have some sort of a rough guideline. And the way you develop those models is you take what information you have, what you think are the important variables that might influence that, and you develop a model, and then you run it. And then you look at the existing data to see whether it matches, how close it comes to predicting what actually happened.

And once you get a model that works, then you
run with it, but the problem then comes in when something happens and the model doesn't predict it. It doesn't necessarily mean that the model itself is wrong, but it means that something has changed, something that we considered not important turns out to be important. So you're constantly upgrading and changing these models. And, again, it's not because the models are wrong. It's because the system is changing or something is becoming more or less important.

So I share your concerns, but we're always battling with that in the various status tables. And you will know status tables on polar bears, it's always changing. And that's because people want to know what's going to happen in the future. And so you try to develop the best mode1. And then when it doesn't happen, then there's -- you know, people are critical that, well, you said this, and it didn't happen. So there's that element. RISKMAN was very good when it was developed for what it was developed for. The issue for RISKMAN was that down the road that wasn't very good as sort of climate change -- as the environment was changing, it wasn't very good at handling that because the way RISKMAN worked, it had a fixed environmental variable. So you set it once at the beginning, and that variable, whatever it is for the environment, stayed for the whole length of your runs and
your simulations. So if you ran it out 20 years or 30 years, it assumed that the environment was constant at whatever you set it at. So you couldn't change an environment that changed over time. You couldn't get RISKMAN to deal with that.

So you started ending up with projections that didn't really seem to make a lot of sense. So people got a little bit, you know -- not that RISKMAN itself was bad. It's just that it was no longer really functional to deal with changing environments. And there was some initial work done on trying to change it to do that, but again, that wasn't anything that I was involved in. I don't know go if that ever happened.

So, you know, the model of Eric Regehr that you mentioned, and that's a recent development, and that does include and incorporate a lot of environmental uncertainty and changes and involves changes in age -- you can really model a lot different variables, but the problem is, as you've mentioned, they become very, very complex. They take a long time to run, and they provide you with, you know, various output, but there's no guarantee. There's no guarantee in these models that what it says is what's going to happen. And if you get it wrong, you fall back on the model and say, well, the model got it wrong; right? And you can go back and sort adjust it and fix it, but in the
mean time, there may be consequences.
So I think they're useful tools to provide sort of some guidance or some advice on potential outcomes, but I think one has to be very careful and recognize that models themselves aren't perfect because they're based on what's happened to date. And that's what makes them run, what has happened to date, and then you see if it fits. You run the model, develop it. Does it predict accurately what actually did happen? And then you run it forward. But if something else, some big hiccup happens that you haven't anticipated, I don't know, a seal explosion so there's lots of seals in the bay or the sea ice comes back or something else, well, if that hasn't happened before, it's not in the model. So all of a sudden you could get a very spurious result and you lose face.

A clear example of that is, for those that follow sort of the arctic sea ice minimum in September, that that's how much sea ice at its minimal or the circumpolar arctic -- there was a good model that predicted that. But in 2007, it had this huge record low, a drop, and nobody -- there were no climate models that predicted that drop. And it wasn't that the model was wrong, it's just something else happened. And so people started becoming very critical of those sorts of models. They went back to the drawing board and rejigged those models.

So one just has to be careful that when you use models. It's projecting something into the future, and you'11 never know if it was right until you get to whatever that future point is. So if you use it for ten years at a certain harvest rate and it says you should be okay, you won't know it's okay until that time comes and you can say, yes, it was good or, no, it was bad; right? That's the only way you can validate it is, you know, it predicts it to a certain point, and then you just run it for the future, and you check.

So, yeah, there are lots of models of how many bears maybe -- you know, the U.S. did one. I don't want to go off on a tangent, but the U.S. did modelling into the future, and they had certain predictions of when there would or would not be bears. The only way you're going to know if that's true is when that period comes. Was it right? Was it not right?

THE CHAIR:
Thank you, Nick.
Drikus.
MR. DRISSING:
Thank you, Mr. Chair. That's a11.
Thank you very much, Nick.
THE CHAIR:
Thank you very much, Drikus, from the GN.

I'd like to welcome Stanley Adjuk here from Whale Cove, the chair of the Kivalliq Wildlife Board. You
can come join us at the table here, Stanley. Welcome.
We'11 move on, then. NTI, the floor is yours.
NUNAVUT TUNNGAVIK INCORPORATED QUESTIONS AND COMMENTS MR. IRNGAUT: Thank you, Mr. Chairman.

Thank you, Nick, for your presentation. That was very informative. I have a few questions, and I'm sure David Lee will have a question, too.

In your presentation you mentioned that you collared, what, 75 to 95 bears per year, and I take it the majority of those are -- well, all of them, probably, are females. Is that correct?

THE CHAIR: Thank you, Paul.
Nick, go ahead.
DR. LUNN: No, we capture 75 to 100 bears per year of all age and sex classes, a total. Collars are somewhere between 10 and 12 adult females per year. THE CHAIR:

Thanks, Nick.
Paul, go ahead.
MR. IRNGAUT:
Yes, thank you. Thanks for that clarification. My mistake.

You also mentioned that some of them are caught three or four times per year. No? Okay. I wrote something wrong, then.

So with the collared females, are the cubs immobilized, too, at the same time? Thank you.

THE CHAIR:
Thank you, Paul.
Nick.
DR. LUNN:
Yeah, the first one, when I said three to four times, that's over their lifetime.

In any one year we only catch a bear once, and we minimize the risk of catching it twice but putting on a paint mark. We put a little spray paint on its back, and that identifies to us that we've caught it already. So the intention is you only catch a bear once in a year. Three to four was over the lifetime that a bear is being caught. THE CHAIR: And he also asked you about the cubs.

DR. LUNN:
Yeah. When we're handling
females, in the fall time the cubs are too big to be left alone while we collar mom. So, yes, we immobilize the cubs, as well, and we get weights and measurements and stuff on the cubs.

THE CHAIR:
Thank you, Nick.
Paul.
MR. IRNGAUT:
Thank you. Thank you for the answer.

So you collar females during the fall when they're on land, I take it, then. Yeah. How long do you stay with them before they can get up and move around on their own freely?

THE CHAIR:
Thank you, Paul.
Nick.
DR. LUNN: We stay with bears until they're showing signs of recovery, so they're starting to move their heads, the cubs will be up and moving about. We don't stay until the bear is completely recovered and walks away. They're up and about, able to move within an hour and a half to two hours, and they're probably fully back to their good old selves within a day or two. So it would take a while for us to sit and stay by a bear until it was back to how it was before we caught it.

There's obvious concern that if we leave a drugged bear that another bear is going to come along and kill it or there's going to be some injury or something is going to happen. In Western Hudson Bay I only know of one instance since we've started the research where an immobilized bear was killed by another polar bear. We see. We fly over the area, and there's dots on them so we know they're marked, and we fly back and forth over the area, and we see those marked bears up and about moving around after we've handled them. Most of the bears that we've handled in the past, they've been recaptured again so, you know, that provides additional information that there's not this mass mortality due to drugging being left on the tundra.

And there are lots of people around flying. It's a big tourist industry. There's people working on geese. If it was a huge concern, there would be other people seeing these dead bears, and we would hear about it. But I'm only aware of one instance in all our time doing it where a bear has died because it was drugged and just left on the tundra.

Thank you.
THE CHAIR:
Thank you, Nick.
Paul.
MR. IRNGAUT:
Yes, thank you for that answer.
When you see them again the following year, do they still have cubs, or are the cubs gone? THE CHAIR: Thank you Paul.

Nick.
DR. LUNN: That really depends on the individual female. If we're catching a female with cubs of the year and we see them again the next fall, some will have cubs, some won't have cubs. In Western Hudson Bay, at least in the early '80s, about a third of the females were able to wean their cubs at one year of age, which is a year earlier than most other subpopulations. That number's declined. So most females are keeping their cubs for two and a half years, but they are still these lone independent yearlings that are running around and seem to be fine. So
it really is variable between bears whether or not we'11 see the cub with mom the following year.
THE CHAIR: Thanks, Nick.
Paul.
MR. IRNGAUT: Thank you for that answer. You mentioned in your presentation that you had information about the seals from Ferguson from DFO. What about any information on killer whales? Because we know they come up to Repulse Bay area quite a bit. Any information on killer whales?

Thank you.
THE CHAIR: Thank you, Paul.
Go ahead, Nick.
DR. LUNN: I apologize.
Certainly when we started our research, killer whales, sightings of killer whales in Hudson Bay and Western Hudson Bay was never reported. No one ever talked about them, at least around the community of Churchill. In recent years, probably within the last ten years or so, there have been more increased sightings of killer whales coming right into the mouth of the Churchill River, and there's photographs of a pod of killer whales. I think there were seven of them literally right in the mouth of the Churchill River.

So clearly there are more killer whales at least
being seen in Western Hudson Bay. Whether they've always been in the bay and just not on the western side I couldn't answer. We're not doing work on killer whales. So I can answer part of it that. Yes, we're seeing increases in killer whales, but I couldn't tell you sort of numbers or that type of information.

THE CHAIR: Thanks, Nick.
Paul.
MR. IRNGAUT: Thank you. Thanks for that answer.

The reason why I ask that question is that killer whales do have impact on the food source of polar bears.

I don't have further questions, but maybe David might have some. Thanks.

THE CHAIR: Thank you, Paul.
David Lee, go ahead.
DR. LEE:
Thank you, Mr. Chairman.
I just have a quick couple of comments for clarification for the Board. And, again, thank you to Rachel and Nick for presenting their presentation.

So one of the slides mentioned the 18 percent downward reduction -- I can't recall the exact term that was used -- when comparing the most recent estimate to the previous estimate. I just wanted to clarify for the Board
that, in the opinion of the authors, the coauthors of the report and the survey -- being careful that I'm not representing the $G N$, and it states that on the report -that we're not indicating that there is actually a decline in the population. I think it's important because I don't want there to be an impression that the scientists that conducted the survey are presenting a report that the population has been reduced. I think in the presentation I gave on behalf of the GN we're very clear that, because of the uncertainty surrounding the most recent point estimate, we could not actually detect a decline.

So that's important because even suggesting that there was this 18 percent reduction -- and I realize this is part of human nature -- is suggesting that there's a decline. In fact, we're not suggesting that there is a decline. Yes, there is a difference, but how you can attribute that difference -- there is not a trend analysis.

In the NTI submission, in fact, there was a figure provided that was in the supplemental information of the GN report. I noticed it isn't in the tab under the GN report, but it's in the NTI submission. And that is a trend analysis of the Manitoba coastal survey data. I realize there are potentially issues with that survey data, but we analyzed it, and that trend data was showing an increase at least in the observations of male bears.

Again, I wanted to mention that to you because I don't think that there is always disagreement between scientific observations and scientific research and what Inuit are observing, and this is an area that probably requires further investigation or at least asking Manitoba, who are unfortunately not here, for clarification on their trend data or their observations and how we analyzed their trend data. So those are two points of clarification.

The last item, and it's just in case Environment Canada decides to utilize that difference between the 2011 and the most recent estimate. And I don't attribute any criticism to development of that comparison, but the accurate comparison would be to 949 because there were differences in how the previous estimate was derived, and the difference then would be 11 percent, not 18 percent.

So, again, I realize these are minor details, but I just wanted to be clear for the Board's consideration. Thank you. And those are just comments. I don't know if...

THE CHAIR: Thank you, David Lee, for that information.

Would you like to respond, Nick?
DR. LUNN:
Yeah. No, I mean, that's good to clarify and make sure that people around the table know
what the data say and what they show. I may have used wrong terminology, but we're sort of looking at point estimates, and that's what's typically used, and that's what's used by groups such as the PBTC and the PBSG and whether or not there's a statistical -- I mean, I agree that you can't determine a trend from two points. But, you know, you have a number, a previous number, and now you have a new number, and one is lower than the other, whether it's statistical or not or exactly what it means. You know, presumably -- and, again, I'm just speaking -- at the next meeting we're going to use whatever is the best available piece of scientific information when we put in an abundance estimate for Western Hudson Bay or Southern Hudson Bay. It will be up to those authors that did the work to tell us what that number is.

But, you know, the numbers are lower, and they were both similarly lower, and that was the point of the slide. And the terminology maybe was incorrect. But both populations have aerial survey estimates that the number, the new numbers are lower than the old numbers of equivalent change. So how we present that, that will be something that will need to be sort of identified by the authors of the report, but, you know, people will be looking to use the new estimates for these subpopulations, so we're going to have to work on that. But your point is
taken.
Thank you.
THE CHAIR:
Thank you, Nick.
NTI, any more questions? Thank you very much, gentlemen.

Next on the list is Kivalliq Wild1ife Board, questions to Environment Canada.

KIVALLIQ WILDLIFE BOARD QUESTIONS AND COMMENTS
MR. GREENE:
Yeah, just one question you guys re ECCC recommends a comprehensive harvest risk assessment be undertaken no matter what TAH is decided upon, and you identify that an analys has been done with the Baffin Bay polar bear subpopulation. I'm just wondering if you could provide more details on what that type of study would actually look like and what it would entail. THE CHAIR: Thank you. Nick.

DR. LUNN: Yeah, for the Baffin Bay Kane Basin work, a scientific working group was asked to provide some advice on harvest levels to the joint commission, and the scientific working group looked at this new model developed by Eric Regehr and its ability to incorporate things such as environmental change and age-specific reproductive rates, a whole variety of pieces of information that weren't necessarily or easily incorporated
into other models. And we like the model because it provides options and advice to people that have responsibility for management.

What's involved in that? Well, one of them is you need some management objectives. So there would have to be, as we talked about, what would be a management objective for Western Hudson Bay? And by that I mean, you know, we know what a starting point of the population is, assuming we use 842, but you could start at what you want, and then you would want to know, where do you want to end up? So you have to have that bit first.

You would have to have a whole variety of the harvest data, so the harvest data from the communities and from whoever maintains that. Presumably the GN has that information, so they would have to make that available. For a place like Western Hudson Bay, because there is a long-term mark recapture program, a lot of data, Environment Canada would have to be willing -- and we are, so I'm not saying -- you know, we would be willing to provide that information to such an exercise. And then there would be other organizations. Manitoba would have some data on tagged bears.

And so you'd have to ask everybody that has some data from, you know, Western Hudson Bay to be willing to provide that. You'd have to get the harvest data. You'd
need management objectives and some level of risk tolerance. You know, and it would have to be a range. Like, are you prepared to be wrong? If you want to go from 800 to 500 , what is the risk that you're prepared to take that you're wrong? You know, and that could be where 10 percent, we're prepared to take a 10 percent chance that we're wrong.

It can be any number, so you have to come up with sort of your boundaries of how risky you want to be. You might not want to be risky at all. You might want to say there's no chance. We don't want to be wrong at all. Well, that's going to give you a different result than if you said, look, we're prepared to take a 10 percent risk that, if we hold us to this level, we won't meet the target. So that's what we did for Baffin Bay, and we ran three sort of different management objectives in a number of scenarios.

I won't sugarcoat it. It's labour intensive. It's a very complex mode1. It's not something that you just get the data one day and a week later you hit the button and you say, "Here it is."

I actually, in anticipation of perhaps this being a potential recommendation, I actually asked Eric Regehr how much time he thought it would take to run the mode1, and his response was that if that's the only
thing he did, it's probably in the order of three months to do, to set the whole model up, run through all the data, do it. If he's doing other things as part of his job, then he says you're looking more like six to seven months of time, and then there would be a cost. Eric Regehr is at a university in the U.S., and, you know, he would be -- you would basically be contracting him. So it wouldn't -- I don't know what that would cost, so I can't give you that estimate, but I could pursue it if that was of interest.

But it's not going to be something that you're going to get in a week. If you decided to run, it's probably going to be three months of time, solid time, or six months or so if he's doing other things in between. THE CHAIR:

Thank you, Nick.

Ezra.

MR. GREENE: Thank you. Thank you for that answer. That's the only question I have. THE CHAIR: Okay. Thank you. No other questions from KWB.

We'11 move on to the communities, then. Arviat, any questions for Environment Canada? Nick.

ARVIAT HTO QUESTIONS AND COMMENTS

MR. ARNAUKJUAQ:
Yes, thank you, Mr. Chair, and good afternoon.

I have a couple on my list with the polar bear
population and now with the human-bear interaction. But I'll go with the first one. The polar bear population in Canada overall is a large number, but I'm wondering for Western Hudson Bay population, is it stable? Like, the risk, the category risk work that Environment Canada's done with this, is it stable, concern, or at risk?

Thank you.

THE CHAIR:

Thank you, Nick.
Nick.
DR. LUNN:
The status of populations of polar bears in Canada is determined by a committee called the Canadian Polar Bear Technical Committee, and that's made up of government agencies, wildlife management boards, so on and so forth. And they meet once a year, and they review at that time what information is available, the best available information, both scientific and traditional knowledge information, and then, based on that, their determinations, they assign a status to each subpopulation.

The Polar Bear Technical Committee has not yet met. It has not yet seen this aerial survey report, so currently the status of Western Hudson Bay is stable. It's a stable population. Once a presentation is made to the technical committee -- and they're meeting in early February in Inuvik -- there will be presentations from presumably GN or NTI on the aerial survey, there may be
other information that's given at that meeting. I know the regional wildiffe organizations typically attend, NTI attends. So there will be new information. All that will be considered, and then a new status assigned at that point. So at the moment, it's stable. That may or may not change after the next meeting.

Thank you.

THE CHAIR:
 Thank you, Nick.

Go ahead, Nick.
MR. ARNAUKJUAQ: Yeah, thank you for that answer.
My second question had to do with human-and-bear interaction. I don't know if Environment Canada is aware about Arviat and Churchill. When it comes to polar bears, they're two completely different sides. What do I mean by that? Churchill is in tourism, whereas in Nunavut we kill bears. And I worry about this sometime because maybe in five, ten years this will change because protection, animal activists and also how Churchill is handing tourism. I'm sure it's going to be a balance where one is favoured and one is not favoured. But the problem that we face with polar bears is different from Churchill, so I'm wondering what would likely happen. Does Environment Canada look into this?

Thank you.
THE CHAIR: Thank you, Nick.

Go ahead.
DR. LUNN:
Yeah, thank you.
Environment Canada is well aware of the issues of public safety, human safety, what's happening in Arviat and the communities up the Kivalliq and is aware of the tourism angle in Churchill.

I mean, Canada collectively has always supported, you know, that we have a very well-managed harvest in Canada. We're not concerned about that. And internationally, that's defended internationally, and international polar bear groups such as the IUCN polar bear specialist group, they likewise have said that, you know, a well-managed harvest is not a threat to polar bear populations. So there's no concern at the moment that there's an issue that, you know, harvest is well-managed and it's well supported by Canada collectively. It's supported by international groups, and I think proof of that internationally, at least so far, is that attempts to get them uplisted under CITES to Appendix 1 have always failed, and so I think there is a recognition that that harvest is not an issue, and human safety is not an issue.

I can't speak specifically to what Manitoba thinks about tourism, how it manages. It's unfortunate they were unable to attend, so I can't speak to that part of your question. But I'm not aware that there are any
major Manitoba initiatives dealing with tourism versus problem bears. I simply don't know of any. I can try to find out, but at this meeting I have nothing that I can, unfortunately, contribute to answering that question.

Thank you.
THE CHAIR: Thank you, Nick.
Nick.
MR. ARNAUKJUAQ:
Thank you, Mr. Chair.
I just have a bit more of a comment regarding disturbance and disruption of wildife. Like, for polar bears, it's changing the habits and wildlife natural environment. And Inuit have maintained good use and are the most environmentalist with our arctic species like polar bear. What I want to say is work with that in spirit and in cooperation between the federal -- between the Government of Nunavut. This way we won't have any conflicts or issues when it comes to polar bear.

Now, we've been dealing polar bear year after year, and ongoing -- like, five, ten years -- with no solid footing or with solid understanding. And sooner or later this has to be in place. So that's just my comment regarding this. And I will go quickly with the problem of taking polar bear cubs that no longer have a mother to use.

With the use anywhere in Canada, I find it most inhumane, most cruel to a polar bear. And I was glad the
mayor of Churchill stood up to say no more sending bears to anywhere down south in zoos. Let nature take its course. Like, it doesn't matter what level of government, they cannot protect all the polar bear cubs. That's just part of natural wildiffe. We can intervene, yeah, but to send them to zoos, I often find it inhumane and really cruel. So this is just my comment on this matter about polar bear. And, yes, we want this resolved, and we want this to be in order in the long run. That's our goal and plan for the Inuit for the HTO.

Thank you.
THE CHAIR: Thank you very much, Nick, for those comments and concerns.

Environment Canada, would you like to comment? DR. LUNN: I guess I can comment or a short comment on sending bears to zoos. That is an issue that we're well aware of is of concern to Inuit. It's not a decision of Environment Canada. If there's an orphaned cub of the year in Manitoba, that is up to Manitoba to decide what they want to do with it, what other mechanism they have in place, and I'm not sure what those mechanisms are. So it's not an Environment Canada Rule or regulation that says you have to send them to zoos. That's entirely up to Manitoba or any other jurisdiction where it occurred. So it's not something that we're involved in per se.

But I know that there are conflicting opinions. I know in the north people don't like them being sent to zoos, and there are some people that do like to see bear cubs sent to zoos. So, again, it's not a federal issue. It's a provincial or territorial issue.

And in my comment of better working together of, you know, science and traditional knowledge and communities, that's something that our department does support, and we have tried to get that moving along through various contributions to organizations to work much better and get mechanisms in place. That's an ongoing process, but it is something that we as Environment Canada do support. It may not be happening as fast as people would like, but it is something that is important to us and is one of the sort of priorities of, you know, involving the local users in a lot of these decisions.

Thank you.
THE CHAIR:
Thank you, Nick.
Thomas.
MR. ALIKASWA:
Thank you, Mr. Chairman.
My question to Environment and Climate Change Canada, the polar bears that are being put to sleep, the drug that is used on polar bear with their organs, their hearts, their livers, whether they get sick from it or not, that's my question. I know in November in Arviat our

Renewable Resource Officer in the community, one of the houses, there was a male bear that had to get picked up because it died from freezing. It was starving. It went inside the house, and it froze. So they had to go get it out of the building. It was very skinny, and it was a male.

And the other concern that I have of polar bears when they put collars on them and the females that are collared, I see myself the polar bear that has a collar on it will not hunt properly. I'm just mentioning that because in Arviat, in November still, the Renewable Resource Officer had to destroy a bear that was very, very skinny, and it had a collar on it. It had to be destroyed. It was very skinny, and it kept coming back to Arviat, and it was a safety for the public, so they had to destroy it.

These are my questions to Environment and Climate Change Canada. The collared bears don't hunt properly anymore because of the collar. When they try to follow the seals in the water, it affects their swimming ability.

Thank you.
THE CHAIR:
Thank you, Thomas.
Nick.
DR. LUNN:
The answer to your first part of your question about does the drug have effects or negative
effects on the internal organs, we don't have any information that it does. We don't really have a -- when we have a bear immobilized, we certainly monitor heart rate, how fast it's breathing, we can monitor its oxygen level in its blood. And we do that stuff routinely so we can monitor the health of the animal as we're working on it. And if there was an issue, we could take some intervention.

So during our handling we don't see those sorts of issues that there are compromises to its heart or its lungs or liver function. We wouldn't really have a way to detect that unless we did biopsies on these various organs, and because we're not concerned and there's no evidence that these drugs do that to bears, it's not something that we plan to do is to start doing invasive stuff, taking biopsies of livers and pieces like that. It's widespread use in veterinary medicine, so from that perspective, there have been a lot of studies done on dogs and cats, and there aren't issues with the drugs on the internal organs. But, again, we have no evidence that there is.

The second part about that particular skinny bear in Arviat and because it had a collar on it wasn't able to feed properly, the circumstances for that bear was that collar -- that bear had come ashore sometime that summer -- I don't know the date because it didn't have a
collar on at the time -- and we caught it in the denning area and put a collar on it at that time. And it then spent the rest of the summer in that denning area, and in the fall time it moved directly to Arviat. So its movement and its appearance in Arviat and its unfortunate demise all occurred while it was on 1and. So that particular bear had never been collared before, and it never had an opportunity to hunt on the sea ice. So in that particular instance, the collar didn't have an impact on its ability to catch seals because it never got back out onto the sea ice.

What we do know from its movement was, as I said, we collared it in September, and it spent about six weeks in the denning area. And then, for whatever reason, it went basically a straight line movement straight from the denning area to Arviat. It bypassed Churchil1 altogether, so it didn't even go into the town of Churchil1. It just made a straight line movement to Arviat.

And, unfortunately, it was very thin. It wasn't in that condition in the fall time when we handled it. But when bears are on shore they're generally not feeding, and they lose about a kilogram per day. So that female had been on shore six weeks or so since we handled it. So six weeks is 42 days. She could have lost 42 kilograms of body weight. So it's unfortunate that she was very, very thin.

I was told that it had some leg injury. I don't know. I didn't examine the bear in Arviat at the time, but I'm told it had some sort of a leg injury. Whether that was a factor, I can't say, but at least in this particular case it wasn't a case of the collar preventing the bear from hunting seals on the sea ice because it was all done and happened within a couple months while it was on shore prior to the sea ice re-forming.

Thank you.
THE CHAIR:
Thank you, Nick. Taima. Any anybody else from Arviat? Any other questions from Arviat? Okay. Thank you very much, gentlemen, for your questions. We'11 now move on, then, to Whale Cove questions. Go ahead, Simon. WHALE COVE HTO QUESTIONS AND COMMENTS MR. ENUAPIK: Thank you Mr. Chairman.

This morning we were shown one presentation. I have one question. You have been doing studies for 30 years. My question; have you noticed whether polar bears have levels of mercury in their bodies?

Thank you.

THE CHAIR:
Go ahead.
DR. LUNN:
In the early days of the study -bears generally in Hudson Bay have low level of
contaminants when you compare them to other subpopulations around the circumpolar arctic. The populations that tend to have the most level of contaminants are ones higher on up as you move to the pole, and probably some of the populations with the most are next to the former Soviet Union in areas where there's been a lot of dumping of radioactive contaminants. So those are some of the most of the contaminated bears. Part of that is due to the atmospheric and circulatory -- the currents that bring contaminants up. They all tend to concentrate them up in the higher arctic. They don't generally get into Hudson Bay just because of where it's at. In terms of mercury level of bears in Hudson Bay, they do have levels of mercury, but they are very low levels, and we're not seeing increases in that in the bears. So the short answer is they're not heavily contaminated, and we're not seeing increases of mercury in bears in Western Hudson Bay.

THE CHAIR: Thank you, Nick.
Simon?
MR. ENUAPIK: No more questions. Thank you,
Mr. Chair.
THE CHAIR:
Jackie, go ahead.
MR. NAPAYOK: Thank you, Mr. Chairman.
I wanted to ask a question. The collared bears,

I think some Inuit know, they've seen collared bears. I haven't seen one personally. What kind of material do you use? Is it cloth or steel or aluminum, or what kind of material are on the collars?

THE CHAIR: Thank you, Jackie.
Nick -- sorry.
DR. LUNN:
That's all right. I was following protocol this time.

Where the battery is housed, so that square part of the collar -- I don't know if we can bring the picture up -- but the collar itself, the battery part, that's a metal box that the batteries and the electronics are housed in.

How it attaches to the bear, it's webbing, and it's the same type of webbing that's used in refrigerators. It's refrigerator belting, so it's a fabric material, and degrades -- oh, I can't probably see it. I can just see over there. Maybe if you can zoom in on the one on the bottom. The material -- it's a fabric material with a rubber coating, and that degrades -- maybe the one below -yeah. So the big square box, that's metal. That's where the batteries, the electronics are housed, so that's a metal housing to protect it, and that's covered in a rubberized fabric.

Most of the belting that you see, the bulk of
the collar, the round part that attaches, it's just refrigerator belting which is a fabric covered in plastic. It degrades over time. The cubs will rip it apart, so after two years they're in pretty rough shape. It degrades over time.

There are bolts that hold it together that rust out, as well, in addition to the release mechanism. So lots of sort of backups and backups to backups, so these collars don't stay on, but it's a fabric that mostly goes around the neck.

Thank you.
THE CHAIR:
Thank you, Nick.
Jackie.
MR. NAPAYOK:
When you put the collars on, you bolt it. I think you put two bolts on it with nuts. They don't loosen over time, the nuts and bolts that you use? THE CHAIR: Thank you, Jackie.

Nick.
DR. LUNN:
Yeah, it's two bolts, and they go through that little black -- if you can now move that one up so that we can see the top pane1, I think you might see it better, maybe. Anyway, yes, it's two bolts that fasten the two pieces of the collar together, and the bolts go on, and they rust out. Do they loosen? No, there's a washer on that prevents that from coming undone and popping some

1 off. So, no, they don't. The bolts don't drop off

2
3 unintentionally.

THE CHAIR: Thank you, Nick.
Jackie.
MR. NAPAYOK: I was worried about them. Thank you for your answer.

When you put them on the bear, I think the cubs try and take them off of the mother with their claws. So just not today.

Another thing you mentioned this morning, in 1950s, there was a lot of polar bears. I grew up in Coral Harbour. I just moved into this area. From 1950 to today -- that's quite a while ago -- I witness today that polar bear are more abundant than they used to be. When we had dogs in the past, we had to feed our dogs, we had to feed our children. I wonder why today, even though you're saying they're declining, we notice as Nunavut people that we don't believe that they're declining. There's more than there used to be.

THE CHAIR: Thank you, Jackie.
Nick.
DR. LUNN:
Just a quick comment on the first point you raised about cubs taking collars off moms. When we put them on, we put them on so they're loose enough that my fist fits through, and we find that when bears get up,
adult females, that if they want to get those collars off they take them off right away, and they are sitting at the spot where we put them on.

We find that, if a bear will wear it, leave that area, that she's fine at leaving that. But definitely the cubs do chew on them, and they will try to get them off, and so we have had some of our collar failures or early collar failures when we get them back is that the antennas and the webbing have been ripped apart presumably by cubs. And so the antenna is gone and is no longer in a position to transmit. So cubs definitely do play with them and will, you know, chew on them and, in some cases, do quite a bit of damage.

To the second part about more bears now than when you remember back in the '50s, part of that, again, at least, is up until the late '60s, early '70s, worldwide polar bear harvest was unregulated and nonselective all around the world. People were just shooting whatever polar bears whenever they wanted. And it was because of that that people around the world were quite concerned, and that's what initially led to this international agreement of the five polar bear countries was they got together and said: Look, we know nothing about polar bears yet we're seeing large, large numbers being harvested. And so that was sort of the impetus for research was this uncontrolled
and nonselective harvest.
So in the early days polar bear populations were probably kept very low simply because there were lots of bears being taken nonselectively, females with cubs, so on and so forth. And then once we started implementing or, you know, and quotas started coming in it was through those conservation methods and through the hunters following these quotas that, all of a sudden, that provided a level of protection to subpopulations, provided protection to females and cubs, so those bears were able to survive and come into the population. So it was through the implementation of those quotas that people were able to control the harvest. So it was no longer nonselective, whatever you wanted. People were limited. And that allowed polar bear populations to recover. So that's one of the reasons why I think you're seeing more bears now than you did in the early days in, the '50s and '60s, was that previously there was no rules. You could take what you wanted when you wanted, and people weren't concerned.

And I think in Churchil1, Western Hudson Bay, that was probably true with the military. You know, there was a lot of military activity right in that denning area, and we had no idea what bears are taken, how many, when. But we believe that there were probably a number taken.

And so, yeah, management initiatives and, you
know, the quota system and people, you know, wishing for a conservation of polar bears that it's a success story. So in some ways, you know, it's a double-edged sword. It really is a conservation success story, of, you know, this quota system and people following these regulations. It's very successful for polar bears. Now we're coming to other issues with there perhaps being more bears than people remember and some of the other issues.

Thank you.
THE CHAIR: Thank you, Nick.
Jackie.
MR. NAPAYOK:
In the past around 1953, I'm guessing, the government had asked for cubs. They come out in March, they're born. And I think you know in January, in January right now they are really small. We caught 24 small cubs in Coral Harbour. We collected 24 . We didn't get the mother, we just got the cubs, and we brought them to the meat plant. They were fine, healthy. One of the them was really, really small. The Government wanted them, so they sent them down to the coast, and we brought them that small. Polar bears are very smart, and they remember. The smallest one was the only one that went back to its mother. I started thinking that that was just a very talented bear.

Thank you for that information.

THE CHAIR: Thank you, Jackie.
Nick, go ahead.
DR. LUNN:
Yeah, thank you for that. I wasn't aware of that information, so thank you for providing that. It's very interesting to know, you know, the sorts of stuff and what was done in the past.

We do catch bears in the springtime and, yes, we catch them in March -- they are three months old. They are very, very sma11. And the smallest one we caught this year was a female that had three cubs, and the smallest cub was five pounds, so very, very tiny. And its siblings, its brothers and sisters, were 15 and 20 pounds. So the smallest one was very tiny. And even with a helicopter the mother was very, very protective and didn't abandon the cub, kept coming back and actually sat with the littlest cub and made sure it was all right, and allowed the little cub to climb on mom's back. And she was protecting it. So, yes, they are very smart, and they're very, very protective of their cubs.

And you get a whole range in size from five pounds, which is the smallest cub I have ever seen. In fact, I didn't actually even drug that cub. It was so docile that I just weighed it. I put it on a little scale and weighed it. And I didn't put tattoos because to do that I would have to drug it, and I didn't want to drug a
bear that small. So I was able to weigh it and stretch it out on mom's back, and it laid there and I was able to take my little measurements with the tape measures on that cub. But it's by far the smallest.

And the heaviest cub, just for comparison, was a female that had a single cub the same year, and that cub was 45 pounds. So we had a mom with one cub that weighed 45 pounds and a mom with three cubs where her smallest cub was 5 pounds. So there's a whole huge range in the weights of these cubs in the springtime. And that has an impact, we think, on their survival. Bigger cubs probably have a better chance of survival than a little five-pound cub.

Hopefully, we'll see that five-pound cub in the future, but I wouldn't want to bet a lot of money that we will, but I always like to cheer for the underdog, so I'm hopeful that some year that bear will turn up.

Thank you.
THE CHAIR:
Thank you, Nick. I guess, that's why you cheer for Edmonton, then. Too late now to take it back.

Thank you, Whale Cove. Any more questions? . Jackie, go ahead.
MR. NAPAYOK: I know I'm not the only one that wants to speak. There are other people. I just wanted to ask another question.

Polar bears, I think you know more about them than I do. They have cubs up to three every once in a while. In the past, I just wanted to ask the question whether there's more cubs that are three or two -- there's usually two, but how often do you see three cubs from one female?

DR. LUNN:
First of all, I would never claim that I know more about polar bears than people around this table. I recognize that I don't. I might know some of the science stuff, but I would never want to claim that I know more about polar bears than most people here around the table.

Number of cubs; you're right. Most of the cubs are either single cubs or two cubs. We do catch in the springtime -- maybe out of a sample of 20 family groups, we might expect one or two females that have triplets. This past spring we caught two females with three cubs. The rest had one or two.

In the fall time we have not seen or captured a female with triplets since 1996 in Churchill. They still exist. People still see them from time to time, but we haven't seen one, and we haven't handled one. So we think that what is happening, probably, is that of those springtime cubs such as that five-pounder, yes, it was there in the springtime. It's unlikely -- you know, again,

I'm cheering for the underdog, and, yes, cheer for Edmonton -- that the underdog will survive. It would be nice to know that it did. But my gut feeling is that it won't survive. So if we catch it again, she'11 either have two or one cub.

And out of all the years that we've done research -- so of the 37 years -- there was one case of a female with four cubs in the springtime. And I don't know if any of you in your experiences have come across or seen or heard of a female with four cubs, but we had one instance in all the years of research in Churchill a female with four cubs.

Thank you.
THE CHAIR:
Thank you, Nick.
Jackie.
MR. NAPAYOK:
The reason why I mentioned it, the three females with three cubs is very rare and not very often, when they first come out in March, and the mother starts walking away with three cubs away from the den. And the smallest one, once they stop, it starts feeding the smallest one. The third cub, maybe it doesn't feel the same way, so it just feeds the two more healthier ones. That's why the third smallest one would be the skinniest one. I've seen that myself. They would have fed all three, but they only feed two. Every now and again it does
feed the third one. I just wanted to mention that because I've witnessed that myself.

Thank you.
THE CHAIR:
Thank you, Jackie.
Nick, want to comment?
DR. LUNN: Yeah. I mean, the work that we do, when we see bears, they're running so we don't often get to see those observations of a mom feeding, how many cubs she's feeding at a time. We do get that when we have her immobilized and we can examine her nipples, how many of them are enlarged. And, typically, two are enlarged, and the other two nipples are not enlarged. So, again, that would be, you know, supporting what you're saying is that, when there are three cubs, there's probably only two that are feeding at any one time, and one is the runt or left out. Usually that's what we see in triplets is two are big and one is small. So what you're saying is, you know, what we see supports exactly what you know and have just provided.

So thank you.
THE CHAIR: Thank you, Nick. Taima?
Whale Cove, done?
Okay. We've still got a little time before coffee, so we'11 move on to Chesterfield Inlet. Any questions for Environment Canada?

CHESTERFIELD INLET HTO QUESTIONS AND COMMENTS

THE CHAIR:
MR. AGGARK:
First of all, I want to thank you for my questions yesterday on collars, the collars that are put on from northern Manitoba and the distance they go, and this was shown to us.

So they go almost up to reaching
Chesterfield Inlet, but they turn and go return to Churchill, Manitoba. And I think that's the reason why in the springtime when we're losing the ice and Chesterfield has an inlet, so it has a strong current, and the ice starts going that way. So this may play a part how they move around from Arviat and Chesterfield surrounding area. And the seals are more abundant when the ice is leaving, and no doubt the polar bears are following the seals at this time. But obviously some of them moving toward Repulse, Naujaat. So I wanted to thank you for sharing that.

The other question I have; you stated earlier the surveys that are done on the bears or the research over past five or ten years, that they're losing more fat. Is it the same bear? My question is, would it be the same bear that you researched over the ten-year period when you detected that bear losing more fat over the years?

THE CHAIR:
Thank you, Harry.
Nick.
DR. LUNN:
No, generally not. It's not the same bear over time. When we do our fieldwork, we capture a sample randomly. So we don't pre-decide which bears we're going to catch. We just fly, we see bears, we catch them, we take measurements. So we don't know in advance. Unless it's got a collar on, we wouldn't know in advance which bear we're seeing and whether we handled it last year or whether it's been handled at all, unless it's got an ear tag.

So it's more by luck. If we were to catch a bear, you know, two years in a row, it would be purely by luck. We have no way to say we want to catch this particular bear this year and next year and the year after. We have no way to determine that unless we put a specific permanent mark. So it's more random. So those years over the last five to ten years losing weight, that's just the average of those bears we catch. They're not the same individuals each year. So they're different bears that would contribute to that.

But because we're taking what we call a random sample, we're assuming that some of the bears -- you know, that the differences between years, it's a random sample. There's not a bias that we're targeting only fat bears or
we're only targeting small bears. It's completely random, and we're assuming that some will be heavy, some will be small, and you determine those mean weights based on that. So it's random.

Thank you.
THE CHAIR: Thank you, Nick.
Harry.
MR. AGGARK:
THE CHAIR:
Thank you. No more questions.
Okay. Thank you,
Chesterfield Inlet.
Rankin Inlet, any questions for
Environment Canada? No? Okay.
Baker Lake, any questions? Hugh.

BAKER LAKE HTO QUESTIONS AND COMMENTS

MR. NATEELA: Thank you, Mr. Chair, for the information we received.

I'm just wondering if there are any plans of introducing some of these climate change monitoring programs that are happening across Canada from New Brunswick to B.C. where some young indigenous people are collecting their own data. I was just wondering if there was any plans of introducing some of this data collecting in Nunavut. I realize I think that there are some notices out from the federal agencies about funding and things like that, so I was just wondering if you might
be able to have a bit of information on that.
Thank you, Mr. Chairman.
THE CHAIR:
Thank you, Hugh.
Nick.
DR. LUNN:
I don't have any specifics on funding opportunities or what's available in the federal government for those types of initiatives in the north. But I know in the -- you know, one of the things that collectively -- not just Environment Canada -- is that we want to get more community-based monitoring occurring with polar bears.

There's a lot of information that can be provided by communities that we can't get necessarily from the science, and so there's certainly a lot of interest in trying to develop community-based monitoring programs, whether it's collecting seals or observations when hunters, you know, harvest a bear, taking some basic measurements or any number of things that, you know, would help augment, you know, a collective knowledge of what's happening with polar bear subpopulations.

So it's something that people have very interested in, and we're looking at what can be done, but I don't have specifics per se that I can provide today or where the funds would come for that, but it is something that community-based monitoring is important, and we want
to get those types of programs off the ground and working. Thank you.

THE CHAIR:
Thank you, Nick.
Hugh.
MR. NATEELA:
Yes, thank you for the response.
I guess the reason why I was asking about that, and I guess just to go back to some of the discussions I heard around the table and certainly from one of the Board members was discussions of bridging science world and traditional IQ stuff. And I guess I just wanted to make a final comment, I guess, just for - I'm sure you know this already -- but when there's a clash between the science and traditional knowledge, it's just that the reason why there's a clash is because of the difference in the approach. Whereas the scientific world, it's a linear approach versus a holistic approach. So I think if we can start teaching our young people and our students, our young people in Nunavut, I think we'd be able to start bridging some of these differences that we often hear about from people. There are differences between the science world and traditional knowledge.

And so I think in due time, I'm hoping that in due time we will be able to teach our students, our kids some of the skills that they need to learn to be able to help us monitor for ourselves so that we can start making
some informed plans and decisions, hopefully more on our own independently without so much government, mining companies, and other agencies' input which is, you know, where it's always welcome to have assistance from the outside agencies, but I think this is a time where we need to start making some solid plans where we start taking some of these initiatives ourselves.

Thank you, Mr. Chairman.
THE CHAIR:
Thank you very much, Hugh, for those good comments.

And they were more comments than anything, unless you want to comment on that. Go ahead, Rachel. MS. VALLENDER: Yeah, thank you.

So I think those are great comments. Certainly as a department we recognize that we need to get better at sort of the co-application of - I know we used to say integration. I'm not sure that's necessarily the best term for bringing together traditional knowledge and sciences, certainly the use of both knowledge sources.

And so just to let you know about a couple of initiatives that we have had on the go noting that in 2009 our minister at that time did commit to learning how to better use the two knowledge sources. And so one thing we have done is actually within Nick's branch of our department, we have hired a research scientist who that is
her specialty is how to use both those knowledge sources. And certainly on the management side we are learning a lot from her about how we can better use TK and science in our recommendations.

And then, secondly, so we started in 2011 working with the jurisdictional governments and the Inuit orgs, including ITK, to develop a protocol for how to better use the two knowledge sources. And so ITK actually led that work, and it was funded by Environment and Climate Change Canada.

That hasn't yet been finalized, but certainly from the management perspective that's something we would still 1 ike to get better at and to actually finish that protocol so that it can be used across the country. So I don't think we have it perfect yet, but certainly we recognize that as a department and are making efforts to better use both knowledge sources.
THE CHAIR: Thank you, Rache1. Nick. DR. LUNN: Yeah, I just wanted to add a comment that it's a two-way street, that scientists like myself, we have to learn better how to incorporate and use traditional knowledge as well. So it's not a one-way street. We have to learn, as well, that there are other sources of information, and how can we best use that information. So I just wanted to make that comment.

THE CHAIR:
Thank you very much. Taima?
Okay. World Wildlife Fund, any questions? Go ahead.

WORLD WILDLIFE FUND QUESTIONS AND COMMENTS
MR. LAFOREST: Thank you, Mr. Chair. Just one quick question.

The current schedule for reassessing this subpopulation from an aerial survey standpoint, correct me if I'm wrong, is not for another five years. If ultimately it's decided by the co-management system to manage for a decline and bring the population down, in your expert opinion for Environment Canada, would that be a sufficient monitoring schedule to wait five years before going back and checking?

And a follow-up question is, what other sort of management recommendations would you make when managing for decline? And given the difficulty in detecting trends in the high confidence intervals of surveys, how confident are you that we could achieve management goals like that?

Thanks.
THE CHAIR: Thank you.
Nick.
DR. LUNN:
Boy, there were a lot of loaded questions in there.

I guess to answer the last one first, aerial
surveys typically have wide confidence intervals, and so you need to have a really significant change in numbers to be able to state statistically that a change has occurred. So, you know, you would have to see a huge drop in number or increase in number, huge differences to be able to pick that up on an aerial survey. And that would apply to other methods as well. You know, you need very, very tight confidence intervals to be able to see and detect change. Could you do it with an aerial survey in five years? While having just said that you need to have huge change, I mean, you would have to be able to detect that. So huge changes would have to occur over five years to be able to detect, you know, whether there are big changes occurring. So is a five-year interval good enough?

I mean, I think from a monitoring perspective, going every five years gives you at least a heads-up, but, you know, short of it going from 800 to 100, you know, the confidence intervals are too wide. If you're looking for something statistical and you're only going to act on a statistic, you're really going to have to have a huge change in the numbers, and that doesn't matter if it's five years or ten years. If there's no huge change and you have those wide confidence intervals, you're going to have two point estimates that might be different. But the statistical -- the statistics will say they're not
different.
So I don't know if that answers your question, but I think it is, you know, something that needs to be appreciated that, to detect statistical change, you know, there's going to have to be a huge drop.

Thank you.
THE CHAIR: Thank you, Nick.
Brandon, good?
MR. LAFOREST:
Good.
THE CHAIR:
Okay. We're going to try and finish this before coffee time, I think. Next up -- not many left, but I see David from KIA is here.

David, it's your turn, KIA, to ask questions of Environment Canada if you have anything.

Go to the mic and introduce yourself anyway.

KIVALLIQ INUIT ASSOCIATION QUESTIONS AND COMMENTS

MR. NINGEONGAN: Thank you for the opportunity, Mr. Chair.

I apologize we were not invited, although we were told we could sit at the table. So in saying that I will need to get briefed on what's been discussed before I have any questions, so if you could give me a few minutes to get some briefing, Mr. Chair, I would appreciate it so that I do ask the right questions for the panel.

Thank you.

THE CHAIR:
David, that's fine. You take your time. You're going to have an opportunity here. You're on our list to give a presentation to all of us at that time. Okay? Thank you.

Is there any questions to Environment Canada from the public or any Elders in the public that would like to ask any questions? Now is the time. If not -- don't see any -- Thomas, go ahead.

PUBLIC QUESTIONS AND COMMENTS

MR. COMER: Thank you, Mr. Chair.
And thank you for the answer the other day to my question about establishing whatever it's called, the scientific term for the population of polar bears. My question today is, during all these studies, are Inuit ever considered as an indicator organism that, you know, the polar bears do exist? In a lot of studies when it deals with wildlife management or anything to do with wildife, there's always an indicator organism to say that the presence of a specific or a certain species is present in that environment. So in our case for Nunavut or anywhere in the circumpolar region Inuit are definitely an indicator organism to indicate that there is a healthy presence of polar bears. That's number one.

And the other one is I do have a question about the drugging techniques for polar bears, capturing them and
drugging them. My question is, is it healthy? Because I don't see any practice of drugging. Well, for one thing, the polar bears are expert swimmers, and so they can swim for great distances in the water. We have Olympic swimmers who compete in these Olympic stadiums, but I don't see them getting drugged, you know, just to study them, so I don't know why we would need to drug our 01ympic swimmers that are in their natural environment.

Thank you.
THE CHAIR:
Thank you for those questions.
And, Nick, go ahead.
DR. LUNN:
Yeah, answering the first question about Inuit as indicator species, I have to admit I've never considered that in part of my sort of scientific studies. We use polar bears as an indicator of the arctic marine ecosystem because they're at the top of the food chain, the natural food chain, and I've never even thought of Inuit as an indicator species.

In terms of drugging O1ympic swimmers, drugging bears that we know can swim great distances, we don't drug bears for the sake of just drugging bears because I'm a scientist and I can do it. It's done because there are specific questions that are being asked. Not necessarily here in this room, but my department has questions. There are questions that are being asked, and I'll use collaring
as one example.
People want to know about movements of bears. People want to know what is going to happen. How are they going to move on sea ice? And to do that right now the only technology we have is a collar, and the only way I can get a collar on a bear is to drug it. So I'm going to have to drug it to put the collar on in order to get the information that I've been asked, or questions to answer.

And that's similar with all the other bears that we handle and we take these measurements. There is considerable interest, certainly in my department and elsewhere, about what are the impacts, long-term impacts, and how will the polar bears be affected by things such as climate change?

When we started the program, it was more we wanted to know something about polar bears. You know, how much do they weigh, those sorts of informations. And the only way to get that was to drug them, and so that's why bears are drugged and handled is because there are specific questions that need to be answered that have been asked of us to answer. It's not because I think it's really neat to fly around in a helicopter and shoot bears out of a window. It's because I have a question or questions that need to be answered and, currently, the only way is immobilizing bears.

Originally that was the cases for, how do you get abundance estimates? So a lot of it was done through mark recapture. There is work done now to use alternate techniques, and so aerial surveys is one. Genetic -- mark genetic biopsying is another way to get a population abundance estimate. But there will still be questions that require bears to be handled and questions that are asked of me in my job that I have to answer.

And so, again, I appreciate that there is a lot of concern about the handling of bears and collaring bears, and we try to minimize as best we can the number that we do. As I said, for those that maybe weren't here or in the back, when the work first started people were handling 200 to 300 bears a year in Churchil1. That was the number of bears, so that's a lot of bears to handle. We don't do that anymore. We really limit to what we think is an appropriate number to get a sample size that can help us answer the question. If you can answer it with handling 75 bears, why would you want to handle 300 ?

So it comes down to, how many bears do you need to handle, what are the questions being asked? And so that's how our research is done and why we handle them. And we are continually trying to find improvements, ways that we can minimize our impacts, and collaring is yet another example. With those release mechanisms and using
satellite technology, we only have to handle the bear once. We don't have to disturb it for the next two years by flying over it. We don't have to drug it again to get the collar off. So those are ways that we can minimize -- you know, not eliminate, but minimize -- some of these more invasive procedures such as drugging, is looking at new technologies. And as newer technologies come around, you know, maybe we can improve what we do and reduce it even further. But there will always be questions at the moment that need me to -- or need bears to be handled and drugged. THE CHAIR: Thank you, Nick.

Any other questions? Go ahead. Just state your name for the record, too.

MR. OTTENHOF: Hi. My name is Jared Ottenhof. I've heard the term a couple times "immobilize and not tranquilize" the bear. I'm just wondering what's used. Is it a tranquilizer, or is it a paralytic drug, and is the bear aware, conscience, when the sampling is being done? THE CHAIR: Thank you, Jared.

Nick.

DR. LUNN:
It's a combination. The drug Telazol or Zolatel, it's a combination of a sedative and an anesthetic, and it's a dissociative anesthetic, so the bear is not aware as we're doing these techniques. It's not the drug that we would use if we were going to do something
like surgery on the bear. We would use different drug -we don't do that, so don't jump at me that we're planning -- but it's not the drug that we would use if we were going to surgically implant something into the bear. We would use different drugs. But when we're working on the bear, it's a dissociative, so it's a tranquilizer and a sedative combination.

Thank you.
THE CHAIR:
Thank you, Nick.
Go ahead, Jared.
MR. OTTENHOF:
So you mentioned earlier as wel1 75 to 95 bears are handled in a year and ideally keep the numbers down. Each time you do handle a bear and you mention you're sampling -- you take the fat core, pull the tooth if it hasn't been pulled before, I guess. Do you do that on all the bears you handle in a year? Or I'm just wondering to what extent are you sampling each animal when you handle it per year.

THE CHAIR: Thank you, Jared.
Nick.
DR. LUNN: How many samples or what we do to each bear really depends if it's been captured before. So if a bear has never been captured before, well, then, we're going to put a tattoo on. We're going to put ear tags in which will require us to punch the ears, and then we'11 get
a skin disk, so we would collect a skin sample.
Things such as fat and hair we collect routinely from all bears. We generally don't collect blood from every single bear. It's a lot to process, spinning it down, storing it, so we'11 target bears. We'11 just take a random sample from some of the individuals, but we won't take it from every single bear. So hair and fat are something that we would get from all bears. The other samples really depends on who it is and what it is.

And all the information that we collect over time goes into a computer record, and we're able to print out what we call a bible, and it's a binder. So when we catch a bear we can look at it and look at its complete history, and we can see, did we take a skin sample from this bear, did we take this, did we take that? So that can help direct, do we need to take it again?

And so, for example, with a tooth, once we have an age, we don't need to take another one. So we leave it alone. We won't take a tooth, but we might have a comment in it that, you know, the last tooth we took we couldn't age it, for whatever reason -- in which case we would.

So, again, we try to minimize the samples that we take, and that's guided a lot by the bear itself; has it been tagged or not tagged before, and whether or not we have some of these samples and whether we need to take it
again.
So it's not every bear gets everything done, but fat and hair is something that we take -- that we take from every bear.

THE CHAIR:
Thank you, Nick.
Okay. Quickly, Jared.
MR. OTTENHOF: Last question, I promise.
There's been quite a lot of talk around the tables about, you know, more concern about handling the animals. Is there a way that there could be a program developed where, with the 34 tags that we're here to discuss, minimize handling of each bear in the wild if you took the bears that are harvested and each HTO has a kit, perhaps, that they could take samples of the bear that is harvested, submit it to ECCC and perhaps cut down the numbers of bears that need to be handled in a year?

THE CHAIR:
Thank you, Jared.
Nick.
DR. LUNN:
There's certainly merit in developing, and that's part of what we were talking about earlier about some of the community-based monitoring, what other types of information can you get. And you can certainly get a lot of samples from harvested bears; body fat, condition, and so on and so forth.

Some of the questions we ask, though, we want to
follow individuals and things over time. So if it's shot, we're not going to be able to follow that individual anymore. So there are circumstances where you could get that information from a hunter, you know, get a hunter harvest collection.

Again, the harvest is, you know, directed more towards males, so you sort of skew your sample a bit, but there would be certainly definite information that you could get from harvest sampling, and some of that stuff is collected already. And I believe that a tooth is provided, you know, so you could start looking at things like age structure of bears. I don't know what other samples are collected in Nunavut, you know, fat, muscle, those sorts of things.

I know that those community harvesting programs have provided samples at least to DFO for some of that information on seals came from communities, from local hunters harvesting. So there's lots of opportunities for that, and there may be ways to reduce -- depending on the questions being asked, reduce how many bears necessarily would have to be sampled each year. But there will always be a need for trying to follow individuals that are still alive, moving forward.

MR. OTTENHOF: Thank you.
THE CHAIR:
Thank you, Nick.

Thank you, Jared.
Okay. If there's no other questions, we are going to break here in a minute, but first of all, that concludes Environment Canada, your presentation and your questions.

Again I would like to thank you very much for your presentation, both of you, and for being here and participating in this hearing. I think it's very important that you were here and answered a11 the questions as candidly as you could and as transparent and honestly as you could. And it's been very helpful, I think, to all of us. And it's nice to have you here, and we hope that the cooperation and collaboration and communication between all of us and Environment Canada stays the same and it gets better from this day on. So thank you very much. Go ahead.

DR. LUNN: Yeah, thank you very much. And again, thanks to everybody for allowing me to make that opportunity. And I would like to say I hope that the communication gets better and not stays the same. I mean, we've heard the message loud and clear that, you know, we communicate, but maybe we don't communicate as often or to the right people, and we'll start addressing that through things such as these movement maps. We'11 get the right people that should be seeing it and getting it,
we'11 speed up development of our posters to get it out to communities so people can actually see and provide some information on that. So hopefully the communication will improve.

Thank you.
THE CHAIR: Thank you, both.
So we're going to take a 15 -minute break for coffee and a snack.

And up next is KWB, your presentation to us.
Thank you.
(ADJOURNMENT)
THE CHAIR:
Okay. Everyone, we'11 resume.
Thank you for coming back. What a great snack there, except for those people that have an allergy to seafood, I guess, or fish.

So we'll resume. Kivalliq Wildiffe Board, it's your floor to present to the NWMB with regards to the Western Hudson Bay polar bear, so, I guess, Stanley, the floor is yours. Go ahead.

SUBMISSION BY KIVALLIQ WILDLIFE BOARD

MR. ADJUK:
Al1 set? Thanks, Dan,
Mr. Chairman.
If I need some assistance, as he will be assisting me in everything, so he's been doing our background work for KWB.

Our background with KWB is we deal with our seven communities from the region, but some of those communities aren't here because they're from Foxe Basin and not from Western Hudson Bay. Our board consists of each chairperson from each community, just so everyone knows.

And, firstly, I think Ezra has done all the background work, and our coordinator, Qovik, who tirelessly keeps working with us -- who keeps bothering me, too.

And I may be the closest, living next to Rankin, but I took the longest time to get here. I was lost in between. Too many bears around.

Just a little tough while I'm listening to some topics, these are the same topics from 20 years ago still going on. It hasn't changed since. But we have our written submission here, so I'm not going to read the whole thing as everybody's seen it already.

With KWB, it's an active board, very active board, getting more active every year. And all this stuff we talked about, all the stuff we touched upon, the stuff we're presenting is from listening to the communities from Western Hudson Bay. And we do work for the region.

It's really nice to be here and present our stuff from here, and we thank the NWMB and the GN for making our total allowable harvest a bit higher from the existing, although it's not quite satisfactory yet to our
region. The stuff we talk about, we would maintain the Inuit ways of hunting of polar bears. We're not there just to hunt for sport just to kill, we're not there just to hunt a bear so we can say, "I've caught a bear before." That's not the case.

And that stuff being said, the last probably since 2006 we've been struggling with polar bears in the region, more mainly from Arviat, Whale, and Chester -Rankin once in a while. But the bears are scared of Rankin people, so they hardly bother them. It's just a fact that we've seen, when there's no polar bear quota in the system, the bears do come into communities. They're an intelligent animal, and then when there's quota with so much to harvest, they never show up. It's just a fact.

And just a little topic offhand just so everybody knows that I know I'm still a kid compared to these Elders around the table. But when we were kids five years ago or so, growing up back in the day in Whale, I remember once there was a bear that came into town. Once. That was something to see because we never seen bears then. Today my kids and grandkids can't even stay out. That's just how many polar bears there are. That's just an example of how many bears have been since. And it's kind of hard to believe when they say it's declining because when I was a kid growing up there was absolutely nothing.

There was no polar bears. So when they say it's declining it's hard to believe because there's more than what I've ever seen since I was a kid. Not just me. There are a lot of people that were kids around the table. Even the Elders, I know they know there's more bears than ever before. In saying that, we've talked about our total allowable harvest. It was nice when we got 34 last season, and it still didn't meet our 4 and a half percent from the population. We're still going on the goal to reach at least 40 for the region and 5 for Manitoba.

There's a lot of stuff that we talked about in our meetings, and one of the things we've been fighting to get something right, when they catch too many female bears, there's a big penalized system going on that cuts our harvest down. That part we hope that will be fixed when we catch too many female bears in the community. The people from the Western Hudson Bay pay the price all the time.

And same stuff goes on with what we talked about last fall where, I'm from Whale Cove and I shoot one year n Rankin, and it's taken off from Rankin quota system while it should be taken off from the person where he's living. These are a few minor things that we wanted fixed, and I hope it goes through.

And we do a lot of defence kills. Not every time a bear comes, but when it keeps coming to the
community, that's when we do a defence kill. It's not every time there's a bear that goes to a community gets killed. That's not the case, but we do a lot of defence kills when we have no choice.

Saying that, in Whale Cove there's a lot of problems with bears, and now Foxe this year, without a CO there, so we have no choice but to get the community members involved where the Environment people should be. There's an office there. There's everything there for Environment, but it's empty. No one works there. In saying that, Rankin does take care of Whale Cove right now, just so you guys know, but it's not working.

In what we talked about, what we've been talking about as a board that there's too many bears that are destroying people's personal stuff, meaning from cabins to snow machines being parked. And it's not just polar bears. Any wildiffe damage. And there's a compensation program, but you got to be a rocket scientist to get that going, and it should be a better program where everyone can just easily have access to it. And we've been trying to find ways for research on bears or any other animals, but it's hard without any funding or with infrastructure that you need to do any research.

When we talk about harvesting bears, the science states that we don't shoot females with cubs. It's not
only the science. It's within the Inuit, too. Inuit are taught like that. And we grew up listening to our Elders that you don't just shoot an animal with a cub or a calf. We know that rule, so on the sex-selective harvest, it shouldn't even be a problem.

So I know some communities were saying there's too many female bears now in communities, and we know that's a fact. There are a lot of female bears because we shoot more males than the female bears. But I think the science is so scared that we're just going to shoot females with cubs, that sex-selective is always there. But we also have to know that the population is getting so big, and we're not following the 4 and a half percent that we need to keep it stable. Maybe we're just killing them. Maybe there's too many now. Maybe we'11 just be killing them all for their food source.

And we hear a lot of global warming. We've talked about global warming, too. We hear a lot of global warming. Once the ice stops forming, the bears are going to disappear, which is not the case. Bears or any animals adapt to anything in the environment. They adapt, and I think we need to teach the world more that they will adapt instead of the world going against the Inuit harvesting rights all the time. There's just few examples where polar bears adapted to zoos. That's one example where science or
the world never recognize. They've adapted to the zoos. They will adapt in the north. And I know we're going to starting get very cold winters while we live.

I think I'm going to talk a bit too much, too, now, so those are the main points what we wanted to talk about more. And Ezra will clarify more stuff on this stuff.

MR. GREENE: Yeah, just so everyone knows, I am providing technical support to Kivalliq Wildilfe Board, and I did help with the writing of the submission, and I just want to clarify a few things from it.

This was created through a discussion with the board of Kivalliq Wildiife Board and then input from the executive, as well. And based on that input that I received from everybody I worked on drafting this up, and and then where there was written literature that supported some of what was talked about, there are some references to that as well.

But just to emphasize one thing, we looked at the 2016 draft of the Nunavut Polar Bear Co-management Plan, and currently the goal is stated as being to: (as read)
"... maintain viable and healthy polar bear subpopulations for current and future generations and to ensure that polar bears
remain an integrated and functional part of the ecosystem where monitored and appropriate harvests are allowed."

One thing that is clear to me is that the continued hunting of bears by Inuit is very important as part of the management, and I think that Kivalliq Wildlife Board wants to make sure that that's emphasized. And to my understanding, a big way that Inuit qaujimajatuqangit, which we talk about so much, is passed on is through hunting, and so hunting needs to continue. And I think that's one of the points emphasized in the submission. We've talked about public safety quite a bit, and everyone else.

The subpopulation boundaries have been talked about some, and there's some disagreement on understanding bears in that way, and Kivalliq Wildife Board notes that. As we saw from how the polar bears move around from the telemetry data, the same bears can be in the Western Hudson Bay, the Foxe Basin, or the Southern Hudson Bay areas.

But also beyond just the bears, sometimes those boundaries cause problems for humans also, and one area I think we saw that when Baker Lake was presenting is the Western Hudson Bay subpopulation and the Foxe Basin subpopulation boundary is south of Chesterfield Inlet, and
sometimes that's caused some internal debate in the region about who should get tags and whatnot. So that's just one thing to think about.

However, it's important that if any sort of reconsideration of boundaries is considered, one concern is the political-legal implications of that, and that, like, it's so hard already to do co-management with so many different boards and jurisdictions and communities, and I think Kivalliq Wildife Board would be reluctant to open it up to even more. I know that Makivik put in a written submission on this. So they're not here, but, you know, they have concerns about the polar bears here, as well.

A lot's been mentioned about polar bear tourism, so we won't reiterate that.

And then for the level, the total allowable harvest level, it was emphasized by Kivalliq Wildiife Board in my discussions with everyone that the goal is to maintain a stable population. It's not to decrease. From the Kivalliq Wildiife Board's perspective, it's not to decrease their polar bear population. But that total allowable harvest recommendation of 44 for Nunavut and then 5 for Manitoba, based on the aerial surveys we found -- and then also the Inuit knowledge -- we found that a thousand bears is a reasonable estimate for how many bears there are. That's a little higher than that 842 of the survey,
but it's within the confidence interval, and Inuit are saying there's more and more bears. So that 1,000 seems reasonable both from Inuit qaujimajatuqangit and from science. And the 45 TAH for both Nunavut and Manitoba is a recommendation using that 4.5 percent figure on that estimate. So that's sort of where that number is coming from or the rationale behind that number.

We've heard that the flexible quota system is challenging to understand and that it causes a lot of animosity, and so there's a recommendation in the written submission on how maybe it could be dealt with. This is open to discussion, but one suggestion is to maybe have a moratorium on the severe penalizations that come from harvesting too many females. And I still have -- the Kivalliq Wildife Board still have the HTOs and the other co-management partners emphasize that two-males-to-onefemale ratio but maybe not have such a strict penalization where lots and lots of credits get taken away, because what happens is sometimes some communities don't get to hunt at all for multiple years because there's been too many defense-of-life-and-property kills.

So that's just some of the rationale that went into the written submission.

If you go to the end, the tables, these are kind of confusing.

I just want to emphasize we also had discussions with NTI's Wildlife and Environment Department, and they helped out a lot with technical things, so this is one of those things. This one just shows the harvest levels for each community from 2000 up until 2016. So the black numbers show what the actual harvest was. The columns, the blue in the right -- it becomes confusing -the top number is how many were from the Western Hudson Bay population, and the bottom number is the Foxe Basin population. So in Chesterfield you see that there's a mixture of the two. And these come from the Nunavut harvest reports that are provided by -- the polar bear harvest reports provided by the Government of Nunavut.

But one thing to note is around 2008 the quota severely or drastically dropped from -- I think in 2005 to ' 06 the quota for the Western Hudson Bay was around 56 , and then it dropped to 30 something and then to 8 , and so that was difficult to manage for communities. Go to the next slide.

One thing looking at the records, it seemed to us that the amount of defence-of-1ife-and-property kills increased quite a bit around that 2008 period. So the number in orange, you see that prior to 2008-2009 there were occasionally defence-of-1ife-and-property kills, but in a lot of communities, like in Arviat and in Whale Cove,
those defence-of-life-and-property kills really increased when there was a really, really low total allowable harvest, and it just becomes difficult for communities to manage what hunters are going to do when there's such a low total allowable harvest. Go ahead to the next one.

This just shows over time what the annual harvest was for each community. I think we can go to the next slide.

And this one just is a graph that again shows what I just said. Prior to 2008-2009 there was really not a problem with people meeting the management levels. A lot of years the actual harvest was lower than the quota, and it's only after 2008 to 2009 where there's been issues where there's been actually more bears killed than the quota. So I think that's important to think about when we're considering management and what people are actually going to do with hunting.

So that's some of the technical aspects just behind Kivalliq Wildlife Board's submission.

THE CHAIR:
Thank you very much, Stanley and Ezra. You're completed, then, your presentation to us? Ezra?

MR. GREENE:
Sorry, there was some more. These last ones, like there's, I think, five at the end that break it down what the actual harvest was in terms of the
types of kills or the types of harvest.
So everything in green is a regular harvest, so that's Inuit hunting. The blue is sports hunts. This one is Arviat, and Arviat did quite a bit of sports hunting prior to 2008, so you can see that since the quota was really reduced, Arviat has really had to stop doing sports hunting, which impacts the local economy. But we also see here that in 2008 is when those defence kills really jump up, and a few illegal kills as well.

And the next four tables were similar. We can go through each one. So this is Baker Lake. You can see, as Hugh mentioned, Baker fluctuates how many bears they get to hunt, and I think that is something that Hugh is going to bring up as a question. But there's some years where they've had two tags that I think come from both Western Hudson Bay and Foxe Basin and some years where they have had none and then some years where they have one. So go ahead to the next one. We'11 look at it.

This is for Whale Cove, I believe. Let me double-check. No, this is for Chesterfield Inlet. So you can see that they've had some - they've had defence kills quite a bit in Chesterfield Inlet all the way back to 2000, but that 2011 to 2012, they had -- they had a lot of defence kills. I don't know the specific histories of every single kill here. We can look at the last two
quickly. This is Rankin In1et. And then the last one is Whale Cove.

And that's everything.
THE CHAIR:
Thank you, Ezra. Okay, then, thank you very much, gentlemen.

Okay. Open for questions from the Board to Whale Cove. Charlie.

NUNAVUT WILDLIFE MANAGEMENT BOARD QUESTIONS AND COMMENTS MR. INUARAK:

Thank you, Mr. Chair.
Regarding what you just shared that you wanted 40 in the Western Hudson Bay region and then you also said the 4 and a half percent -- the percentage, what would that equal? According to the 4 and a half percent base, what would the number be?

THE CHAIR: Thank you, Charlie.

Ezra?

MR. GREENE:
So the population estimate from which Kivalliq Wildlife Board made its decisions was 1,000 bears, and the recommendation was for a total allowable harvest of 45 bears, which is 4 and a half percent of 1,000 , but 40 of those would be for the Kivalliq Region or Nunavut, and the other 5 would be for Manitoba because I believe right now there is a sharing of the total allowable harvest between the two.

THE CHAIR:
Thank you, Ezra.

David K.
MR. KRITTERDLIK: Thank you, Mr. Chair.
A comment before a question. Stanley was saying that he's not an Elder, but elder doesn't make elders an Elder.

Now, I keep bringing up IQ because IQ is not taught in the classroom, IQ is not taught on a written material. IQ in Inuit is taught verbally right from the child, right from the infant growing up. I just noticed that when Stanley mentioned that, that that's where IQ is unique with Inuit throughout Nunavut, even in NWT.

As we see around the table, there's a mixture of us Elders and the younger representatives of hunters and trappers organizations. Having said that, question: We hunt wherever we want to go hunting. If there's no polar bears in Whale Cove, we may go to Arviat. But there was a mention of a hunter from, let's say, Rankin Inlet that got a polar bear in Whale Cove or Arviat, but the number of that kill was taken out from a community -- let's say, Whale Cove. I think that happened before, but I'm just questioning if that has been a problem. And we've heard that RWOs are the ones that allocate number of tags to the communities. I was just wondering why that happened before, like, a hunter from Rankin Inlet went to Whale Cove or Sandy Point and a tag was taken out from Whale Cove
allocation.
Thank you.
THE CHAIR:
Thank you, David K.
Stanley.
MR. ADJUK:
Thank you, Mr. Chair.
I'11 clarify that. I guess I wasn't clear enough. These are the ones that are taken out of the communities, who is not from a community or for defence kills only. Example, I'm here in Rankin and I harvest a bear in my own defence, but it would come off from their next. The total allowable harvest would come out from that community where it was the nearest. That is one thing that we didn't like, and we kept talking about it in our regional meetings. When they do a defence kill, wherever they are, whoever they are and wherever they are from should come out of their community, not from the nearest community. That's what we were trying to say earlier. Matnaa.

THE CHAIR:
Thank you, Stanley.
David.
MR. KRITTERDLIK:
I guess to make it a little more clear, a hunter from Rankin Inlet got a polar bear in Sandy Point, and that tag was taken out from Whale Cove because Sandy Point is closer to Whale Cove. Is that how it's supposed to work? Thank you.

THE CHAIR:
Thank you, David.
Stanley, you're going to defer that to Michael?
Okay.
Michae1.
MR. D'EÇA:
Qujannamiik, itsivautaaq.
I think this section I'm about to read would answer this issue, and if you have a binder it's at tab 21, and it's section 6.2 of the MOU. And the opening sentence of section 6.2, it's on page 10 , and it says: (as read)
"When a Nunavut beneficiary residing in a
Western Hudson Bay population community kills a bear in the Western Hudson Bay population, the tag will come from their home community." So I read that to mean that if you happen to be in Rankin but you're from Whale Cove and, whatever the reason, if you have killed a bear from the Western Hudson Bay population in that community, the tag comes from your home community, which I think is the rule that KWB wants to have in place. So my understanding is that that is the rule that's set out in 6.2.

Taima.
THE CHAIR:
Thank you, Michae1.
David Lee, you have something to add. I'11 allow that over this topic.

DR. LEE:
Thank you, Mr. Chairman.

And thank you, Michael.
Just to assist David and the KWB, I was involved in a teleconference call that dealt with this specific issue. I know this is outside of potentially what we're discussing here, but in respect to David I wanted to answer his question.

What actually occurred was that there was some confusion because of the clause on the same page of 6.1. So in 6.1, if you read that first sentence, the interpretation says "nearest community," but then if you read 6.2, it's what Michael had just said. So this was discussed by the board and also by the GN, and so that this situation could be discussed by the $K W B$, because it is a KWB responsibility to avoid that occurrence in the future. I mean, the MOU is a guideline. It's the KWB that has the ultimate responsibility. Qujannamiik. That's just for context. It's not to dispute what's been said. It's to provide background in how this situation developed.

Thanks.
THE CHAIR:
Yeah, thank you, and I think it is sort of out of the realm of what we're discussing here, but it's an interesting point.

So, David, did you get your clarity on that? Okay. David's good. Caleb.
MR. SANGOYA:
Thank you, Mr. Chair.

I have four questions in all. First, I have many relatives outside of Nunavut. They were born here in our territory but reside outside. Inside the Hudson Bay the same bear population exists in Quebec, and I was told last year there's about 124 bears caught from Northern Quebec. So this population have only 38 tags allowable to harvest, so why is it that Northern Quebec have more leeway and you have been strapped under strict policy?

Second question. Before the Nunavut Land Claims, before this existed, before the NWT passed any regulations, they never told Inuit not to be allowed to hunt polar bears. Now I see in red the term "illegal kills." Now that we have Nunavut, the prestigiousness of Inuit in relation to their polar bears is being harmed.

Third, I have a friend from Greenland who I often talk with each month. People in Greenland, we have an agreement that they can catch polar bears in Baffin Bay. They are free to hunt as much as they want. It's only closed in July. And they don't trade bears, but it is their own. And they also make garments, hunting gear, clothing out of the hide, and so this is their management. And we all have different management styles, but because they are our kin, Inuit kin, why is it that we're so different? Does it not matter why there's such a vast difference amongst us?

And speaking inside of Nunavut, those beneficiaries, if there's one town has 45 tags, why would we have different numbers for the rest of Nunavut communities? We're all one. We're all from the same territory. It doesn't matter whether it's Hudson Bay or a different area. And, again, prior to the Land Claims, Inuit hunted for food and for warmth and clothing, but when we got the Land Claims it only focuses on hunting and trading without considering our diet. Do we just exclude what's so important, such as our diet, out of the Land Claims?

Regarding polar bears, we know that those people who strived hard to come up with the Land Claims from the Government and NTI, they didn't describe how to change our diet. They didn't consider what was in existence and what we practice to today. Our forefathers always caught bears and automatically cooked it as a meal. Perhaps we're too much in the western civilization ways that are we not even allowed to follow our own people anymore from the past?

I want these answered.
THE CHAIR: Thank you, Caleb. I guess your questions are to KWB.

Stanley.
MR. ADJUK:
Thank you, Mr. Chair.
Those are very powerful comments you just
mentioned, and with all these regulations and rules we follow, we're still following. Maybe over the last couple of years each HTO's been saying if the allowable harvest is not there we'11 just do whatever we want because there's no allowable harvest. I think that's a better route that we should be looking forward to. They cut our quota, then there's no quota, so it's all for anyone.

It's hard to answer Caleb's questions because we've always had this quota system in our communities. It's not our choice that we wanted 8 for the region, 38 for the region, 54 for the region. That was never the region's choice at all. It was given to the region.

That's al1 I can answer. Thank you. THE CHAIR: Thank you, Stanley.

> Caleb.

MR. SANGOYA:
The hides were sent to Iqaluit from the Baffin and Kitikmeot and Kivalliq when they caught bears. In 1999 they started taking hides. They took all the hides that were caught collected in Iqaluit and burnt. The government burnt them. Inuit knowledge was harmed, hugely damaged, all the hides that we could have used and applied. Our Inukness is more important than making money, and this is our strength. We strive for this to be our strength, but it's deteriorating by outsiders.

THE CHAIR:

Thank you, Caleb.

Charlie.
MR. INUARAK: Thank you, Mr. Chair.
We all know that you often have many meetings in the Kivalliq, Kivalliq with the HTOs, and this is policy and a regulation to hold meetings, and we're also going to oblige to what you have to share here because that's our nature.

And we have a hearing here. We've heard the same issues and concerns over and over through the years. My term is almost up, still hearing the same. They've often said the people who are home, whether in Arviat, Whale Cove, Chesterfield, and any of these communities, and not only in meetings, not only during meetings that they see so many bears, and they are having so many problems with bears and what a nuisance they've become, even to the point where the Nunavut government has assisted in problem bears. So we feel this.

If there are really 1,000 bears in number, if I were the judge, if I were to play judge and look at the evidence before me, according to the number of bears that are nuisance bears, if I wanted fewer of these nuisance bears, problem bears, then I would have to add to your tags, to your quota, and this would help you because we would increase the number of bears you can catch. For protection-wise, it would be a lighter burden for those
that monitor throughout the night and throughout the critical times of the month or year.

And you're sharing this with us from Kivalliq Wildiffe Board. Can I gather this to be true? I'm collecting all what's being said, and could I say that this is true overall in what you're asking? THE CHAIR: Thank you, Charlie.

Stan1ey
MR. ADJUK:
Thank you, Mr. Chair.
Yes, what you've said are true. We've come to realize -- we saw a picture of a bear earlier. When we had more tags, we would never use them all. But now that they cut the quota and the tags, then we went over that imit, and many hunters are disturbed because it's part of their diet, it's part of our clothing. So when we're disrupting them too much as hunters, harvesters, they have their own right to rebel and disobey.

So now that there's no limit. Then they were under the numbers required, but when they put a imit they went over. If there's going to be more cuts to the quotas or the tags, perhaps we can expect that more bears are going to be killed, according to Inuit law-abiding citizens as they are, and we really do tell them you have a right to protect yourself and carry out your right as an Inuk harvester. But if you increase the number of tags, I want
you to know that we're not going to probably use them all in one year. I'm sure there's going to be some left over, and perhaps some years perhaps they'll use them all. According to the population, I think this is more fitting every year, without too much changes over the year, be more consistent.

In the Western Hudson Bay population, if there is 1,000 that you know of and if you give out 45 tags, then that makes sense. So if there's 1,000 , it should be pretty steady, and that is the steady number to be safe, 4.5 percent. I don't really know if that's the complete truth or fact, but that's what we follow through for all wildlife, not just polar bears.

Yeah, we are requesting increase the number, because if you decrease it, we know for a fact that people from Kivalliq according to our meetings with Nick Arnaukjuaq, Harry from Chester, every time we meet they've said this. But in this meeting, for example, in this hearing they're likely not to share that. It's when we hold meetings with them they're warning us, whether or not there's tags or quotas, we're going to hunt and kill.

And regarding Environment Canada or people from the Environment, you can't monitor every hunter. There's no way you can monitor every hunter. So if you decrease the tags, it's going to be increase in harvesting. And not
all bears go into every community, but it's just we always find that when there's no more tags, they come around. Not in Whale Cove -- I think everywhere. When there's no more tags, they come and show up. But when there's polar bear tags, they're hard to find. They don't come close to our communities. Inuit know this very well.

And what Charlie shared earlier, what he asked, yes, we're asking for more. There used to be 56. Then it was cut to 38 , and then it was going lower, even for the point where there were 8 in the Kivalliq Region.

But I'm not trying to scare everyone, not trying to intimidate everyone as people from Kivalliq, but if there's no more tags, yeah, obviously there would be no limit. They're our animals, our wildiffe, our diet. We use them. If there's no quota, then there's no limit. I think we need to state this coming from Inuit.

THE CHAIR:

Thank you, Stanley.
Charlie.
MR. INUARAK:
I want to ask you, in the Kivalliq Region the tags for polar bears are for Inuit, and the HTOs are in charge of giving out those tags, but it's the HTOs that are in charge of those tags.

My question to you: The Inuit in the Kivaliiq Region that are affected, if I can make it clear, I would ask the question; the Kivalliq Inuit Association -- I know

NTI is in favour to the KWB. What about the Kivalliq Inuit Association? Have they recognized this, as well, what we're talking about?

Thank you.
THE CHAIR: Thank you, Charlie.
Stanley
MR. ADJUK: The president of KIA was in our meeting. He knows our view. We're looking for ways. He's probably going to speak. He knows, understands, he's a hunter, as well, in the Kivalliq Region. He even goes to Whale Cove for polar bears. We understand that he was in support of us, but we're going to hear from him later, so I can't speak on his behalf.

Thank you.
THE CHAIR:
Thank you, Stanley.
I think at this time I'd ask David if you want to go to the microphone and just state who you are, David, and you can say your few words.

MR. NINGEONGAN: Thank you, Mr. Chair.
My name is David Ningeogan, president of the Kivalliq Inuit Association. Thank you, Mr. Chairman, for giving me the opportunity today.

The polar bear issue in the Kivalliq Region is very evident that we need a larger number for TAH. We hear all the time that the total allowable harvest is not enough
for the communities over the last many years. For an example, what you see, the polar bears that are harvested, there were TAHs for the communities. They would always be the same, the amount harvested. But the tags are not enough for the Kivalliq Region for the communities that are affected.

As a board, Kivalliq Inuit Association, our mandate is to ensure that the beneficiaries are taken care of. And Inuit traditional knowledge, we know that there should be a higher TAH, but they're listening to western science more than traditional knowledge. Our agreements that we have, we've had to use it a few times. The stumbling blocks that we have over the last few years that we've encountered, the tags that we are asking for in the Kivalliq Region and the HTOs in the communities are going to be affected. We are in support of those organizations as Kivalliq Inuit Association, and we know that we do not want the tags to be reduced. We need to increase that number.

I want you to understand the tags that we have is not enough for the region.

We all know that the polar bears today are being affected more by western science and not by Inuit, and they are going more into the communities. Once they are handled down in Churchill by putting them to sleep and when Inuit
harvest those affected bears, and they paint the fur, we can't use the fur and eat the meat anymore. When it's like that, us Inuit feel that only we harvested for food and clothing, and it's not to be a detriment to our beneficiaries using Inuit traditional knowledge.

I know, NWMB, we are asking you that the quota should be increased for the Kivalliq Region because it's been really small and not enough. If we were given more and we are in support of more tags being given, we would like to see that. We are asking you.

And the western science biologists in Churchill is where they operate, they should go to the Kivalliq communities to see what it is like in our communities in the region with respect to wildlife and learn from Inuit traditional knowledge. We are going to invite them to come more often to our region.

For your information, I know it hasn't been mentioned too many times that five tags for Manitoba. We know that there are defence kills down there, we would ask that compensation be given to the Kivalliq Wildlife Board. If they're going to have five tags, then they should be giving funds to the Kivalliq Wildlife Board, and you add another 45 tags for the Kivalliq Region, those 5 that are defence kills should be compensated.

Thank you for giving me the opportunity. I
don't have anything else to say. Thank you. THE CHAIR: Thank you, David.

Charlie.
MR. INUARAK:
Thank you.
While you're down there, my final question. The Inuit, you're standing here representing them. I'm proud of you. I would like you to continue. I'm sure you have a written submission for us. Our MLAs and lawyer is probably motivated. This is our second hearing with respect to Western Hudson Bay polar bears, and it is very evident the people that are getting more and more bears in Arviat, you could hear it on the radio a lot. Even though we're far up north we know that there's more polar bears in the region.

And the regulations and laws, that we've reduced the number of polar bears you can harvest with the rules and regulations and law that we had to add, if you have a written submission, are you going to give us a request, or have you already given us that request to increase the total allowable harvest?

THE CHAIR:
Thank you, Charlie.
David?
MR. NINGEONGAN: Thank you, Mr. Chairman.

This is something we don't have a written submission to. We have given that mandate to NTI because it is their mandate, but if we have to have a letter of
support, we can give you one if we are given the opportunity.

I apologize that I didn't come here earlier. I knew that you were having a meeting, however, we've been quite busy trying to keep up with our job, but if we are given the opportunity, we'd be able to give you a support letter for increasing the total allowable harvest for Western Hudson Bay.

THE CHAIR:
Thank you, David.
And I just want to clarify. What you gave us today and what you spoke to is on our record, so that is a submission by you, and that will be accept, and the board, too.

Any other questions from the Board to Whale Cove -- I mean to KIA. Getting tired. At least I got the community. Right, Stanley? Any questions from staff? Vickie, quickly.
NUNAVUT WILDLIFE MANAGEMENT BOARD STAFF QUESTIONS AND COMMENTS

MS. SAHANATIEN: Thank you, Mr. Chair.
Yes, just one question. And we'11 need this information for our future analysis. So you've recommended to use a number of 1,000 for the population estimate to estimate the total allowable harvest, and in your submission you provided some information about why you
selected that number, but it would be very helpful to receive more details about that, so if you can fill out some details and why 1,000 .

Thank you.
THE CHAIR:
Thank you, Vickie.
Ezra.
MR. GREENE: So, yeah, that number, as I mentioned, comes partially from the results of the aerial survey and the confidence interval for that 2016 aerial survey that 1,000 is within the limits of - I don't know exactly what the range was -- around that 842. But also from Inuit saying there's more and more bears and saying, okay, well, there's a range here that western -- like, an aerial survey has provided and Inuit are saying there's more and more bears, maybe the estimate should be higher within that range.

And we also consulted with David Lee and Gabriel Nirlungyak at NTI just to get insight into whether that was a reasonable sort of number to work around, and David said, yeah, that works with the science. And I think he can respond to that if there's anything else that needs to be said.

THE CHAIR:
Thank you, Ezra.
Vickie.
MS. SAHANATIEN:
Thank you, Ezra. That's very
he1pful.
Yeah, I'11 just note the interval, confidence interval is 526 to 1,121, and the point estimate was 842. So 1,000 is up towards the top limit of the latest estimate. So it would be useful to hear from David to find out any additional information why that number was selected.

Thank you.
THE CHAIR:
Thank you, Vickie.
David Lee.
DR. LEE: Thank you, Mr. Chair.
And thank you, Vickie.
So as Ezra mentioned, the KWB held a teleconference call, and also there were a number of meetings where they were trying to essentially discuss how they could be reasonable with all of the information that the board members in the communities were mentioning, especially the traditional knowledge. And the estimate of 1,000 was mentioned because, over the past several decades, in looking at just the stability of the population, that was the number that had been used during the last public hearing, and it was a number that the board felt comfortable using if they had to provide some justification with percentages and numbers because, of course, IQ doesn't provide an exact number.

So I would try to not focus on necessarily an exact reason for using a specific number but just that this was a result of a frank and open discussion where the participants, especially the board members on those calls, felt that they could essentially compromise to provide some type of option for the Nunavut Board.

Thanks.
THE CHAIR:
Thank you, David Lee.
Vickie.
MS. SAHANATIEN:
Thank you, David, and Ezra as well. Sorry. I didn't want to belabour it, by any means, but it will be very important when we review all the information and we put options towards the Board. So we need that type of background, so I appreciate it.

Thank you.
THE CHAIR:
Thank you.
Michael, any questions to KWB? No?
Government of Nunavut, any questions for KWB? MR. DRISSING: No questions, Mr. Chairman.

THE CHAIR:
NTI, Paul?
NUNAVUT TUNNGAVIK INCORPORATED QUESTIONS AND COMMENTS MR. IRNGAUT:

Yeah, just one quick question. On 3.2 on your submission on the moratorium on flexible quota system penalizing or penalizations for over-harvesting females, can you explain that a little bit more? You're that correct?

MR. GREENE: participants.
suggesting that they have a moratorium for five years. Is

Yeah, so the suggestion there, as I said, this is open for discussion, and it's an issue that's clearly an issue, as has been noted by other

But the suggestion is basically maybe we should start with a moratorium on the severe penalizations where, if too many bears are harvested in a single year within that two-to-one ratio, it can eliminate multiple tags within the next year. And one thing, it's confusing. It's not clear how the math is actually done. There's actually not very -- from what I was looking into, there's not very good records of how credits were determined based on what the harvest was the year before. So maybe that's just information that needs to be more transparent from the government or from NWMB. I'm not sure who that would be would be in charge of that.

But the suggestion here is that maybe one way to do it is that there should be a moratorium where there isn't that severe penalization for over-harvesting one female and that KWB, the HTOs, and the other co-management partners should still emphasize that that ratio should be
targeted. But during that time, maybe if there's over-harvesting of females, it should just be a one-to-one penalization for the next year so that if the TAH is 40 and there's 41 caught, then the next year it will be 39 tags that would be provided to the region. And then after that time of five years, evaluate what actually happened, see if people actually followed, more or less, that two-to-one ratio and revisit whether more severe penalizations are necessary.

So if there's any more questions, we can answer them.

THE CHAIR: Thank you, Ezra.
Paul.
MR. IRNGAUT: Thank you. Thanks for that answer. No further questions.

THE CHAIR: Thank you, Paul.
Arviat HTO, any questions to KWB? Nick?
ARVIAT HTO QUESTIONS AND COMMENTS
MR. ARNAUKJUAQ: Thank you, Mr. Chair
I'11 just make this clear and quickly. I'm seeing different numbers when it comes to the quota. I said now I'm sure all the information is correct for the Government of Nunavut to stand at 28 , for KWB to stand at 40-45, and that's between the three communities, Arviat, Whale Cove, Rankin. Arviat has requested 25, Rankin at 40,
and Whale Cove at 20.
With these numbers I'm sure today there is no deal, but given the fact what I sit here today, any governing body if you cannot give us 25 , then I request you give us 60 with no question asked and that be done with. But I know this is workable even though the numbers are different, and the understanding is there, it's very clear. And given the fact with the polar bear problem situation, defence kill, yes, I want this matter done with today that we can do it -- I know it -- because we've heard enough about Western Hudson Bay polar bear.

The three communities -- Whale Cove, Rankin, Whale Cove (verbatim) -- let's deal with the Western Hudson Bay polar bear and decide on Baker Lake and Chesterfield how we'd be able to move forward. Let's fix it now. It would be all right. I think we understand clearly where we stand. Using our knowledge, we decided on those numbers.

That's not a question, just a comment I just wanted to mention. Looking at the numbers are different, let's fix it today. We're going to be on the same boat, you owe me something or we miss something. While there is no serious injuries by polar bears, let's resolve this matter.

The polar bear problem, if the harvest was at
the proper level, we wouldn't even be sitting here if the polar bear situation was resolved ten years, five years.

Thank you, Mr. Chairman.
THE CHAIR:
Thank you, Nick.
And I think those were more comments than any questions to KWB. I just will advise you, Nick, we will not make a decision on this today. We need to go back and analyze all this information and understand it fully before we make a decision. So we're hoping that will happen in March, in our March meeting.

Any other comments or questions from Arviat?
No?
Whale Cove.
MR. ENUAPIK: No comments.
THE CHAIR: Thank you, Simon.
Chesterfield, Harry.
MR. AGGARK: No comments.
THE CHAIR:
Rankin.
MR. SIGARDSON: Just like to clarify, Rankin wanted 40 total for Western Hudson Bay, not 40 for Rankin like Nick suggested there.

THE CHAIR:
Okay. Noted.
Baker Lake, any questions, comments?
BAKER LAKE HTO QUESTIONS AND COMMENTS
MR. NATEELA:
Thank you, Mr. Chairman.

We don't have any questions. Maybe, however, if there are more ways for capacity building for the local HTOs it would be helpful to us when we're having a meeting, a large meeting like this, sometimes we're not prepared and we end up travelling, which is a detriment. Even though we want to help the wildiffe boards and our own HTOs, when you don't have staff that are qualified and knowledgeable -maybe, for an example, if we had biologists for HTOs, the questions that we have, you know, they'd probably be able to assist us because we don't have the proper qualified staff in our communities. Maybe that would be helpful for the RWOs and the NWMB and the HTOs. Something should be considered for the future. If we had a regional biologist or a policy analyst in the region, they would be helpful to the HTOs.

Thank you, Mr. Chairman.
THE CHAIR: Thank you, Hugh. I think more of a comment again that everybody can hear.

Environment Canada, any questions to KWB?
MS. VALLENDER:
No questions. Thank you.
THE CHAIR:
Thank you.
World Wildlife Fund, nothing?
Any questions from the general public or Elders out there? Bert Dean, go ahead to the mic. You're both, I guess, eh?

PUBLIC/ELDERS QUESTIONS AND COMMENTS

MR. DEAN:
Thanks, Mr. Chairman. Thanks
Louie.
Yeah, I didn't get Paul's attention when it was NTI's turn, but just to comment to sort of build on Kivalliq Wildiife Board's submission, there was an NWMB hearing in Naujaat where they were talking about the Foxe Basin allocations, and because of the flexible quota system one, of the communities -- it was either Hall Beach or Iglulik -- was going to be reduced potentially -- so was Coral Harbour -- because they had gone one female over, one female tag or credit over. Because of their credits, Coral Harbour was going to lose three tags or four tags the next year, and Hall Beach was only going to lose two or whatever it was.

When you looked at Foxe Basin, when you looked at the harvest for that year, it was a two-to-one male-to-female ratio. But at the community level some communities had harvested too many females. Now, they could ask the other community for credits, but if the community gave up those credit, then potentially their quota would go down by five.

A good friend and colleague once sort of explained this is more of a social experiment with people as opposed to a wildiffe management approach, this whole
flexible quota system. It takes away the job of the NWMB. You don't have to decide whether to lower or increase the quota. The flexible quota system decides all of that for you. And it doesn't take into account traditional knowledge or hunter observations or any information, so it's been put forward for something for the Board to consider or think about.

Another example for this region, I believe it was 2010 or somewhere in there when the quota had been reduced to eight, Arviat had eight or nine defence kills.

All the tags were gone before the season had even opened. The government department released all those hides to the Arviat HTO. The Kivalliq Wildlife Board hadn't even talked about how to share those eight tags, so Whale Cove and Rankin, Chester, and Baker were never even considered. And we had a conference call, and there was people arguing and mad about that whole situation.

And the one thing I've learned working and living here is we shouldn't be arguing or fighting about animals or tags. And so I think if we can find a respectful way to figure out what, you know, from a conservation perspective is a reasonable quota, from a human or public safety -- you know, if we go a bit below 800 -- if we went to 700 or 600 , would that be the end of the world if there was only 600 polar bears in the Western

Hudson Bay? But if it was a bit safer for hunters or families that are camping in the spring, or communities, kids going to school or going out in the playground or to the store.

That flexible quota system -- because I was around, and we talked about it -- the communities wanted a higher quota. So if you want those 100 tags, then your target population has to be 1,400 or 1,500 or whatever, and it was that reverse calculation. And that's kind of a sad way to set up our management goals or objectives, whether it was greed of wanting more tags or it was manipulation of this is what you have to have to get them, I think some of the discussion earlier about, what are the management objectives.

Moshi Kotierk did a survey from a lot of these communities. I don't know if that's been entered into this hearing, but I know it has been before the Board before, and Moshi has made presentations to the Kivalliq Wildife Board. A lot of the people he interviewed in the communities were not adverse to having a lower quota if it meant it was safer to go camping. So if we had a higher quota now and that reduced those population and it was a bit safer -- or maybe not -- but in the Kivalliq Wildlife Board presentation they talk about, like, set a date to come back and look at it again, is it working.

But the news last year, or whenever it was, you know, that there was going to be this 28 tags for Western Hudson Bay, and it was on the news and everything else, the reality was Arviat had two tags because of that flexible quota system. There had been too many defence kills or female bears killed. So even though the Board had made that decision about 28 , it was never 28 , to begin with. It had already started down at 18 or something a lot lower. Rankin last year harvested mostly males, and this year I think we're quite successful again in getting mostly males with CEID's (phonetic) allocation or tags. If you follow the flexible quota system, Rankin should be at 15 or 20 , and Arviat should be at 0 . That's the flexible quota system.

So I think we need to take a harder look at that and maybe consider some other options, because we don't use it for any other species. We don't use it for musk ox or caribou or whales or anything. No other the jurisdiction uses it. Inuvialuit refuse to use it. Nobody uses the flexible quota system.

Thank you.
THE CHAIR:
Thank you very much, Bert Dean, for your comments.

Any other? I don't think there was any questions to you, Stanley. It was more comments.

Any other questions or concerns from the public? I don't see any.

Al1 right. We're done. Whale Cove, thank you very much for presenting your information -- I don't know. Should we take a break? Thank you, Kivalliq Wildiffe Board -- I'm sorry -- thanks for your presentation and question answering.

I guess we have a choice here. We only have a couple -- World Wildlife Fund, do you have much to say, or do you have a big presentation?
MR. LAFOREST: As the day's gone on I've chopped my presentation. It shouldn't take more than ten minutes. THE CHAIR: Okay. With that, we have World Wildiffe Fund left, and I think that's pretty much it, unless somebody from the public has something to present later. But I think we'11 carry on and try and finish this hearing as best we can. We're all here. Instead of coming back in an hour or so, if everybody's in agreement, let's just go until we can finish this, and it shouldn't take too much longer. All right? Good?

All right. World Wildlife Fund, you're up. Go ahead, you have the floor.

SUBMISSION BY WORLD WILDLIFE FUND

MR. LAFOREST:
Thank you, Mr. Chair. And thank you very much to the NWMB for the opportunity to present.

My name is Brandon Laforest, and I work for WWF Canada based out of Iqaluit.

It's not lost on my organization or myself that we are the only nonco-management partner given the opportunity to provide an oral presentation, and we are very grateful for that.

The WWF has advocated in international forums such as CITES to defend international polar bear trade, recognizing that harvest is a vital part of Inuit culture and economy and is not a threat to polar bear populations in Canada.

We have offices across the arctic, including here in Nunavut, and we aim to incorporate the valuable lessons learned from living in the north, however briefly, including traditional ecological knowledge perspectives in our conservation work and messaging. A big part of my job anecdotally is to ensure that our messaging from Toronto is reflective and respectful of the north. That being said, I appreciate the chance to offer the perspective of an outside organization to this process.

First thing I want to talk about is management plans, and I think what we've seen here is there's a strong need to have an approved Nunavut polar bear co-management plan in place so there's a more systematic approach to polar bear management decisions with updated management
goals, especially given the changes we're seeing in the arctic and the need for adaptive management.

For example, we recommend it be made clear what the management goal for Western Hudson Bay is, whether it's to maintain the current abundance or to decrease the population and the appropriate actions that would follow each scenario. The MOU currently indicates a target population of 1,400 bears, which was not relevant or -yeah, it's not relevant. To that effect we would recommend the NWMB work with the RWOs towards holding a hearing to discuss the GN's proposed polar bear management plan. We recommend the federal government support this initiative however possible, including financially, so that they themselves can move closer towards a finished federal plan which is also long overdue from mandated deadlines. Clearer management objectives would facilitate decisions such as the one we're discussing today, and we've heard a lot of uncertainty about how territorial and federal plans will interact and how they will affect harvesters, and the biggest part of that confusion is that none of these plans are finalized, so that confusion will remain.

For human-polar bear conflict we understand and hear the facts presented by the communities that the subpopulation is increasing and the levels of conflict are too high. It appears that the number of bears in this
region currently exceeds the capacity of local and territorial governments to ensure the safety of community members and maximize traditional harvest opportunities, and that message is loud and clear.

We recommend more investment from the GN in polar bear-human conflict reduction measures, including patrols and the management of attractants that draw polar bears into communities. Most notably, we recommend conservation officers should be in place in every community and, where needed, additional personnel be hired to act as polar bear guards during the appropriate seasons.

We offer support to Arviat currently to supplement the GN program, and we're prepared to offer additional support wherever needed, but given the legality of the situation in the Wildlife Act, WWF cannot act alone in establishing patrols. We can't hire people to chase bears. It has to be in conjunction with the GN.

The goals of any management action, including setting a TAH, should be clear so it can be evaluated in the future to see if those desired effects are being achieved. Subsequent studies should be done, led by communities, to determine if increased harvest helps the human-polar-bear-conflict issue, as well as to identify other solutions. I think studies done from the community perspective showing the effectiveness would help in future
arguments, as well, when they come forward for advocating different TAH levels.

And, lastly, on the harvest level question, WWF does not believe that Inuit harvest has or is currently leading to a reduced abundance in the Western Hudson Bay polar bears. If the management goal is for a sustainable population, environmental trends, as well as the latest information from Western Hudson Bay surveys and Southern Hudson Bay surveys and all of the information presented by Environment and Climate Change Canada this morning, seem to indicate a precautionary approach should be considered as put forward by Environment Canada. We aren't advocating for any specific number. We leave that for co-management partners to decide. But we strongly recommend the NWMB be clear about the management goal and how they plan to achieve that goal.

So, in conclusion, at the end of the day, we believe strongly in co-management, and we hold up Nunavut and the NWMB as examples of successful implementation of co-management as evidenced by currently stable or increasing polar bear populations across the territory; however, given the concerns expressed by community members, we think there are more direct actions that can be taken to ensure the safety of people and maximize harvest opportunities that aren't defence kills.

And, lastly, there's just a need for clearer management objectives for this subpopulation so the achievement of these objectives can be evaluated over time.

And that's it. Thank you very much.
THE CHAIR:
Thank you, Brandon, for your comments.

Any questions to World Wildlife Fund?
NUNAVUT WILDLIFE MANAGEMENT BOARD QUESTIONS AND COMMENTS THE CHAIR:

Charlie.
MR. INUARAK:
Not really a question, but I really thank them sharing what you just said stating your facts.

THE CHAIR:
Thank you, Charlie.
Any other comments, questions from the Board? If not, staff. Vickie? Go ahead.

NUNAVUT WILDLIFE MANAGEMENT BOARD STAFF QUESTIONS AND COMMENTS

MS. SAHANATIEN: Just a short question. Because you read your presentation and you didn't provide a written submission, it would be very useful to receive that. We have recorded it, but, still, it would be nice to have that in writing.

Thank you. That's all.
THE CHAIR:
Thank you, Vickie.
You can do that, Brandon?

MR. LAFOREST:
THE CHAIR:
Yes, that's no problem.
Thank you.

Michael, any questions?
GN, anything for World Wild1ife Fund?
GOVERNMENT OF NUNAVUT QUESTIONS AND COMMENTS
MR. DRISSING:
Thank you, Mr. Chair.
Just a comment that, from the government perspective, we support WWF's request to the Board that, when you make a decision to increase or reduce a harvest is to clearly outline what your management objective with that population is. That makes it much easier for the minister to consider the decision to accept or reject a decision. When it's just a total allowable harvest increase without clear objectives of what you want to achieve with that total allowable harvest recommendation, it makes it very challenging for myself and staff to explain to explain it to the minister.

Thank you. So, just again, to support WWF on that specific issue.

THE CHAIR: Thank you, Drikus. Good?
Okay. NTI, questions, comments?

MR. IRNGAUT:
THE CHAIR:
No comments. Thank you.
Thank you.
Kivalliq Wildlife Board, any comments? No comments?

Arviat HTO, anything? Nick.

ARVIAT HTO QUESTIONS AND COMMENTS

MR. ARNAUKJUAQ:
Thank you, Mr. Chair.
I just want to make a brief comment to WWF for their efforts in Arviat. It's been very helpful to the community, so we appreciate that, with the polar bear patrol and monitoring, and that has reduced a lot of problems. So we from the Arviat HTO thank WWF for their efforts in Arviat.

Taima. Thank you.
THE CHAIR: Thank you, Nick.
Brandon.
MR. LAFOREST: Just to say thanks, Nick.
THE CHAIR:
Simon, anything from Whale Cove?
MR. ENUAPIK:
No comments.
THE CHAIR:
Thank you.
Chesterfield Inlet?
MR. AGGARK: No comments.
THE CHAIR:
Thank you.
Rankin Inlet. No comments.
Baker Lake?
MR. NATEELA:
No, no questions.
THE CHAIR:
Thank you, Hugh.
Environment Canada.
DR. LUNN: No comments.

THE CHAIR:
Any anybody from the public gallery or Elders, any comments to World Wildlife Fund? Nothing.

Okay. Thank you, Brandon. Thank you for your words, and that concludes your presentation and questions to you.

Okay. Next what we have left, is there anybody in the gallery or the public that would like to make any comments to the Nunavut Wildlife Management Board in regards to the Western Hudson Bay polar bear population? This is your time.

SUBMISSION BY PUBLIC/ELDERS

THE CHAIR:
MR. COMER:
Thank you, Mr. Chairman.
I just wanted to say thank you for inviting the public, for inviting everyone here. And all the information that has been presented has been very clear, and good luck with everything.

Thank you.

SUBMISSION BY MAKIVIK CORPORATION SPOKEN TO

THE CHAIR: Thank you, very much. Thank you for those comments.

Okay. One other item that we just want to indicate to everybody is you have a tab 12. It's a submission by Makivik, and we just want to inform you all
that we have this submission, and it will be taken into consideration when our decision is being made. The highlighted points, they've provided a written submission for the management of the Western Hudson Bay polar bear population.

They observe that bears travel extensively into their area. Two bears were harvested in Inukjuak (phonetic) in their area south of Churchill. They just stress that Western Hudson Bay polar bear harvest by Nunavummiut is incidental, and they would like us to consider the harvesting activities outside the Nunavut Settlement Area, and they submitted us a letter that has been registered in our documents we're going to consider for this hearing.

So just so that you're all aware that we have that information from Makivik.

Okay. That concludes -- David Lee, go ahead. NUNAVUT TUNNGAVIK INCORPORATED QUESTIONS AND COMMENTS DR. LEE: Just I realize they're not here to respond. But to comment on that letter, I think NTI would be remiss if we did not also indicate that they're providing evidence of two polar bear tags for one season, and no other information. So I think NTI would stress that is very specific limited information that has been provided to the Board.

Thanks.
THE CHAIR: Okay. We have you on record saying that, David. Thank you.

CLOSING REMARKS
THE CHAIR:
A11 right. So that concludes our hearing. I want to thank everybody for being here and attending and taking such an interest in this very important topic, and it was very obvious that this is a topic that's very close to everyone's heart and very, very important to this region.

Stressing the safety of people is one of the biggest things that I think we all can see is a concern to everybody, probably the number one concern.

Anyway, as I said to David before -- or I said to somebody before, to maybe Nick -- there's a lot of information to absorb, and our staff is going to put this all together for us to analyze, and our goal is to do that in our next meeting in March and to hopefully come up with the TAH recommendation for this population.

Again, I want to thank you all. I think what I'm going to do is just open the floor for closing remarks, and I'11 start with you, Brandon, at your end of table, and if you'd just like to say any words at all before we close, go ahead. Start with you. Go ahead, Brandon.

MR. LAFOREST:
Thank you. I just spoke, but once
again, to reiterate, we appreciate the opportunity to be here and recognize that we don't have to be here and you don't have to listen to us at all if you don't want to. So it's appreciated to have a seat at the table, and we look forward to future engagement. Thank you.

THE CHAIR: Thank you.
Kivalliq Wildlife Board.
MR. ADJUK:
Thank you, Mr. Chair.
I'd like to thank everyone for waiting patiently for me come in the last couple days. Close but yet so far. I'd like to thank NTI for their technical support working with KWB. They did a lot of work, Ezra and Qovik. Also the communities of the Western Hudson Bay coast, Arviat, Whale Cove, Chester, and Rankin, and Baker. And I look forward to still representing the region and like to thank the NWMB Board for listening to our, every year, same discussions.

Matnaa.
THE CHAIR:
Thank you, Stanley.
Paul, NTI, concluding words?
MR. IRNGAUT: Thank you. We thank the NWMB. They're following the guidelines and doing great work hearing out all the people, groups, organizations that they have to, and communities strive and struggle. I want to stress again how they need protection. This is priority.

Don't forget this when you're making decisions.
And, also, we're always going to support our communities, especially the wildlife organizations in the regions and communities, and we also thank you that we have an opportunity to be here.

THE CHAIR: Thank you, Paul.
Drikus, Government of Nunavut.
MR. DRISSING:
Thank you, Mr. Chair.
Just like everybody else, want to thank you and the Board for a very good and well-run meeting. I think it was a very informative meeting. We might not always agree how we get there, but I think at the end of the day we all have the same objective, and that's the conservation of polar bears and making sure that the harvest is sustainable and how we manage it that we all work together on that.

Thank you very much.
THE CHAIR:
Thank you, Drikus.
Environment Canada.
MS. VALLENDER: Thank you.
Yes, I would also like to thank the Board and everybody here for letting us participate in this hearing. I think, especially, it was useful and very appreciated that you let Nick provide some of the science that came out of our department. I apologize that we did take up most of the day for that, but I think it was hopefully useful for
everybody.
Certainly for us on the management side it was very useful for us to hear from all the different organizations and particularly the HTOs and communities. You know, I'm always amazed how much people care about the species and how much effort there is put into the effective management, and I can say that as a department we really do believe in the system that's in place in Nunavut.

And so, again, I think that the NWMB has a big job ahead of you, but I hope that you have all the information you need to make a good decision in consideration of all of the best available information, which would include the TK and the science.

So thank you for having us.
THE CHAIR:
Thank you, Rache1.
Baker Lake, any closing comments? MR. NATEELA: Thank you, Mr. Chair.

We thank you for the chance to be here. We've also learned a lot, especially on polar bears, but it also affects you when you're from where I come from in Baker Lake. But it's because we are Inuit, and it's our right, and we appreciate being invited here. For decision-making don't forget us in Baker Lake.

Thank you, Mr. Chair.
THE CHAIR:
Thank you, Hugh.

Rankin Inlet, any comments?
MR. SIGARDSON: Thank you for having us here in
your community.
THE COURT:
Harry, Chesterfield Inlet.
MR. AGGARK:
I thank you to the Board for inviting us from Chester. But also the bears that approach our communities nonhunting season, we don't like to kill just to kill, but it's deducted off the tags, and this puts us in danger. Then we try not to kill any bears. It's a very unfair place we're put into.

But thank you for inviting us.
THE CHAIR:
Thank you, Harry.
Whale Cove, Simon.
MR. ENUAPIK:
I'd also like to say thank you for inviting us. Thank you for having Elders here that hold that precious knowledge. You really have to study this on behalf of Inuit. I absolutely would appreciate the increase. I'd rather not lose an Inuk person, you can't replace a person. Polar bears are replaceable, so to speak. Think of human beings.

THE CHAIR: Thank you, Simon.
Arviat, Thomas.
MR. ALIKASWA:
Thank you, Mr. Chair.
During this hearing on polar bears I appreciate that, as people from Arviat are appreciative and our Elder
here, Kablutsiak, being here. We've learned a lot, especially on bears, and we hope and expect that the tags and the quotas will be increased

Thank you.

THE CHAIR:
MR. ARNAUKJUAQ:
I just want to make a brief comment. Our chair spoke on behalf of our community. And I also want to recognize David Kritterdlik. I know through the three years he was with KWF, and he's done a lot of work that I want to appreciate. And I used to be a fieldworker with KWF around beginning of 1980s, and David Kritterdlik was very involved and participating and supporting and working towards all this. So that's my appreciation to him.

Thank you. THE CHAIR: Thank you.

Paul.
MR. KABLUTSIAK:
My name is Paul Kablutsiak, and the items we discussed here with NWMB and the policy that will be created, I'm glad when it will be established regarding all the coastal communities that the quota be increased, and I appreciate if this happens. And what happened was a sad incident before around our area concerning problem bears.

So thank you for inviting me.

THE CHAIR:
Thank you, Paul.
Okay. Final words will go to Board members closing comments. Jorgen, go ahead.

MR. BOLT:
Thank you, Mr. Chair.
Just more or less say that we all have to work as a team, you know, to conserve our wildlife in Nunavut, and the only way we can do that is work together, because we all have TK. No matter where we're from, from around the world, we all have TK, whether you're from Australia or Africa or wherever. Everybody has traditional knowledge.

And only way we could reach our mandate is to work together, and if there's -- I don't know how you would say -- conflicting parties all the time, we'11 never get to conserve our wildiffe. If we're conflicting together all the time, then meanwhile our wildlife is going down while we're, you know, being childish about things, you know. So we all have to work together to conserve our wildlife, and I think from what I've heard today and yesterday, everybody has that same goal to preserve our wildiffe in Nunavut.

Thank you, Mr. Chair.

THE CHAIR:
MR. HADLARI:
Thank you, Mr. Chair.
Yes, all the things that have been shared here we're going to look at and see how we can lay out the best
plan. We're going to consider everything that was said here, as the Board. And I know it won't be an easy thing to do, but because you are my kin, this is how I will represent you. We will consider everything that was spoken up here.

Thank you.
THE CHAIR: Thank you, Attima. Caleb.
MR. SANGOYA:
Thank you.
These are very difficult topics what Inuit want due to the fact that we have a government and the government has final say, before we come to that, before the decision is made by the government. We won't get everything we want. It may not be given, but according to Inuit knowledge that we've shared over and over, has many blockages, hindrances, and so when we're making decisions it is often forgotten or a lack of $I Q$ in decision-making. But, yes, we hear the need for an increase in the number, quotas, and the HTOs and RWOs have power according to the Land Claims, but it is more often taken away or ignored by the government.

So, my fellow members, I'm not getting any younger. Ever since I joined we do work well together, but there's, like, a price to pay, and we work well with the government and Tunngavik folks. We shall strive to include and share and consider everything that was spoken here, and
any time if the HTOs in the communities can write letters -- even KWB -- write to us. Write to these bodies. If you change your mind or want to share more, we request in writing because then we'11 have it recorded and documented. So submit any letters you want.

And I thank the Chair. He used to live in Arviat, and he was a minister before, and I know with his experience as a chair he has all this knowledge and experience, and because we are dwelling more and more on Inuit knowledge I appreciate it and acknowledge it. THE CHAIR: Thank you very much, Caleb, thank you. Charlie.

MR. INUARAK:
I also want to say thank you. The hard stuff is only coming. We're not going to forget what you shared, and the staff with the GN, NTI, federal government and the knowledge of the scientists and biologists, we're all going to consider your input.

The minister has the final say. He may reject it. He rejects it sometimes, he agrees with it sometimes. So he tends to agree more than rejecting. And since it's a new government, I expect that he'11 be more in agreement. And I want to thank everyone, not just people from Rankin.

But I did have one question. I saw something written that said WWF -- are you guys the ones that are the World Wrestling Federation, the crazy people who fight?

THE CHAIR:
Thank you, Charlie.
Have you got a comment?
MR. LAFOREST: Some things you don't need
translated. I could have picked that up.
THE CHAIR: Thank you, Charlie. Noah, any words, closing words, any closing remarks?

MR. MAKAYAK: Yes, thank you.
I'm pretty new to this process, and I may be catching up more, learning from you more at this date, even though I'm becoming more of an Elder, and I won't forget easily. And I often seek help from anyone who's more knowledgeable than me, but I really thank the people who shared, like NTI, what they've been working towards, and the GN and the Environment folks, all of you. And our administrator or secretary seem to have been forgotten.

This is really difficult to ask for an increase. And we used to go to Indian country, Dene or other, and it was harder. David and I and Paul Qallujak (phonetic), because they're very knowledgeable with more experience, used to represent us well when we were trying to create Nunavut and we were trying to establish boundaries on our wildlife. So up to date I don't see too many difficulties. David is still here with us, still working. And for the directors and staff and for Baffin folks who have helped us immensely and to all of you people who were invited, thank
you for caring -- everybody. Even the other folks out there and to the interpreters, thank you. THE CHAIR: Thank you, Noah. David K. MR. KRITTERDLIK:

I think let me speak in Inuktitut, last words.

For us Board members, we're not going to be here forever. We have been appointed by different organizations. NTI, KIA appointed different folks and Kivalliq members, and by the GN, and some of us from the federal government appointed. And our membership has terms, three-year terms or four-year terms. I think it's four-year terms we have on this Board. So memberships change. Myself, my term is ended, so my appointment by the federal government will be coming to an end.

Inuit are more in number, and we also understand clearly that we have a need by our government and for other organizations and to involve the communities that we strive to come up with something that accommodates all of us. And I know you understand this and know this well now regarding our wildiffe, are very familiar with locals from the communities, and IQ is often mentioned.

There was something documented in Arviat, and our Arviat has many different dialects. And even for government workers, perhaps this can be read what's been documented out of Arviat. It would help you understand
where we're coming from and our knowledge. This would help you immensely, and I want to thank everybody here.

And we've been told by our lawyer, legal, that we will be making a decision in the next meeting or further down the road for sure. We'11 make this public. We can make suggestions to the minister, but it is the minister who will make his own decision.

I thank everybody who came here.
THE CHAIR:
Thank you, David.
Okay. I think I got the final thank-yous here. So I want to thank all of our staff for being here and providing their support and their skills and their knowledge to this Board, and they continue to do that when we get back home, too. So Michae1, our legal counsel, as always, he's been with us for 25 years, I think, so hasn't changed. He does a very, very good job, and we sincerely appreciate his advice and knowledge to us, too.

John and Patricia back there, thank you very much for everything you've done. They came a few days early to set all this up, and yeah, it's a huge job. The lunches were wonderful, and the coffee breaks were good, and thank you very much for all your organization and the skills you put into here, and it went off without a hitch. So thank you.

Jason, our executive director, appreciate your
support and your leadership in this hearing.
As you can see, there's seven of us here now, and that's high for the NWMB. We're always short members, and it's a struggle to keep a quorum going sometimes. So it's amazing, and it's such a privilege to belong to this Board. We work very well together, and we do very, very good and hard work, and very thoughtful decisions come out of this Board. Very appreciative

It's funny, though. Three of us are going. I know Charlie, me, and I think Caleb, our appointments are up very soon, in a few months, I think, so three of us there's a possibility won't be here anymore, and that's how fast this Board changes and the dynamics. But four years goes by very quickly.

So anyway, I want to thank everybody again, and wish everybody safe travels home. I hear the blizzard is coming Friday, so nobody's going anywhere. No, really, really. I hope everybody gets home safe and on time and get back to your families, and everybody have safe travels.

Thank you very much.
(Proceedings ended at 4:44 p.m.)
\qquad

8 Dated at the City of Calgary, Province of Alberta, on the $\begin{array}{ll}7 & \\ 8 & \text { Dated at the City of Calgary, Pr } \\ 9 & \text { 19th day of February, A.D. } 2018 .\end{array}$

Certificate of Transcript

I, the undersigned, hereby certify that the foregoing pages $\underline{201}$ to 467 are a complete and accurate transcript of the proceedings taken down by me in shorthand and transcribed from my shorthand notes to the best of my skill and ability.

11
"Adele Jones"
Adele Jones, CSR(A)
Official Court Reporter

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

$\$$	140 [1] - 231:16 15 [14]-211:15, 231:6, 264:13, 275:2, 275:4, 277:4, 287:13, 287:15, 295:14, 322:12, 333:16,	$\begin{aligned} & 321: 24,395: 13 \\ & 2000[7]-224: 24, \\ & 234: 14,235: 19 \\ & 248: 12,279: 8,412: 5, \\ & 414: 22 \\ & \text { 2000s }[9]-234: 19, \end{aligned}$	$\begin{aligned} & 395: 19 \\ & 311[1]-205: 8 \\ & 314[1]-205: 9 \\ & 33.3[1]-237: 8 \\ & 330[1]-205: 11 \\ & 34[2]-399: 11,405: 7 \end{aligned}$	$\begin{gathered} 429: 23 \\ \mathbf{5 , 0 0 0}[1]-243: 2 \\ \mathbf{5 . 3 . 3}[1]-325: 19 \end{gathered}$
\$250,000 [1] - 327:23				
				$\begin{aligned} & \text { 5.3.3 }[1]-325: 19 \\ & 50[5]-229: 19, \end{aligned}$
				229:20, 229:24,
				230:1, 230:17
'06 [1] - 412:16		$236: 5,236: 11,244: 1$	347 [1] - 205:12	500 [5] - 294:16,
'50s [3] - 242:9,	377:12, 443:12 15-minute [1] - 402:7	246:3, 246:8, 248:16,	35 [1]-231:17	294:25, 331:17,
374:15, 375:17	16-year [1] - 236:18		35-day [1] - 231:19	332:23, 358:4
'60s [5] - 242:20,	165 [1]-231:17	$\begin{aligned} & \text { 2001 [4] - } 236: 18, \\ & 236: 19,236: 20 . \end{aligned}$	356 [1] - 205:14	51.7 [1] - 236:22
243:15, 265:7,	17 [1]-210:4		359 [1] - 205:15	526 [1] - 433:3
374:16, 375:17	170 [1]-231:17		36 [1] - 237:7	53 [1]-237:1
'67 [1] - 243:11	175 [1] - 236:13		369 [1] - 205:16	54 [1] - 422:11
'68[1] - 243:11	178 [3]-236:21,		37 [1] - 380:7	$55[3]-243: 21$,
'70s [4] - 242:20,	237:18	$\begin{aligned} & 237: 16 \\ & 2003[1]-341: 4 \end{aligned}$	375 [1] - 234:22	246:3, 333:1
243:13, 243:16,	18 [5] - 209:15,	2004 [3]-236:19,	38 [3] - 420:6,	56 [3]-243:21,
374:16	352:22, 353:13,	$\begin{aligned} & 236: 20,341: 4 \\ & 2005[3]-248: 18, \end{aligned}$	422:10, 426:9	412:17, 426:8
'71 [1] - 272:4	354:15, 443:8		38.6 [1]-237:4	
'72[1]-272:4	180 [1] - 236:14	$\begin{aligned} & 2005[3]-248: 18 \\ & 248: 23,412: 16 \end{aligned}$	382 [1] - 205:17	6
'80s [10] - 224:18,	189 [2] - 235:7, 235:9	$\begin{aligned} & 2006 \text { [2] - } 247: 16 \text {, } \\ & 404: 7 \end{aligned}$	384 [1] - 205:18	
235:22, 236:8,	18th [1] - 230:16		389 [1] - 205:19	6.1 [2]-419:8, 419:9
283:15, 284:12,	19 [2]-214:1, 214:11	$\begin{aligned} & 2007[1]-345: 20 \\ & 2008[5]-412: 14, \end{aligned}$	39 [1] - 436:4	6.2 [4]-418:8, 418:9,
284:18, 287:1, 319:1,	1940s [2]-217:13,		391 [1] - 205:20	418:20, 419:11
332:25, 350:20	242:9	$\begin{gathered} 2008[5]-412: 14, \\ 412: 22,413: 13 \end{gathered}$	392 [1] - 205:21	60 [3]-214:4,
'86 [1] - 265:18	1950 [1] - 373:12	$\begin{aligned} & \text { 414:5, 414:8 } \\ & 2008-2009 \end{aligned}$		$221: 21,437: 5$
'87 [1] - 265:18	1950s [4]-217:14,		4	$600[4]-331: 17,$
$\begin{aligned} & \text { '90s [3]-235:23, } \\ & 236: 8,287: 2 \end{aligned}$	$\begin{aligned} & 373: 11 \\ & 1953[1]-376: 12 \end{aligned}$	$\begin{aligned} & 2009[2]-387: 21, \\ & 413: 13 \end{aligned}$	$\begin{array}{r} 4[15]-319: 6,320: 2, \\ 320: 10,321: 4,321: 7, \end{array}$	332:24, 441:24, $441: 25$
0	1960s [4]-214:16,	$\begin{aligned} & 413: 13 \\ & 201[2]-201: 12, \end{aligned}$	321:9, 321:17,	7
	217:1, 218:6, 243:6	467:4	322:25, 323:16,	
0 [1] - 443:13	1970 [1]-272:4	$\begin{gathered} 2010[4]-234: 17, \\ 235: 19,315: 23,441: 9 \end{gathered}$	335:25, 405:8,	70 [1] - 246:15
	1970s [1] - 318:25		407:13, 415:12,	700 [1]-441:24
	1973 [1]-328:14	235:19, $315: 23,441: 9$ 2011 [18]-209:17,	415:13, 415:20	75 [9]-233:6,
	1976 [1]-328:16	211:24, 232:22,	4,000 [1] - 298:14	246:15, 249:4,
1 [3]-226:2, 247:11,	1979[3]-211:16,	234:5, 235:23,	4.5 [3]-318:12,	283:24, 284:24,
362:19	229:25, 230:10	236:13, 236:15,	411:5, 425:10	347:9, 347:14,
1,000 [14]-248:18,	1979-to-2016 [1] -	$244: 4,246: 4,246: 9$	40 [11] - 240:9,	395:19, 397:12
283:25, 294:16,	231:9	$\begin{aligned} & 248: 20,248: 21, \\ & 279: 8,280: 19,335: 2 \end{aligned}$	267:5, 284:13,	780 [1] - 249:2
411:2, 415:18,	1980 [5] - 218:12,		290:19, 405:10,	792 [1]-237:19
415:21, 423:18,	234:9, 248:9, 258:3,	354:11, 388:5, 414:23	415:11, 415:21,	7th [1]-231:8
425:8, 425:9, 431:23,	283:13 1980 s 21$]-208 \cdot 12$	2011-12 [1] -210:5	436:3, 436:25, 438:20	
$432: 3,432: 10,433: 4$, $433: 19$	1980s [21] - 208:12,	$2012 \text { [3] -248:9, }$	40-45 [1] - 436:24	8
433:19	218:18, 224:20,	$\begin{aligned} & \text { 248:21, 414:23 } \\ & 2013[3]-247: 12, \end{aligned}$	40.5 [1] - 237:2	
1,030 [4]-212:3,	225:11, 230:12,		400 [1] - 234:20	$8[4]-237: 19$, $412 \cdot 17,422 \cdot 10$
232:23, 244:5, 270:1	231:1, 231:6, 231:15,	$\begin{aligned} & 2013[3]-247: 12 \\ & 297: 11,298: 22 \end{aligned}$	402 [1] - 205:22	412:17, 422:10,
1,121 [1]-433:3	231:19, 233:18,	2013-2016 [1] - 237:6	41 [1] - 436:4	426:10
1,200 [6]-233:19,	234:13, 234:14,	$\begin{aligned} & 2015[1]-230: 15 \\ & 2016[11]-209: 15 . \end{aligned}$	415 [1] - 205:23	800 [6]-283:25,
243:19, 243:22,	235:2, 243:18,		42 [2] - 368:24	294:15, 322:2, 358:4,
293:12, 294:2, 333:1	248:12, 248:16,	$2016 \text { [11]-209:15, }$	420 [1] - 234:21	390:17, 441:24
1,400 [5] - 294:5,	274:17, 310:13,	$\begin{aligned} & \text { 209:25, 210:13, } \\ & \text { 230:2, 230:10, 231:8, } \end{aligned}$	431 [1] - 206:1	832 [1] - $244: 5$
321:22, 322:2, 442:8,	319:2, 321:10, 459:12	230:2, 230:10, 231:8, $234: 9,248: 24,$	434 [1] - 206:3	840 [1] - 322:5
446:8	1981 [1] - 240:7	$408: 20,412: 5,432: 9$	436 [1] - 206:5	842 [10]-210:11,
1,500 [1] - 442:8	1985 [1] - 224:23	$2018 \text { [3]-201:11, }$	438 [1] - 206:6	244:6, 270:1, 276:20,
1.2 [1]-247:11	1990s [3]-224:21,	210:16, 467:9	44 [1] - 410:21	308:6, 308:13, 357:9,
1.469 [1]-237:12	233:20, 247:10	207 [1]-205:5	440 [1] - 206:7	410:25, 432:11, 433:3
$1.485[1]-237: 12$	1993 [1]-261:1	21 [1]-418:7	444 [1] - 206:17	85 [4]-233:8,
$1.5[1]-237: 12$	1994 [1]-261:1	$\begin{aligned} & \mathbf{2 2} \text { [1] - 211:15 } \\ & \mathbf{2 2 - d a y ~ [1] ~ - ~} 230: 11 \end{aligned}$	445 [1] - 206:8	233:12, 261:17, 262:4
1.533 [1]-237:11	1996 [1] - 379:20		449 [2] - 206:9,	86 [1] - 233:12
1.6 [1]-226:1	1999 [1] - 422:18	220 [1] - 236:12	206:11	8:30 [1] - 207:1
10 [14]-201:11,	19th [1] - 467:9	24[3]-212:1,	45 [7]-378:7, 378:8,	
225:16, 230:23,	1:15 [2]-324:18,	$376: 15,376: 16$$25[5]-257: 8$,	411:4, 415:20, 421:2,	9
230:25, 231:2, 275:2,	$\begin{aligned} & 324: 22 \\ & \text { 1st }[1]-259: 15 \end{aligned}$		425:8, 429:23	
275:4, 277:3, 283:25,		$282: 22,436: 25,$	450 [1] - 206:18	$90[2]-260: 13,$
347:16, 358:6,	1st [1]-259.15		451 [1] - 206:13	260:22
$\begin{gathered} 358: 13,418: 9 \\ 100 \text { [3] - 347:14, } \end{gathered}$	2	26,000 [1] - 214:1	206:19	
390:17, 442:7	2 [2]-201:15, 247:13	28 [4]-436:23,	453 [1] - 206:15	943 [1] - 248:22
108 [1] - 237:7	2,000 [1] - 294:23	443:2, 443:7	454 [1] - 206:20	949 [1] - 354:13
11 [1]-354:15	2.3 [1]-212:2		467 [3]-201:12,	95 [8]-233:14,
12 [3]-225:16,	20 [15]-223:11,	3	206:21, 467:4	260:13, 260:22,
347:16, 452:24	225:4, 227:12,		48 [3]-246:5, 288:7	276:16, 283:24,
124 [1] - 420:5	227:16, 227:18,	3,000 [1] - 300:21	$\begin{aligned} & 49[1]-237: 3 \\ & 4: 44[1]-466: 23 \end{aligned}$	$\begin{gathered} 284: 24,347: 9,397: 12 \\ 96[1]-233: 14 \end{gathered}$
127 [1] - 237:3	277:4, 322:12,	3.2 [1] - 434:23		
12:04 [1] - 324:20	333:16, 336:18,	30[8]-240:9, 248:7,		A
13:3]-208:6, 208:7,	$344: 1,377: 12,$	267:5, 284:13,	5	
208:8 130 [1]-231:16	$\begin{aligned} & 379: 15,403: 13 \\ & 437: 1,443: 12 \end{aligned}$	290:19, 344:1,	$\begin{aligned} & 5[8]-237: 22,275: 2, \\ & 275: 4,378: 9,405: 10, \\ & 410: 22,415: 22, \end{aligned}$	
$130[1]-231: 16$ $131[1]-237: 1$		369:18, 412:17		$\begin{aligned} & \text { A.D [1] }-467: 9 \\ & \text { a.m }[2]-207: 1, \\ & 324: 20 \end{aligned}$
14 [1]-231:6	283:17, 288:15,	288:15, 395:14,		

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

225:20, 226:3, 226:4, 234:8, 234:16,
234:18, 234:23,
235.17, 235.21

235:25, 236:16
236:20, 236:21
239:4, 254:23, 255:1,
256:8, 257:20,
265:22, 265:23
4, 278.1, 281.
306:15, 347:16, 374:1
advance [2]-383:7,
38.8
advanced [1]

265:20, 322:7
adverse [1] - 442:20

- 322:22

326:18, 345:3,
356:20, 357:2, 465:17
dvise [2] - 337:13
advising [1] - 326:9
Advisor [1] - 202:19
advocated [1] -
advocating [2]
448:1, 448:12
aerial [49]-209:16,
210:2, 210:10,
210:13, $213: 19$
230.2, 232.22 ,

237:6, 244:4, 246:5,
246:23, 248:19
248:20, 248:25
249:1, 249:6, 270:1,
1, $275: 10$
275:14, 275:17
275:20, 275:21,
9.9

279:18

200:16,
308:15, 333:17
355:19, 360:20
360:25, 389:8,
, 390.6, 390.9
52:4, 410:22, 432:8
432:9, 432:14
$298.1,314: 12,446$,
314:12, 446:19
affected [9]-278:22,
310:4, 312:21,
394.13, 426:24

428:6, 428:16
428:23, 429:1
affecting
affects [6] - 295:22
298:11, 312:16
313:19, 366:19,
457:20
affordability
258:20
afraid [1] - 291:15 460:10
afternoon [3]
311:7, 313:20, 359:24
233:21
age [12]-222:20,
233:11, 248:13

344:17, 347:15, 350:21, 356:23 398:18, 398:21, 400:11
age-specific [1] -
356:23
aged [1] - 233:3
agencies [3] -
360:13, 384:24, 387:5
agencies' [1] - 387:3
agenda [1] - 299:17
Aggark [2] - 203:19,
203:20
AGGARK [5] - 382:3,
384:8, 438:17
451:18, 458:5
aging [1] - 223:5
ago [6] - 223:12,
225:4, 243:12,
373:13, 403:13,
404:18
agree [9] - 249:16,
274:15, 299:15
302:8, 339:4, 355:5,
456:11, 462:20
agreed [1] - 207:13
Agreement ${ }_{[2]}$
325:13, 327:16
agreement [8] -
217:3, 327:22,
328:14, 328:17,
374:21, 420:17,
444:18, 462:21
agreements [1] -
428:11
agrees [1] - 462:19
ahead [35] - 207:17,
252:6, 302:6, 313:25,
323:6, 342:4, 347:13,
347:18, 351:13,
352:17, 361:9, 362:1,
369:14, 369:23
370:23, 377:2,
378:22, 387:12
389:3, 392:8, 393:11
396:12, 397:10
401:16, 402:19
413:5, 414:18,
439:24, 444:22,
449:15, 453:17,
454:24, 457:10, 460:3
aided [1] - 256:19
aim [1] - 445:13
air [1] - 267:18
aircraft [2] - 258:23,
296:21
aired [1] - 297:12
Akearok [1] - 202:2
Aksawnee [1]
203:25
Alaska [1] - 329:4
Alberta [3] - 225:15
338:21, 467:8
ALIKASWA [2] -
365:20, 458:23
alive [4] - 261:13,
273:13, 287:16
400:23
allergy [1] - 402:14
alleviate [1] - 332:24
allocate [1] - 416:22
allocation [2] -
417:1, 443:11
allocations [1] -
440:8
allotted [1] - 250:14
allow [6] - 239:22
245:11, 288:17,
311:7, 313:24, 418:24
allowable [24]
$211: 22,212: 9,213: 7$
$244: 7,314: 8,318: 17$ 403:24, 405:7,
410:15, 410:21
413:2, 413:5, 415:19,
415:23, 417:11,
420:6, 422:3, 422:5,
427:25, 430:19,
431:7, 431:24,
450:13, 450:15
ALLOWABLE [1] -
201:6
allowed [7] - 220:8,
264:2, 375:15,
377:16, 409:3,
420:11, 421:19
allowing [2] -
250:21, 401:18
allows [3] - 221:17,
255:8, 322:15
almost [6]-272:17,
302:12, 341:13,
341:20, 382:8, 423:10
alone [7]-226:12,
226:14, 256:25
285:11, 348:15
398:19, 447:15
alphabetically [1] -
219:3
alternate [3] -
285:24, 395:3
altogether [2] -
289:4, 368:16
aluminum [1] - 371:3
amazed [1] - 457:5
amazing [1] - 466:5
Amber [1] - 202:5
amount [7]-211:19,
246:8, 274:17,
302:13, 341:23,
412:21, 428:4
analysis [7] - 276:13,
276:15, 324:1,
353:17, 353:22,
356:12, 431:22
analyst [1]-439:14
analyze [3] - 224:3,
438:8, 454:17
analyzed [2]
353:24, 354:7
ancestors [1] -
304:24
ancestral [1] - 222:7
AND [26] - 202:13,
205:5, 207:18,
251:13, 314:1, 330:4, 347:3, 356:8, 359:22,
369:15, 382:1,
384:14, 389:4,
391:16, 392:9, 415:8,
431:18, 434:21,
436:18, 438:24
440:1, 449:8, 449:16,
450:5, 451:2, 453:18
anecdotal [3] -
317:11, 317:16,
317:22
anecdotally [1] -
445:17
anesthetic [2] -
396:23
angle [2] - 323:11,
362:6
animal [10] - 254:19,
254:20, 263:9,
283:22, 308:17,
361:17, 367:6,
397:17, 404:13, 407:3
animals [7]-270:9,
270:11, 399:10,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

406:21, 407:20,
$426: 14,441: 20$ animosity [1] -
411:10
annual [5] - 210:15,
282:14, 320:23,
341:14, 413:6
answer [48] - 213:10,
238:25, 250:14,
253:24, 257:18,
258:15, 263:2,
269:18, 279:25,
288:17, 288:24
289:2, 293:4, 293:17,
294:7, 310:19,
310:25, 316:10,
332:10, 332:11,
334:7, 334:24,
337:14, 342:6,
348:21, 350:11,
351:5, 352:3, 352:4,
352:10, 359:17,
361:10, 366:24,
370:16, 373:6,
389:25, 392:11,
394:8, 394:21, 395:8,
395:18, 418:7, 419:5,
422:8, 422:13,
436:10, 436:15
answered [8] -
272:3, 288:25,
289:19, 331:5,
394:20, 394:24,
401:9, 421:20
answering [3] -
363:4, 393:12, 444:7
answers [13] -
229:10, 268:1,
271:24, 276:25,
280:10, 285:18
285:21, 289:5, 304:6,
323:4, 324:5, 342:16,
391:2
antenna [1] - 374:10
antennas [3] -
258:23, 262:11, 374:8
anticipate [1] -
239:24
anticipated [1] -
345:11
anticipating [1] -
240:23
anticipation [2] -
216:17, 358:22
anyway [7]-261:14,
320:25, 333:13,
372:22, 391:15,
454:14, 466:15 apart [4] - 260:19,
287:18, 372:3, 374:9
apex [1] - 244:14 apologize [4]
351:14, 391:19,
431:3, 456:24
appearance [1] -
368:5
appendix [1] - 222:5
Appendix [1] -
362:19
applicable [1] -
218:22
application [1] -
387:16
applied [7] - 295:12,
318:12, 318:19,
320:11, 322:8,
322:12, 422:22
applies [1] - 299:6
apply [2] - 321:7,
390:6
applying [1] - 321:17 appointed [3]464:7, 464:8, 464:10 appointment [1] 464:13
appointments [1] -
466:10
appreciate [15] -
324:9, 391:23, 395:9,
434:14, 445:19,
451:6, 455:1, 457:22, 458:17, 458:24
459:11, 459:22,
462:10, 465:17,
465:25
appreciated [3] -
391:4, 455:4, 456:22
appreciation [1] 459:14
appreciative [2] -
458:25, 466:8
approach [21] -
209:23, 212:8, 267:1,
281:16, 281:21,
291:17, 318:6,
318:18, 321:11,
321:17, 322:8,
322:15, 334:12,
335:3, 386:15,
386:16, 440:25,
445:24, 448:11, 458:6
appropriate [9] -
208:24, 209:11,
302:25, 325:20,
329:11, 395:17,
409:2, 446:6, 447:11
approve [2] - 305:1
approved [1] -
445:23
April [1]-298:6
archive [1] - 222:1 archiving [2] -
224:16, 225:2
arctic [19]-211:13,
212:5, 212:13,
218:23, 229:16,
245:4, 245:8, 328:1,
335:6, 335:8, 345:17,
345:19, 363:13,
370:2, 370:11,
393:15, 445:12, 446:2
Arctic [1] - 203:2
Area [1] - 453:12
area [57] - 216:6,
217:12, 217:21,
217:23, 217:24,
217:25, 218:11,
218:14, 228:13,
243:3, 259:2, 261:2, 261:3, 261:7, 262:13,
268:24, 270:14,
271:5, 271:7, 271:8,
271:16, 275:20,
278:2, 278:5, 278:13,
278:14, 278:16,
278:17, 287:20,
291:13, 291:14
291:24, 292:6,
296:15, 297:22,
297:25, 306:17,
308:9, 320:21,
349:18, 349:19
351:9, 354:4, 368:2,
368:3, 368:13,
368:15, 373:12,
374:5, 375:22,
382:14, 409:23,
421:6, 453:7, 453:8, 459:23
$215: 11,216: 3,218: 1$,
$228: 12,241 \cdot 3,271: 7$
$27: 17,271: 18$ 271:17, 271:18,
370:6, 409:20
arguing [2] - 441:16, 441:19
argument [1] -
291:22
arguments [1] -
448:1
Arnaukjuaq[2] -
203:15, 425:17
ARNAUKJUAQ[6] -
359:23, 361:10,
363:8, 436:19, 451:3, 459:6
Arnauyok [1] -
203:21
arrange [1] - 299:25
arrangement [1]
304:10
arrives [1] - 291:8
art [1] - 255:2
Arviat [62] - 205:15,
206:5, 206:13,
216:21, 216:24,
227:17, 227:19,
240:2, 240:3, 240:4,
241:25, 243:10,
270:24, 273:12,
289:25, 293:1, 306:5,
333:5, 359:20,
361:13, 362:4,
365:25, 366:11,
366:14, 367:22
368:4, 368:5, 368:15,
368:18, 369:2,
369:11, 382:14,
404:8, 412:25, 414:4,
414:6, 416:16,
416:18, 423:11,
430:11, 436:17,
436:24, 436:25,
438:11, 441:10,
441:13, 443:4,
443:13, 447:12,
451:1, 451:5, 451:8,
451:9, 455:14,
458:22, 458:25,
462:7, 464:22,
464:23, 464:25
ARVIAT [4] - 203:14,
359:22, 436:18, 451:2
ashore [7] - 217:20,
232:14, 232:16
233:13, 238:10,
299:14, 367:24
aspects [1] - 413:18
assess [1] - 268:18
assessed [1]
208:18
assessment [5] -
213:9, 294:21, 314:7,
315:11, 356:10
assessments [1] -
314:20
assign [1] - 360:18
assigned [1] - 361:4
assist [3]-322:21,
419:2, 439:10
assistance [2] -
387:4, 402:23
Assistant [1] -
202:23
assistant [1] -
326:22
assisted [1] - 423:16
assisting [1] -
402:24
associated [2] -
average [1] - 383:19
avoid [1] - 419:14
aware [13]-288:11,
310:15, 311:20,
350:5, 361:12, 362:3,
362:5, 362:25,
364:17, 377:4,
396:18, 396:24,
453:15
axis [1] - 238:6
assume [5] - 253:14,
262:2, 263:18,
321:15, 322:24
assumed [4] -
317:22, 319:23,
319:24, 344:2
assuming [7] -
253:1, 316:23,
316:25, 322:12,
357:9, 383:23, 384:2
assumption [1] -
270:13
assumptions [3] -
269:25, 319:6, 321:9
AT [1]-201:13
atmospheric [1] -
370:9
attaches [2]-
371:14, 372:1
attack [1] - 254:9
attempt [1] - 319:14
attempts [1] - 362:18
attend [4] - 207:21,
332:8, 361:2, 362:24
attendance [1] -
332:5
attending [1] - 454:7
attends [2]-299:24,
361:3
attention [1] - 440:4
Attima [7]-201:25,
306:22, 307:15,
309:20, 310:9,
460:22, 461:7
attractant [1] -
240:17
attractants [4] -
240:5, 240:14,
240:19, 447:7
attracted [2] - 290:5,
293:3
attraction [1] -
240:10
attribute [2] -
353:17, 354:12
augment [1] - 385:18
August [3] - 240:15,
275:11, 311:23
August-September [1] - 275:11
Australia [1] - 460:9
authority [9] -
212:21, 213:8,
314:21, 315:10,
316:2, 323:23,
335:15, 335:18
authors [3]-353:1,
355:14, 355:23 automatically [1] -
421:17
available [23] -
208:17, 210:11,
212:4, 212:25, 213:1,
221:25, 270:17,
303:23, 310:6, 315:7,
315:18, 323:20,
332:11, 332:13,
337:19, 340:5,
355:12, 357:15,
360:15, 360:16,
385:6, 457:12
B.C [1] - 384:20
background [5] -
402:25, 403:1, 403:7,
419:18, 434:14
backups [3] - 372:8
bad [7] - 238:4,
239:2, 247:18,
319:17, 333:24,
344:8, 346:7
Baffin [17]-212:15,
217:18, 295:3,
300:21, 315:22,
320:21, 322:8,
331:21, 331:22,
341:10, 341:16, 356:12, 356:18,
358:15, 420:17,
422:17, 463:24
Baker [14] - 205:18, 206:6, 384:13,
409:23, 414:11,
414:12, 437:14,
438:23, 441:15,
451:21, 455:14,
457:16, 457:21,
457:23
BAKER [3] - 203:23,
384:14, 438:24
balance [3]-305:4,
305:15, 361:19
balanced [1] -
321:20
balancing [1] -
305:12
bang [1] - 246:19
bar [1]-231:23
barriers [2]-214:17,
214:19
base [5] - 217:13,
243:2, 316:16,
316:20, 415:13
based [29] - 208:13,
208:20, 214:16,
214:17, 214:19,
214:21, 243:22,
243:24, 263:11,
275:23, 291:20,
308:4, 315:25, 321:4,
322:11, 330:20,
333:21, 337:22,
345:5, 360:17, 384:3,
385:10, 385:15,
385:25, 399:21,
408:14, 410:22,
435:16, 445:2
baseline [3] - 225:6,
225:10, 286:25
basic [3] - 218:25,
252:8, 385:17
Basin [20]-212:15,
215:3, 228:1, 228:12,
228:15, 228:19,
250:2, 250:4, 250:6,
320:20, 320:24,
356:19, 403:3,
409:19, 409:24,
412:9, 414:16, 440:8,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2
$440: 16$
basing [1] - 279:18
basis [8] -282:14,
$302: 22,325: 14$,
$325: 15,328: 2,337: 1$
$338: 7,341: 14$
batteries [3] -
$259: 23,371: 12$,
$371: 22$
battery [2] - 371:9,
$371: 11$
battle [2] - 301:7,
$302: 24$
battling [1] - 343:1
battling [1] - 343:1
Bay [162] - 210:1
210:2, 210:3, 210:8, 210:12, 211:4, 211:7 211:12, 212:13, 212:15, 213:6, 214:12, 215:1, 215:2, 215:3, 215:6, 215:7, 216:7, 216:13, 216:25, 217:17, 217:18, 217:24, 218:5, 221:21, 221:22, 221:23, 227:25, 228:3, 229:17, 229:18, 230:16, 230:24, 230:25, 242:6, 243:18, 245:12, 245:16, 245:23, 247:22, 247:23, 247:24, 248:1, 248:3, 248:8, 248:18, 248:21, 248:25, 249:1, 249:4, 249:7, 249:11, 249:19, 249:20, 249:21, 249:23, 249:24, 249:25, 250:5, 250:7 251:4, 253:22, 261:16, 263:13, 274:20, 275:12, 275:22, 277:5, 280:20, 282:11, 293:14, 293:25, 294:13, 294:23, 295:2, 295:3, 295:15, 308:9, 314:12, 315:22, 316:14 316:24, 317:18 317:20, 318:10, 320:10, 320:18 320:20, 320:21, 322:8, 324:8, 330:10, 330:18, 330:22, 331:21, 331:22, 332:8, 337:11, 337:12, 338:18, 341:10, 341:16, 342:15, 349:15 350:19, 351:9, 351:16, 351:17, 352:1, 355:13, 355:14, 356:12, 356:18, 357:7, $357: 16,357: 24$, 358:15, 360:4, 360:21, 369:25, 370:12, 370:14 370:18, 375:20 402:18, 403:4, 403:21, 405:17, 409:19, 409:20, 409:24, 412:8, 412:16, 414:16, 415:11, 418:11, 418:12, 418:16 420:3, 420:17, 421:5

425:7, 430:10, 43 $437: 11,437 \cdot 14$

438:20, 442:1, 443:3,
446:4, 448:5, 448:8,
448:9, 452:10, 453:4
453:9, 455:13
bay [7]-215:6,
215:8, 215:16,
275:16, 275:18,
345:12, 352:2
BAY [1] - 201:7
Bay's [1] - 272:21
Beach [2] - 440:9
440:14
beacon [2] - 262:6, 262:8
Bear [7] - 208:18, 210:14, 300:8, 337:7 360:12, 360:19,
408:20
BEAR [1] - 201:7 bear [279]-208:22, 208:23, 209:3, 212:19, 217:3, 218:19, 219:16 219:18, 219:25 220:3, 220:20, 221:3 221:4, 221:17, 221:24, 222:12, 222:16, 222:17, 222:20, 222:22 222:23, 223:10, 223:13, 224:22, 224:24, 225:1, 225:24, 225:25 226:11, 226:20, 226:25, 227:6, 228:8, 228:10, 228:13, 229:5, 231:24, 232:2 232:7, 234:4, 235:8, 235:10, 235:11, 237:25, 239:6, 239:20, 240:13 242:17, 243:15, 244:15, 244:17, 246:7, 253:1, 253:2, 253:4, 253:6, 253:9, 253:22, 254:8, 254:21, 255:17 256:2, 256:5, 256:22, 256:23, 258:2, 258:24, 259:9, 260:2, 260:16, 261:11 261:21, 261:22, 262:3, 262:23, 263:6, 263:12, 263:14 263:15, 263:17 263:23, 264:1, 264:5 264:21, 265:7
265:13, 265:15, 265:21, 266:8, 266:11, 266:17 267:2, 267:5, 267:12, 268:7, 268:9, 270:13, 270:19, 270:20 270:22, 271:5, 271:12, 272:8, 273:9, 274:13, 274:16, 276:5, 276:7, 276:8, 280:1, 282:12, 282:15, 283:3, 284:2 284:7, 285:4, 285:6, 285:8, 285:9, 285:11 285:22, 286:3, 286:4, 286:10, 287:20, 288:2, 288:3, 288:4, 288:5, 288:12, 291:24, 296:19 298:1, 299:7, 299:11, 299:18, 300:17,
$301: 18,306: 16$,
$307: 21,307: 25$, 308:9, 308:24, 309:17, 310:14, 312:1, 312:17, 312:21, 312:23, 312:24, 313:9, 316:24, 317:20, 318:24, 319:24 319:25, 327:14, 331:9, 333:2, 337:25, 342:10, 348:5, 348:9, 348:10, 349:6,
349:10, 349:13 349:17, 350:6,
356:13, 359:25,
360:1, 360:2, 361:11 362:11, 362:13, 363:14, 363:17,
363:18, 363:23,
363:25, 364:4, 364:7, 365:3, 365:23, 366:2 366:9, 366:12, 367:3, 367:22, 367:23
367:24, 368:6, 369:2 369:5, 371:14, 373:7 373:14, 374:4,
374:17, 374:22,
375:2, 375:15,
376:24, 378:1,
378:16, 382:23,
382:24, 382:25
383:4, 383:9, 383:13
383:15, 385:17,
385:20, 394:6, 396:1 396:16, 396:18,
396:23, 397:1, 397:4,
397:6, 397:13,
397:22, 397:23,
398:4, 398:7, 398:13
398:15, 398:23
399:2, 399:4, 399:12,
399:14, 402:18,
404:4, 404:11
404:19, 405:25,
406:2, 408:23,
410:13, 410:20,
412:12, 416:18
417:10, 417:22,
418:12, 418:16,
420:4, 424:11, 426:4,
427:23, 437:8,
437:11, 437:14
437:25, 438:2, 445:8,
445:10, 445:23,
445:25, 446:11,
446:22, 447:6,
447:11, 447:23
448:21, 451:6,
452:10, 453:4, 453:9, 453:22
bear's [3] - 252:24,
287:16, 312:9
bear-human [3] -
208:22, 331:9, 447:6
bear-specific [1] -
342:10
bears [544] - 208:12, 208:13, 209:1, 209:7, 210:8, 211:3, 211:9, 211:17, 211:19, 212:1, 212:6, 213:2, 213:24, 214:1, 214:5, 214:7, 214:8, 214:18, 214:20, 214:22, 214:25, 215:5, 215:22, 216:1, 216:2, 216:3, 216:6, 216:8, 216:9, 216:15, 216:19, 216:22,
$217: 6,217: 10$,
$217: 20,218: 8$ 218:13, 218:20, 218:22, 218:24, 219:9, 220:11, 220:12, 220:16, 220:19, 220:20, 220:22, 220:23, 221:5, 221:10, 221:18, 221:19, 221:21, 222:6, 222:7, 222:18, 222:25 223:3, 223:4, 223:8, 224:2, 224:18, 224:20, 224:21 225:6, 225:13, 225:14, 225:21 225:25, 226:7, 226:8, 226:10, 227:2, 227:8, 227:9, 227:12, 227:16, 227:21, 227:25, 229:2, 229:13, 231:19, 232:3, 232:14, 232:25, 233:3, 233:4, 233:15, 233:19, 234:7, 234:12, 234:15, 234:24 235:17, 238:2, 238:7, 238:8, 238:9, 238:11, 238:20, 238:21, 239:2, 239:8, 239:10, 239:11, 239:13, 239:22, 239:23, 240:1, 240:3, 240:9, 240:11, 240:12, 240:18, 240:20 240:22, 241:1, 241:9, 241:11, 241:17,
241:18, 241:22 241:24, 242:7, 242:9, 242:10, 242:19, 243:17, 243:19, 243:22, 244:10, 244:20, 245:4, 245:19, 246:6, 246:12, 246:14, 246:19, 247:23 247:25, 248:11 248:13, 248:17, 248:18, 249:2, 249:15, 249:20, 249:21, 252:13, 252:19, 252:21, 254:7, 254:13, 254:24, 255:24, 255:25, 256:7, 256:17, 257:13, 258:4, 258:6, 259:17 260:1, 260:7, 260:10, 260:20, 261:12, 261:14, 261:25 262:13, 262:14, 263:20, 264:20, 265:4, 265:11, 265:21, 266:3, 266:5, 267:7, 267:8, 267:21, 268:14, 269:5, 269:7, 269:10, 269:23, 269:24, 271:7, 271:17, 271:22, 272:11, 272:14 272:22, 272:24 273:1, 273:3, 273:6, 273:14, 273:19, 274:7, 274:8, 274:12, 274:14, 274:23, 275:5, 275:9, 275:13, 275:15, 275:17, 275:24, 276:1, 276:6,

276:7, 276:20, 277:1, 278:20, 278:23, 279:16, 279:21, 280:13, 280:18, 280:20, 280:22, 282:15, 282:16, 282:21, 282:22, 283:6, 283:12, 283:13, 283:15, 283:17, 283:18, 283:19, 283:21 283:24, 284:1, 284:2, 284:9, 284:17, 284:22, 284:24 285:2, 285:16, 286:7, 286:8, 286:24 286:25, 287:7, 287:9, 287:10, 287:12, 287:14, 287:15, 288:13, 288:14, 288:15, 288:18, 288:25, 289:8, 289:10, 289:12, 289:24, 290:1, 290:4 290:12, 290:17, 290:19, 290:21, 290:23, 291:13, 291:14, 291:20, 291:22, 292:9, 292:18, 292:20, 293:3, 293:19, 294:23, 297:13, 297:18, 297:20, 297:23, 298:1, 298:11, 299:9, 300:6, 300:22, 302:10, 306:3, 306:7, 307:19, 308:6, 308:10, 308:13, 308:21, 310:2, 310:21, 311:21, 312:8, 313:5, 313:12, 313:15, 313:18, 316:12, 317:14, 319:12 320:18, 320:22, 320:24, 320:25, 321:23, 321:24 321:25, 322:5, 323:3, 324:8, 325:16, 328:15, 330:23, 330:24, 331:6, 331:12, 332:15, 332:19, 332:23, 333:1, 333:3, 333:7, 335:1, 335:6, 336:11, 337:16, 338:17, 339:3, 339:7, 341:7, 342:15, 343:12, 346:12, 346:15, 347:9, 347:14, 349:3, 349:20, 349:21,
350:4, 351:1, 352:13, 353:25, 357:22, 360:11, 361:13 361:16, 361:21, 363:2, 363:11, 364:1, 364:16, 365:22, 366:7, 366:17, 367:14, 368:21, 369:19, 369:25, 370:8, 370:13 370:16, 370:18, 370:25, 371:1, 373:11, 373:25, 374:14, 374:19, 374:23, 375:4, 375:10, 375:16, 375:23, 376:2, 376:6, 376:7, 376:21, 377:7,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

$379: 1,379: 8,379: 11$	behaves [1] - 254:21	bias [1] - 383:25	251:2, 251:12	$215: 19,216: 12$
381:7, 382:16,	behaviour [3] -	bible [1] - 398:12	264:12, 264:16,	226:17, 228:16,
382:21, 383:5, 383:6,	254:19, 256:16,	big [26] - 220:22,	277:18, 281:10,	230:14, 230:21,
383:19, 383:20,	289:25	224:9, 227:14,	281:21, 281:24,	232:6, 233:9, 236:9,
383:23, 383:25,	behaviours [1] -	240:10, 241:16,	282:5, 296:9, 296:10,	236:10, 237:25,
384:1, 385:11,	229:12	242:11, 263:6,	297:9, 304:22, 305:3,	246:23, 247:13,
392:13, 392:16,	behind [7] - 219:20,	265:22, 265:24,	305:19, 311:2, 316:1,	371:19, 412:9
392:23, 392:25,	222:4, 255:20,	284:11, 293:5, 303:6,	325:2, 327:1, 327:9,	bounced [1] - 230:18
393:3, 393:15,	255:22, 266:15,	308:9, 326:1, 345:10,	328:7, 330:9, 333:25,	boundaries [10] -
393:20, 393:21,	411:7, 413:19	348:14, 350:2,	336:12, 337:13,	229:17, 337:17,
394:2, 394:9, 394:13,	beings [1] - 458:20	371:21, 381:16,	346:25, 352:20,	337:18, 337:19,
394:16, 394:19,	belabour [1] - 434:11	390:13, 405:14,	352:25, 356:6, 386:8,	337:22, 358:9,
394:22, 394:25,	believable [1] -	407:12, 409:8,	402:16, 408:9,	409:14, 409:22,
395:7, 395:10,	307:4	444:10, 445:16, 457:9	408:13, 409:6,	410:5, 463:21
395:14, 395:15,	belong [1] - 466:5	bigger [4] - 239:6,	409:17, 410:9,	boundary [1] -
395:19, 395:20,	below [2]-371:20,	249:19, 249:23,	410:16, 411:15,	409:25
396:10, 397:12,	441:23	378:11	415:6, 415:18, 424:4,	box [2]-371:12,
397:16, 398:3, 398:5,	belt [2] - 255:14,	biggest [2] - 446:20,	429:20, 429:22,	371:21
398:8, 399:13,	255:15	454:12	431:14, 434:6,	boy [1] - 389:23
399:16, 399:23,	belting [3] - 371:16,	bin [1] - 237:	434:13, 441:6,	branch [3] - 326:23,
400:12, 400:20,	371:25, 372:2	binder [3]-208:6	441:13, 442:17,	327:19, 387:24
403:11, 404:2, 404:7,	beluga [3] - 240:15,	398:12, 418:7	442:19, 442:24,	Brandon [9]-203:2,
404:9, 404:12,	240:16, 242:1	bins [1] - 236:19	443:6, 444:6, 449:14,	391:8, 445:1, 449:5,
404:20, 404:22,	beneficial [1] -	biological [2] -	450:8, 450:24, 452:9,	449:25, 451:12,
404:23, 405:1, 405:5,	273:24	293:23, 294:11	453:25, 455:7,	452:4, 454:22, 454:24
405:13, 405:16,	beneficiaries [3] -	Biologist [3] - 202:5,	455:16, 456:10,	break [13]-230:20,
406:6, 406:14,	421:2, 428:8, 429:5	202:6, 202:24	456:20, 458:5, 460:2,	231:12, 233:15,
406:16, 406:21,	beneficiary [1] -	biologist [5] -	461:2, 464:6, 464:12,	250:15, 257:17,
406:24, 407:7, 407:8,	418:10	330:11, 337:7,	465:13, 466:6, 466:8,	260:18, 264:12,
407:9, 407:19,	benefit [1] - 226:8	338:22, 341:15,	466:13	324:3, 324:14, 401:3,
407:20, 407:25,	benefits [1] - 337:1	439:13	board [19] - 272:	402:7, 413:25, 444:5
408:25, 409:5,	Bert [3] - 202:23,	biologists [3] -	278:21, 304:25,	break-up [3] -
409:16, 409:17,	439:24, 443:22	429:11, 439:8, 462:17	305:1, 321:8, 321:18,	230:20, 233:15,
409:18, 409:21,	best [34] - 210:1	biopsies [2] -	322:12, 345:25,	264:12
410:12, 410:24,	276:15, 276:17,	367:12, 367:16	403:4, 403:17,	breaks [5] - 215:17,
411:2, 413:14,	276:21, 276:24,	biopsying [1] - 395:5	403:18, 406:14,	232:19, 297:24,
414:12, 415:19,	281:8, 281:12,	birth [1] - 267:20	408:13, 419:12,	297:25, 465:21
415:20, 416:16,	281:13, 286:16,	bit [39] - 220:5,	428:7, 431:12,	breakup [27] -
420:5, 420:12,	289:1, 289:3, 295:3,	221:12, 225:12,	433:17, 433:22, 434:4	211:14, 215:12,
420:14, 420:17,	295:17, 301:21,	228:20, 228:22,	BOARD [12] - 201:2,	215:25, 229:1,
420:19, 421:12,	305:6, 308:3, 308:14,	238:17, 255:2, 255:9,	201:5, 201:18,	229:14, 229:22,
421:16, 422:18,	308:25, 310:19,	255:13, 255:22,	205:22, 251:13,	229:23, 230:2,
423:14, 423:15,	310:25, 319:14,	260:24, 266:1,	314:1, 356:8, 402:20,	230:12, 230:16,
423:17, 423:18,	328:23, 340:8,	266:14, 266:22,	415:8, 431:18, 449:8,	230:17, 231:18,
423:20, 423:21,	343:15, 355:11,	267:9, 267:12, 314:5,	449:16	232:13, 232:15,
423:22, 423:24,	360:15, 387:17,	326:7, 328:9, 333:16,	Board's [5] - 330:1,	233:1, 233:5, 233:7,
424:21, 425:13,	388:24, 395:11,	334:24, 337:4, 344:8,	354:18, 410:19,	233:10, 233:12,
426:1, 426:20,	444:17, 457:12,	351:9, 357:11, 363:9,	413:19, 440:6	238:3, 238:5, 238:9,
427:11, 428:2,	460:25, 467:6	374:13, 385:1, 400:7,	boards [3] - 360:13,	244:2, 244:3, 249:11,
428:22, 429:1,	bet [1] - 378:14	403:24, 408:4,	410:8, 439:6	286:23, 294:10
430:10, 430:11,	better [30]-230:7,	409:12, 412:22,	boat [1] - 437:21	breakups [1] -
430:13, 430:15,	233:7, 233:13,	414:4, 414:22,	Bobby [1] - 204:11	249:11
432:12, 432:15,	233:14, 238:10,	434:25, 441:23,	bodies [3] - 223:16,	breathing [1] - 367:4
435:11, 437:23,	248:15, 288:19,	442:1, 442:23	369:20, 462:2	bred [1] - 319:10
441:25, 443:6, 446:8,	298:19, 320:24,	black [5] - 230:	body [15] - 210:2	Brian [1] - 203:7
446:25, 447:8,	330:15, 331:7,	240:12, 240:13,	211:3, 219:23, 232:2,	bridging [2]-386:9,
447:17, 448:6, 453:6,	331:10, 334:7, 338:5,	372:20, 412:6	232:14, 232:16,	386:18
453:7, 456:14,	339:4, 365:6, 365:10,	bladder [1] - 312:24	248:11, 248:13,	brief [3]-313:11,
457:19, 458:6, 458:9,	372:22, 378:12,	blip [1] - 247:14	248:14, 268:8, 288:6,	451:4, 459:7
458:19, 458:24,	387:15, 387:23,	blizzard [1] - 466:16	313:16, 368:24,	briefed [1] - 391:21
459:2, 459:24	388:3, 388:8, 388:13,	block [1] - 324:13	399:23, 437:4	briefing [1] - 391:23
bears' [1] - 219:4	388:17, 388:21,	blockages [1] -	bolt [1] - 372:15	briefly [3] - 213:3,
Beaufort [3] -	401:15, 401:20,	461:15	BOLT [4]-251:15	277:20, 445:14
252:21, 320:9, 320:19	406:19, 422:5	blocks [1] - 428:13	264:18, 268:6, 460:4	bring [9]-240:18,
became [1] - 278:1	between [32]-217:3,	blood [7]-221:2,	Bolt [1] - 201:23	264:22, 292:9,
become [4] - 292:1,	220:6, 231:11,	221:7, 221:8, 221:9,	bolts [7] - 372:6,	292:18, 296:17,
298:3, 344:19, 423:15	231:13, 231:18,	224:11, 367:5, 398:3	372:15, 372:16,	370:9, 371:10,
becomes [2] - 412:7,	246:25, 247:11,	blubber [5] - 211:6,	372:19, 372:22,	389:11, 414:14
413:3	248:14, 279:12,	245:25, 246:5,	372:23, 373:1	bringing [3]-317:6,
becoming [3] -	283:16, 283:24,	246:17, 340:17	bone [1] - 242:1	387:18, 416:6
343:8, 345:24, 463:10	284:4, 305:4, 305:15,	blue [3]-218:1,	border [3]-218:2,	brings [1] - 300:1
began [4] - 218:6,	315:22, 322:13,	412:7, 414:3	238:19, 261:4	broad [1] - 318:4
218:11, 258:2, 293:12	331:22, 347:16,	Board [88] - 203:10,	born [3]-310:4,	broadcast [1] - 299:5
begin [1] - 443:7	351:1, 354:2, 354:11,	203:11, 203:12,	376:14, 420:2	broader [1] - 218:21
beginning [2] -	359:13, 363:15,	203:19, 203:20,	bother [1] - 404:10	brothers [1] - 377:12
343:24, 459:12	383:24, 386:12,	203:21, 203:25,	bothering [1] - 403:8	brought [3] - 297:2,
begins [1] - 231:12	386:20, 401:13,	204:8, 205:6, 205:9	bothers [1] - 298:16	376:17, 376:20
behalf [5] - 251:2,	403:11, 415:24,	205:14, 205:23,	bottlenecks [1] -	Brunswick [1] -
353:9, 427:13,	436:24	206:1, 206:9, 206:11,	321:6	384:20
458:17, 459:8	beyond [1] - 409:21	207:14, 250:17,	bottom [16] - 214:12,	buck [1] - 246:20

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

budget [4]-301:13,	362:16, 363:24,	224:22, 234:8,	203:15, 251:15,	$421: 21,422: 14$
301:15, 329:14	364:14, 364:18,	246:13, 246:20,	252:3, 252:5, 258:1,	422:25, 424:7,
budgets [1] - 329:13	364:22, 365:12,	256:7, 256:20, 260:1,	264:18, 265:1, 268:6,	426:17, 427:5,
buggies [7]-291:12,	365:22, 366:17,	260:16, 260:20,	268:10, 269:4, 314:3,	$427: 15,430: 2$
291:15, 291:16,	381:25, 384:12,	267:21, 270:10,	330:5, 331:1, 334:4,	430:20, 431:9, 432:5,
291:17, 291:21, 292:2	384:19, 385:9,	270:20, 271:15,	336:6, 340:24,	432:23, 433:9, 434:8,
buggy [1] - 291:24	388:10, 389:12	271:17, 283:8, 284:3,	346:20, 359:23,	434:16, 434:20,
build [3] - 220:19,	391:14, 392:5, 401:4,	286:10, 348:5, 348:9,	363:8, 370:22, 382:3,	435:3, 436:12,
252:9, 440:5	401:14, 425:22,	368:9, 377:7, 377:8,	384:15, 389:5,	436:16, 438:4,
building [3] - 225:8,	439:19, 445:2,	379:14, 380:4, 383:6,	391:18, 391:23,	438:15, 438:18,
366:5, 439:2	445:11, 448:10,	383:12, 383:14,	392:10, 415:9, 416:2,	438:22, 439:17,
bulk [3] - 212:4,	448:12, 451:24,	383:19, 398:13,	417:5, 419:25,	439:21, 443:22,
257:16, 371:25	456:18	405:13, 405:16,	421:24, 423:2, 424:9,	444:13, 449:5, 449:9,
bunch [1] - 321:13	Canada's [1] - 360:5	420:17, 423:24	427:19, 431:20,	449:13, 449:24,
burden [1] - 423:25	Canadian [6] -	catching [9] -	433:11, 436:19,	450:2, 450:20,
buried [2] - 227:13,	210:21, 211:13,	220:16, 234:18,	444:24, 450:6, 451:3,	450:23, 451:11,
227:17	302:11, 326:22,	236:4, 283:24, 284:2	456:8, 457:17,	451:14, 451:16,
burnt [2] - 422:19,	327:17, 360:12	288:16, 348:6,	457:24, 458:23,	451:19, 451:23,
422:20	cancer [1] - 312:22	350:17, 463:9	459:6, 460:4, 460:21,	452:1, 452:13,
busy [1] - 431:5	candidly [1] - 401:10	categorically [1] -	460:23, 462:6	$452: 21,454: 2,454: 5,$
button [2]-259:12,	canine [1] - 222:4	276:1	CHAIR [199] - 207:2,	455:6, 455:19, 456:6,
358	cannibalis	gor		456
buy [3]	232:4	Cathy [4]-204:15,	250:25, 251:14,	457:25, 458:12,
265:19, 310:12	cannot [4] - 268	311:9, 311:13, 313:22	252:5, 254:4, 254:14,	458:21, 459:5,
BY [13] - 205:5,	364:4, 437:4, 447:15	cats [1] - 367:18	257:24, 258:13,	459:16, 460:1,
205:8, 205:22, 206:8,	capacity [9] - 293:22,	caught [30]-224:23,	262:17, 262:25,	460:22, 461:7,
206:14, 206:17,	293:23, 294:12,	224:24, 235:5, 235:8,	264:10, 264:15,	462:11, 463:1, 463:5,
206:19, 207:18,	294:20, 296:20,	237:3, 246:7, 257:2,	265:2, 268:4, 268:11,	464:3, 465:9
311:11, 402:20,	331:2, 332:18, 439:2,	261:11, 262:14,	269:2, 269:20,	Chairman [28] -
444:23, 452:12,	447:1	264:1, 270:24, 281:2,	271:25, 274:2,	272:2, 274:1, 297:6,
452:20	capelin [1] - 245:14	283:16, 283:17,	277:13, 279:4, 282:3,	303:4, 303:24,
bypassed [1] -	capture [9]-219:9,	287:15, 311:21,	289:22, 293:9,	304:21, 306:23,
368:15	219:13, 232:24,	347:21, 348:8,	$295: 19,297: 4,299: 2$	$309: 21,310: 8$
	270:17, 270:25,	348:10, 349:11	302:3, 302:6, 303:2,	311:12, 329:22,
C	271:1, 271:21,	368:1, 376:15, 377:9	303:25, 304:19,	347:4, 352:18,
	347:14, 383:4	379:17, 404:4, 420:5,	305:22, 306:21,	365:20, 369:16
cabins	captured [4] -	421:16, 422:17,	307:15, 309:19,	370:24, 385:2, 387:8,
caches [1] - 273:22	236:21, 379:19,	422:19, 436:4	310:9, 311:1, 313:22,	402:22, 418:25,
calculate [2]-253:8,	397:22, 397:23	caused [1] - 410	314:16, 316:5, 317:8,	427:21, 430:22,
253:9	captures [1] - 284	auses [1]-411:	$318: 1,318: 20,323: 6 \text {, }$	$434: 19,438: 3$
$\begin{gathered} \text { calcu } \\ \text { 295:12 } \end{gathered}$				
calculation [2] -	$392: 25$	CEID's [1]-443	328:8, 329:20,	chairperson [1] -
237:16, 442:9	care [4] - 283	centre [1]-214:12	329:25, 332:2, 334:2,	403:5
calculations [1] -	406:11, 428:8, 457:5	certain [24]-220:21,	334:20, 336:4,	challenging [2]-
237:20	careful [3]-345:4,	220:22, 223:15,	338:11, 339:22,	411:9, 450:16
Caleb [12] - 201:	346:1, 353:2	263:25, 268:21,	340:6, 340:22, 342:3,	chance [8]-220:21,
297:5, 299:2, 305:23,	carefully [1] - 265:14	274:17, 278:9,	346:18, 346:22,	233:7, 263:13, 358:6,
306:21, 419:24,	caribou [20] -	285:17, 285:19,	347:12, 347:17,	358:11, 378:12,
421:21, 422:15,	262:21, 262:24,	285:20, 286:8,	348:1, 348:11,	445:19, 457:18
422:25, 461:7,	263:6, 263:12,	288:24, 308:4, 309:1,	348:18, 349:1, 350:9,	chances [1] - 239:14
462:11, 466:10	263:18, 277:22,	321:15, 322:17,	350:14, 351:3,	CHANGE [3] -
Caleb's [1] - 422:8	277:24, 277:25,	328:21, 329:9,	351:12, 352:7,	202:13, 205:5, 207:18
calf [1] - 407:3	278:2, 278:8, 278:10,	336:14, 346:5, 346:9	352:16, 354:21,	change [65] - 218:17,
Calgary [1] - 467:8	$306: 19,311: 23$, $312: 12,336: 16$,	346:14, 392:19	$356: 3,356: 16$, $359: 14,359 \cdot 18$	$218: 19,229: 14 \text {, }$
cameras [1] - 253:18	312:12, 336:16,	certainly [33] - 279:7,	359:14, 359:18,	230:11, 235:21,
camp [1] - 296:18	336:20, 336:24,	294:19, 302:25,	360:8, 361:8, 361:25,	$242: 19,244: 19,$
camping [2] - 442:2,	443:18	314:23, 316:2,	363:6, 364:12,	244:21, 244:22,
442:21	caring [1] - 464:1	318:16, 323:13,	365:18, 366:22,	245:6, 245:10, 249:4,
CANADA [3] -	carried [2] - 314:21,	323:21, 326:19,	369:10, 369:22,	249:5, 249:19,
202:13, 205:5, 207:18	335:9	327:2, 327:17, 329:3,	370:19, 370:23,	249:23, 254:21,
Canada [69] -	carry [6] - 268:22	329:10, 329:13,	371:5, 372:12,	255:9, 256:10,
207:13, 208:10,	268:23, 298:15,	332:16, 333:8,	372:17, 373:3,	257:21, 278:18,
208:21, 211:22,	323:14, 424:24,	333:14, 335:20,	373:20, 376:10,	280:3, 281:5, 287:1,
211:24, 214:4, 214:5,	444:16	339:13, 351:15,	377:1, 378:18,	288:21, 293:18,
217:4, 217:6, 272:25,	carrying [7] - 213:8,	367:3, 385:14, 386:8,	380:14, 381:4,	294:9, 295:11, 299:9,
285:14, 299:24,	293:22, 293:23,	387:14, 387:19,	381:21, 382:2, 383:1,	300:20, 300:23,
300:1, 300:3, 300:5,	294:11, 294:20,	388:2, 388:11,	384:6, 384:9, 385:3,	311:24, 315:16,
300:7, 314:22, 315:2,	331:2, 332:18	388:15, 394:11,	386:3, 387:9, 388:18,	315:19, 319:18,
320:13, 326:3,	Caryn [1] - 202:19	399:19, 399:23,	389:1, 389:21, 391:7,	319:20, 319:22,
326:10, 327:14,	case [12]-219:13,	400:8, 457:2	391:10, 392:1,	320:14, 320:18,
328:15, 329:1, 330:7,	326:6, 335:16, 354:9,	Certificate [2] -	393:10, 396:11,	320:23, 322:10,
330:15, 330:17,	369:5, 380:7, 392:20,	206:21, 467:1	396:19, 397:9,	331:25, 337:18,
330:21, 331:22,	398:21, 404:5, 406:3,	certify [1] - 467:3	397:19, 399:5,	337:20, 337:21,
334:11, 337:4, 338:5,	407:20	chain [3]-244:15,	399:17, 400:25,	343:21, 344:3,
354:10, 356:7,	cases [2]-374:12,	393:17	402:6, 402:12,	344:11, 355:21,
357:18, 359:21,	395:1	chair [6]-272:5	413:20, 415:4,	356:23, 361:6,
$360: 3,360: 11$	catch [40]-216:4,	328:20, 346:25,	415:15, 415:25,	361:17, 384:18,
361:12, 361:22,	216:8, 218:8, 220:13,	455:8, 459:7, 462:8	417:3, 417:19, 418:1,	390:2, 390:3, 390:8,
362:3, 362:7, 362:9,	222:18, 222:19,	Chair [50] - 201:19,	418:22, 419:20,	390:11, 390:21,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

390:22, 391:4,
394:14, 421:14,
462:3, 464:13
Change [8]-208:10,
208:21, 211:24
314:22, 365:21,
366:17, 388:10,
448:10
changed $[8]$ -
207:11, 291:2, 315:4
322:13, 343:4, 344:4,
403:14, 465:16
changes [25]-
228:23, 229:1,
237:10, 245:7,
245:20, 249:10,
249:15, 249:17,
250:8, 298:9, 315:1,
320:8, 337:25,
340:16, 341:13,
341:20, 341:22,
342:2, 344:17,
390:12, 390:13,
425:5, 446:1, 466:13
changing [20] -
212:5, 212:13,
246:18, 249:11,
294:6, 294:8, 294:9, 295:16, 321:14
323:1, 330:23,
337:23, 337:24,
341:12, 343:6, 343:8, 343:13, 343:21
344:10, 363:11
channels [1]-207:8 chapeau [1] - 335:12
charge [3]-426:21,
426:22, 435:20
charged [1] - 292:13
Charlie [26] - 201:20,
207:5, 207:7, 269:3,
269:20, 272:1, 274:2,
277:14, 279:4, 303:3,
303:25, 415:7,
415:15, 423:1, 424:7, 426:7, 426:18, 427:5, 430:3, 430:20, 449:9, 449:13, 462:12,
463:1, 463:5, 466:10 charter [1] - 296:21 chase [2]-285:8, 447:16
cheaper [1]-259:24
check [4]-340:12,
340:18, 346:10,
414:20
checking [1] -
389:14
cheer [3]-378:15,
378:19, 380:1
cheering [1] - 380:1
chemical [1]-288:5
chemicals [1] -
288:6
Chester [5] - 404:8,
425:17, 441:15,
455:14, 458:6
CHESTERFIELD [2]

- 203:18, 382:1

Chesterfield [16] -
205:17, 270:20,
381:24, 382:9,
382:11, 382:14
384:10, 409:25,
412:10, 414:20,
414:22, 423:12,
437:15, 438:16,
451:17, 458:4
Chevette [1]-252:8
chew [2] - 374:6

374:12
child [2]-240:12,
416:9
childish [1] - 460:16 children [2]-306:10,
373:16
choice [5] - 406:4,
406:7, 422:10,
422:12, 444:8
chopped [1] - 444:11 chunks [2]-248:11, 292:8
Churchill [45] -
217:12, 217:16, 218:11, 218:13 226:19, 227:13,
227:16, 238:1, 238:8, 238:22, 240:2, 240:6, 240:7, 240:11, 240:21, 249:21, 271:1, 273:12, 290:2, 290:12, 290:18, 290:22, 293:1, 297:3, 339:10, 351:18, 351:21, 351:24 361:13, 361:15, 361:18, 361:21, 362:6, 364:1, 368:15, 368:17, 375:20,
379:20, 380:11,
382:10, 395:14,
428:25, 429:11, 453:8
cinch [1] - 255:4
circle [1] - 299:20
circles [1]-299:23
circulatory [1] -
370:9
circumpolar [5] -
218:23, 328:13,
345:19, 370:2, 392:21
circumstances [2] -
367:23, 400:3
CITES [9]-212:20,
212:21, 213:7, 213:9,
314:21, 323:11,
335:18, 362:19, 445:8
citizens [1] - 424:22
City [1] - 467:8
civilization [1] -
421:18
Claim [1] - 325:18
claim [2] - 379:7,
379:10
Claims [8]-325:13,
327:16, 420:10,
421:6, 421:8, 421:11,
421:13, 461:19
clarification [4] -
347:20, 352:20,
354:6, 354:8
clarify [7] - 352:25,
354:25, 408:6,
408:11, 417:6,
431:10, 438:19
clarity [1]-419:23
clash [2] - 386:12,
386:14
classes [2]-248:14,
347:15
classified [2] -
208:19, 327:14
classroom [1] -
416:7
clause [1] - 419:8
claws [1] - $373: 8$
Clayton [1] - 203:6
clear [18]-266:7,
345:16, 353:9,
354:18, 401:21
409:4, 417:6, 417:22,

426:24, 435:14,
436:20, 437:7, 446:3, 447:4, 447:19,
448:15, 450:14,
452:17
clearer [2]-446:16, 449:1
clearly [7]-213:15,
227:25, 351:25,
435:7, 437:17,
450:10, 464:16
Climate [8]-208:10,
208:20, 211:24,
314:22, 365:21,
366:17, 388:9, 448:10
CLIMATE [3] -
202:13, 205:5, 207:18
climate [19]-218:17,
218:19, 229:14,
245:6, 245:10,
293:18, 295:11,
299:9, 300:20,
300:23, 319:19,
320:14, 320:17,
320:22, 331:25
343:20, 345:21,
384:18, 394:14
climb [1] - $377: 17$
close [11] - 228:4,
261:4, 261:17,
300:21, 309:10,
311:3, 342:23, 426:5
454:9, 454:23, 455:10
closed [5] - 240:21,
242:24, 243:2,
317:19, 420:19
closely [2]-303:13,
303:21
closer [6] - 231:16,
233:8, 236:13,
303:19, 417:24,
446:14
closest [1] - 403:9
Closing [1] - 206:20
CLOSING [1] - 454:4
closing $[7]$ - 316:14,
316:15, 454:21,
457:16, 460:3, 463:6
cloth [1] - 371:3
clothing [6] - 311:17,
311:22, 420:21,
421:7, 424:15, 429:4
co [10]-302:17,
387:16, 389:10,
410:7, 411:16,
435:24, 445:23,
448:13, 448:18,
448:20
CO [1] - 406:6
Co [1] - 408:20
co-application [1] -
387:16
co-management [9]

- 302:17, 389:10,

410:7, 411:16, 435:24, 445:23,
448:13, 448:18,
448:20
Co-management [1]

- 408:20
coast [20]-215:21,
216:16, 218:14
227:19, 228:19,
228:20, 229:7,
238:18, 238:19,
239:24, 240:1, 240:8,
241:11, 290:12,
292:6, 292:22,
376:20, 455:14
coastal [3]-238:17,

353:22, 459:21
coating [1] - 371:20
Coats [2]-228:2,
313:8
coauthors [1] -
353:1
cod [1] - 245:8
coffee [6] - 250:15,
264:12, 381:24,
391:11, 402:8, 465:21
cognizant [1] -
288:10
coincidence [1] -
249:8
cold [1] - 408:3
collaboration [1] -
401:13
collaborative [2] -
209:23, 303:14
collaboratively [1] -
303:19
collar [75] - 225:20,
225:22, 225:24,
226:10, 226:18,
226:21, 227:1, 227:5,
251:17, 251:25,
255:2, 255:6, 255:8,
255:12, 255:16, 255:21, 256:2, 256:6, 256:11, 256:12,
256:24, 257:14,
258:3, 258:9, 259:12,
259:16, 259:22,
259:23, 260:2,
260:15, 260:17,
260:21, 261:11,
261:12, 261:18,
261:22, 261:24
262:3, 262:8, 262:9,
262:14, 262:15,
262:22, 263:11,
263:12, 263:15,
263:22, 282:14,
285:21, 286:9,
286:11, 348:15,
348:22, 366:9,
366:13, 366:18,
367:22, 367:24,
368:1, 368:2, 368:9,
369:5, 371:10,
371:11, 372:1,
372:23, 374:7, 374:8,
383:8, 394:5, 394:6,
394:7, 396:4
collar's [1] - 260:22
collared [10] -
227:12, 227:20
347:9, 347:24, 366:9,
366:17, 368:7,
368:12, 370:25, 371:1
collaring [15] -
263:6, 263:7, 284:11,
286:7, 336:9, 336:11,
336:15, 336:17,
336:24, 337:1, $338: 1$,
393:25, 395:10,
395:24
collars [72]-225:13, 225:16, 226:1, 226:6, 226:16, 227:3, 227:7, 227:8, 229:11,
251:18, 251:21
252:2, 252:7, 253:11, 253:18, 253:19,
254:7, 254:11,
254:13, 254:22,
255:24, 256:9,
256:10, 256:14,
256:20, 257:10,
257:21, 258:5, 258:7,

258:15, 258:19,
258:20, $258: 21$, 259:1, 259:4, 260:7, 260:10, 260:12, 260:20, 260:24,
260:25, 261:1, 261:6, 261:7, 261:8, 261:25, 262:1, 262:4, 262:6,
262:11, 262:14,
262:20, 263:3,
263:20, 264:6, 264:8, 283:14, 284:12,
284:13, 284:25,
285:19, 286:1,
336:19, 347:15,
366:8, 371:4, 372:9,
372:14, 373:23,
374:1, 382:5
colleague [1] -
440:23
colleagues [3] -
211:6, 323:22, 329:4
collect [5] - 224:1,
398:1, 398:2, 398:3,
398:10
collected [6] -
223:18, 319:1,
376:16, 400:10, 400:13, 422:19
collecting [4]-
384:21, 384:23,
385:16, 424:5
collection [2]
327:24, 400:5
collective [1] -
385:19
collectively [6] -
299:24, 300:3, 300:7, 362:7, 362:16, 385:9
colours [2]-228:9,
228:22
column [1] - 237:14
columns [1] - 412:7
combination [4]-
295:4, 396:21,
396:22, 397:7
combined [1]-210:5
COMER [2]-392:10,
452:14
Comer [1] - 204:12
comfortable [2] -
327:10, 433:23
coming [44]-207:3,
212:7, 223:19,
238:10, 239:10, 264:15, 267:11,
269:13, 269:15
270:4, 273:4, 275:4,
278:2, 281:3, 285:4,
285:6, 290:1, 290:12,
291:5, 291:6, 299:18,
301:9, 301:18,
306:19, 323:11,
324:25, 330:7, 333:7,
351:21, 366:14,
372:25, 375:6, 376:6, 377:15, 402:13,
405:25, 411:6,
426:16, 444:17,
462:14, 464:14,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

364:16, 365:6,	246:21, 274:8,	259:19, 259:21,	248:13, 248:14,	393:14, 410:5,
373:22, 381:5,	285:13, 288:10,	297:10, 398:13	248:16, 249:15,	439:13, 441:15,
386:11, 387:12,	290:1, 290:7, 295:25,	425:11, 467:4	268:19, 268:20,	448:11
388:20, 388:25,	305:18, 324:16,	completed [1] -	268:22, 299:14,	considering [4] -
398:19, 416:3,	330:9, 330:14,	413:21	368:20, 399:24	211:21, 321:12,
437:19, 439:18,	330:16, 332:21,	completely [6] -	conditions [2] -	413:16, 421:9
440:5, 450:7, 451:4,	333:4, 333:8, 336:16,	215:9, 226:12, 257:5,	234:15, 235:20	consistent [1] -
453:20, 459:7, 463:2	336:24, 336:25,	349:6, 361:14, 384:1	conducted [4] -	425:6
commenting [1] -	338:7, 338:10, 339:9,	complex [3] -	209:15, 209:17,	consists [1] - 403:4
250:11	357:13, 359:20,	232:23, 344:19,	210:1, 353:7	constant [1] - 344:2
Comments [23]-	362:5, 365:8, 385:13,	358:19	cone [1] - 225:19	constantly [4] -
205:7, 205:10,	400:17, 402:2, 403:2,	complexity [1] -	conference [1] -	285:12, 300:5,
205:11, 205:13,	403:3, 403:20,	317:15	441:16	314:25, 343:6
205:14, 205:15,	404:12, 407:6, 407:7,	compliant [1] -	confidence [14] -	consulted [1] -
205:16, 205:17,	410:8, 411:19,	335:14	249:2, 276:13,	432:17
205:18, 205:19,	412:18, 412:25,	comprehensive [2] -	276:17, 279:19,	contact [3] - 339:17,
205:20, 205:21,	413:3, 416:23, 417:8,	245:2, 356:10	307:13, 308:22,	339:19, 339:25
205:24, 206:2, 206:4,	421:4, 422:9, 423:12,	compressed [1] -	389:18, 390:1, 390:8,	contaminant [2] -
206:5, 206:6, 206:7,	426:6, 428:1, 428:3,	255:13	390:18, 390:23,	224:19, 224:25
206:10, 206:12,	428:5, 428:15,	compromise [1] -	411:1, 432:9, 433:2	contaminants [12] -
206:13, 206:16,	428:24, 429:13,	434:5	confident [3] -	222:1, 223:11,
206:18	433:17, 436:24,	compromises [1] -	307:24, 308:19,	223:16, 223:17,
COMMENTS [23] -	437:12, 439:11,	367:10	389:18	223:19, 223:21,
251:13, 314:2, 330:4,	440:9, 440:19, 442:2,	computer [1] -	confidently [1] -	224:20, 225:1, 370:1,
347:3, 356:8, 359:22,	442:6, 442:16,	398:11	307:6	370:3, 370:7, 370:10
369:15, 382:1,	442:20, 446:23,	concentrate [1] -	conflict [7] - 208:24,	contaminated [2] -
384:14, 389:4,	447:8, 447:22,	370:10	328:16, 331:9,	370:8, 370:17
391:16, 392:9, 415:8,	455:13, 455:24,	concern	446:22, 446:24,	content [3] - 223:10,
431:19, 434:21,	456:3, 456:4, 457:4	208:21, 208:23,	447:6, 447:23	245:9, 246:10
436:18, 438:24,	458:7, 459:21, 462:1,	210:6, 211:11,	conflicting [3] -	context [6]-301:4,
440:1, 449:8, 449:17,	464:17, 464:21	223:13, 229:13	365:1, 460:13, 460:14	317:2, 318:10,
450:5, 451:2, 453:18	community [54] -	254:17, 255:5,	conflicts [2] -	318:18, 324:7, 419:17
comments [38] -	209:21, 240:1, 240:5,	257:12, 274:22,	334:12, 363:17	continually [4] -
277:16, 305:23,	240:14, 240:18,	275:4, 277:1, 277:7	confusing [3] -	216:4, 240:22,
313:23, 320:15,	249:22, 272:8,	281:19, 282:7,	411:25, 412:7, 435:13	285:14, 395:23
331:19, 331:20,	275:24, 283:3, 295:7,	287:25, 288:10,	confusion [3] -	continue [11] -
332:5, 336:12,	297:2, 304:14,	300:9, 325:11,	419:8, 446:20, 446:21	209:10, 216:22,
352:19, 354:19,	333:21, 337:19,	326:19, 329:15,	congregated [1] -	264:16, 275:3, 280:7,
364:13, 387:10,	337:21, 337:22,	334:23, 335:2,	217:11	280:22, 301:19,
387:11, 387:14,	338:25, 351:18,	341:11, 349:12,	conjunction [2] -	322:18, 409:10,
421:25, 438:5,	366:1, 385:10,	350:3, 360:6, 362:14,	225:14, 447:17	430:7, 465:13
438:11, 438:14,	385:15, 385:25,	364:17, 366:7,	conscience [1] -	continued [2] -
438:17, 438:23,	399:21, 400:15,	395:10, 399:9, 410:5,	396:18	315:19, 409:4
443:23, 443:25,	403:5, 405:16, 406:1,	454:12, 454:13	consensus [1] -	continues [3] -
449:6, 449:14,	406:2, 406:7, 412:5,	concerned [8] -	325:11	209:12, 245:10,
450:21, 450:22,	413:7, 416:19, 417:8,	225:22, 282:1,	consequences [1] -	313:16
450:24, 450:25,	417:12, 417:16,	284:14, 341:23	345:1	continuing [2] -
451:15, 451:18,	417:17, 418:11,	362:9, 367:13,	conservation [12] -	229:8, 287:6
451:20, 451:25,	418:13, 418:17,	374:20, 375:19	214:6, 238:1, 238:13,	continuously [1] -
452:2, 452:9, 452:22,	419:10, 426:1,	CONCERNING [1] -	325:25, 328:14,	287:5
457:16, 458:1, 460:3	431:16, 440:18,	201:5	375:7, 376:2, 376:4,	contracting [1] -
commission [1] -	440:20, 440:21,	concerning [2] -	441:22, 445:16,	359:7
356:20	447:2, 447:9, 447:24,	281:14, 459:24	447:9, 456:13	contribute [4] -
commit [1] - 387:22	448:22, 451:6, 458:3,	concerns [27] -	conserve [3]-460:6,	209:24, 328:1, 363:4,
commitments [2] -	459:8	227:3, 238:24,	460:14, 460:17	383:21
217:4, 311:6	community-based	241:15, 245:6,	CONSIDER [1] -	contributed [2] -
committed [4] -	[5] - 333:21, 385:10,	246:21, 254:17,	201:4	211:1, 243:13
217:4, 217:7, 302:21,	385:15, 385:25,	274:6, 277:19,	consider [20]-	contribution [1] -
302:25	399:21	283:19, 286:22,	212:8, 212:10,	327:21
committee [3] -	companies [1] -	295:5, 320:17, 326:5,	277:22, 281:20,	contributions [1] -
208:17, 360:11,	387:3	329:5, 332:20,	297:1, 315:11,	365:10
360:23	compare [2] -	332:21, 332:24,	318:14, 323:12,	control [5] - 243:14,
Committee [5] -	238:15, 370:1	334:11, 334:17,	327:1, 333:25,	300:11, 301:22,
208:19, 210:14,	compared [4] -	334:18, 342:1,	421:15, 441:7,	302:2, 375:13
337:8, 360:12, 360:19	210:21, 226:4,	343:10, 364:13,	443:16, 450:12,	convenient [1] -
common [2]-219:8,	274:20, 404:16	410:12, 423:9, 444:1,	453:11, 453:13,	217:9
304:5	comparing [2] -	448:22	461:1, 461:4, 461:25,	conviction [1] -
communicate [2] -	224:17, 352:24	concludes [5]	462:17	292:14
401:22	comparison	330:1, 401:4, 452:5,	considerable [1] -	cooked [1] - 421:17
communication [4] -	354:12, 354:13, $378: 5$	453:17, 454:5	394:11	cooperation [3] -
263:4, 401:13,	compatible [1] -	concluding [1] -	consideration [8] -	209:6, 363:15, 401:13
401:20, 402:3	325:8	455:20	212:12, 281:11,	coordinate [2] -
Communications [1]	compensated [1] -	conclusion [2]	315:17, 329:12,	264:5, 264:7
- 202:7	429:24	212:18, 448:17	335:23, 354:19,	coordinator [1] -
communities [88] -	compensation [2] -	condition [22] -	453:2, 457:12	403:7
208:14, 209:6, 209:8,	406:17, 429:20	210:22, 211:3, 220:3,	considered [15] -	Coordinator [2] -
209:11, 209:19,	compete [1] - 393:5	231:21, 233:13,	210:14, 211:8,	202:7, 204:7
216:21, 216:23,	compilation [1] -	235:3, 235:11,	227:24, 295:23,	Coral [4]-373:12,
239:2, 241:5, 241:7,	335:4	238:10, 239:2, 239:9,	319:16, 327:9, 328:6,	376:16, 440:11,
241:8, 245:24,	complete [7] - 249:1,	244:20, 248:11,	343:5, 361:4, 392:15,	440:13

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

core [2] - 221:16,	covers [1] - 275:20	380:19, 381:9,	204:13, 257:25,	$453: 2,457: 11,$
Corey [1] - 203:20 corner [1] - 215:20	crashing [1] - 257:13	407:11	$\begin{aligned} & 262: 25,271: 10, \\ & 297: 12,304: 12, \end{aligned}$	$461: 16,465: 4,465: 7$ $\text { decision-making } 6]$
CORPORATION [2] -	create [1] - 463:20	cup [1] - 235:6	304:20, 305:22,	- 324:10, 325:15,
206:14, 452:20	created [3] - 305:14,	curious [2]-258:5,	336:17, 347:7,	325:18, 337:6,
correct [9]-300:25,	408:12, 459:20	292:25	352:14, 352:17,	457:23, 461:16
301:23, 301:24,	creating [1] - 331:18	- 218.11,	354:21, 391:12,	decisions [17] -
302:1, 302:15,	credit [2] - 440:12,	243:7, 339:3, 382:12,	391:13, 392:1, 416:1,	278:22, 295:1,
347:11, 389:8, 435:2,	440:21	389:7, 408:24, 446:5	417:3, 417:20, 418:1,	302:18, 309:12,
436:22	credits [4] - 411:18,	currents [3] -	418:23, 419:2, 419:5,	322:22, 328:4,
cortisol [1] - 221:15	435:16, 440:12,	215:16, 215:18, 370:9	419:23, 427:16,	334:19, 336:21,
cost [4] - 259:24,	440:20	cut [9]-225:24,	427:17, 427:20,	341:24, 365:16,
301:15, 359:5, 359:8	crew [1] - 296:6	254:25, 255:19,	430:2, 430:21, 431:9,	387:1, 415:18,
counsel [3] - 324:15,	crews [1] - 266:5	255:22, 312:14,	432:17, 432:20,	445:25, 446:16,
325:3, 465:14	crisis [1] - 272:24	399:15, 422:6,	433:5, 433:10, 434:8,	456:1, 461:15, 466:7
Counsel [1] - 202:8	critical [5] - 246:11,	424:13, 426:9	434:10, 453:17,	decline [28]-210:23,
count [18]-222:11,	300:13, 343:16,	ts [3]-256:1,	454:3, 454:14, 459:9,	233:21, 235:1, 246:9,
222:12, 237:17,	345:24, 424:2	405:14, 424:20	459:12, 463:18,	269:9, 272:11, 273:2,
238:19, 247:2, 247:3,	criticism [3] - 300:6,	cutting [1] - 255:5	463:23, 464:3, 465:9	273:7, 274:23,
270:2, 274:19, 286:4,	337:4, 354:12	CWS [2] - 323:21,	David's [1] - 419:24	278:11, 278:12,
307:20, 307:22,	cross [2]-214:25,	329:11	day's [1] - 444:11	278:21, 278:24,
307:25, 308:4, 308:8,	281:5	cycles [1] - 287:3	days [28]-211:15,	279:2, 280:5, 293:18,
308:17, 309:5, 309:17	crude [2] - 237:15,		231:6, 231:14,	293:21, 306:17,
counted [5] - 269:7,	238:20	D	231:16, 231:17,	320:6, 334:15,
269:8, 270:21, 271:1,	cruel [2] - 363:25,		248:7, 256:15,	335:22, 353:4,
271:2	364:6	D'EÇA [3] - 325	256:16, 256:20,	353:11, 353:15,
counterclockwise	CSR(A [1] - 467:13	329:22, 418:5	258:19, 259:25,	353:16, 389:11,
[1] - 215:16	cub [28] - 223:22	d'Eça [1] - 202:8	260:23, 265:9,	389:17
counting [6] - 269:8,	232:4, 236:23, 237:4,	damage [4] - 254:11,	265:12, 283:15,	declined [6] -
269:23, 269:24,	237:20, 237:22,	254:12, 374:13,	283:17, 295:10,	233:20, 237:23,
303:20, 308:8, 308:23	268:3, 280:19, 281:3,	406:17	332:25, 338:16,	248:14, 249:4, 289:7,
countries [4] - 217:3,	351:2, 364:18,	damaged [1]	339:2, 368:24,	350:23
328:18, 328:25,	377:10, 377:15,	422:21	369:24, 375:2,	declines [9] -
374:22	377:16, 377:17,	damper [1] - 290:13	375:17, 455:10,	210:22, 210:23,
country [2]-388:14,	377:21, 377:22,	Dan [3] - 201:19,	465:19	211:2, 211:6, 211:13,
463:17	378:3, 378:5, 378	207:22, 402:21	dead [1] - 350:4	243:24, 244:1,
counts [2]-252:17,	378:7, 378:8, 378:12,	danger [2]-297:20,	deadlines [1] -	247:21, 274:21
275:23	378:13, 380:5,	458:9	446:15	declining [12] -
couple [14] - 210:17,	380:21, 407:3	dangerous [1] -	deal [8]	233:25, 272:16,
230:3, 264:19, 282:4,	cubs [100]-220:13,	310:2	329:5, 333:9, 344:5,	272:18, 272:21,
325:23, 342:5,	220:20, 220:25,	dark [2] - 222:15	344:9, 403:1, 437:3,	322:17, 331:6,
352:19, 359:25,	222:18, 223:13,	222:21	437:13	331:25, 373:17,
369:7, 387:20,	232:11, 233:10,	darker [1] - 298:6	dealing [6] - 273:6,	373:18, 404:24, 405:1
396:15, 422:2, 444:9,	234:25, 235:9, 236:1,	dart [2]-266:10,	295:21, 312:5,	decrease [5] -
455:10	236:6, 236:11,	285:10	322:22, 363:1, 363:18	410:18, 410:20,
course [5] - 21	236:21, 237:1, 237:4,	dashed [1] - 235	deals [1] - 392:16	425:15, 425:24, 446:5
258:3, 327:15, 364:2,	237:7, 237:9, 237:17,	data [41]-210:10,	dealt [2] - 411:11,	decreased [2] -
433:24	237:21, 237:23,	220:7, 225:10, 230:9,	419:3	209:6, 210:20
court [1] - 292:14	242:15, 256:4, 256:9,	232:24, 245:21,	Dean [3] - 202:23,	decreases [1] -
Court [1] - 467:14	257:5, 257:20,	247:20, 249:6, 254:1,	439:24, 443:22	211:19
COURT [1] - 458:4	267:10, 267:20,	259:18, 259:19,	DEAN [1] - 440:2	decreasing [1] -
covariate [1] -	267:22, 267:24,	259:21, 275:2,	debate [1] - 410:1	225:2
315:13	268:23, 268:25,	280:11, 281:4,	decadal [1] - 287:3	deducted [1] - 458:8
Cove [38]-205:16,	269:11, 271:15,	292:23, 294:18,	decade [1] - 302:12	defence [19]-209:7,
227:20, 241:25,	271:16, 271:20,	310:6, 315:7, 319:1,	decades [1] - 433:19	405:24, 406:1, 406:3,
273:12, 289:25,	274:19, 274:20,	333:22, 338:20,	December [3] -	412:21, 412:24,
346:25, 369:13,	279:22, 309:23,	342:22, 353:22,	231:8, 314:13, 318:19	413:1, 414:8, 414:21,
378:21, 381:22,	310:17, 312:4, 312:5,	353:23, 353:24,	decide [9]-281:22,	414:24, 417:8,
405:19, 406:5,	313:15, 313:16,	354:7, 354:8, 355:1,	307:12, 323:24,	417:10, 417:14,
406:11, 412:25,	319:13, 341:18,	357:13, 357:17,	364:19, 383:5,	429:19, 429:24,
414:19, 415:2, 415:7,	341:19, 347:24,	357:22, 357:24,	437:14, 441:2, 448:14	437:9, 441:10, 443:5,
416:16, 416:18,	348:12, 348:14,	357:25, 358:20,	decided [6] - 218:24,	448:25
416:20, 416:24,	348:16, 348:17,	359:2, 384:21,	283:11, 356:11,	defence-of-life-and
416:25, 417:23,	349:5, 350:13,	384:22, 409:18	359:11, 389:10,	-property [3] - 412:21,
417:24, 418:15,	350:17, 350:19,	database [1] -	437:17	$412: 24,413: 1$
423:12, 426:3,	350:21, 350:23,	220:19	decides [2]-354:10,	defend [1] - 445:8
427:11, 431:15,	363:23, 364:4, 365:4,	date [16] - 213:5	441:3	defended [1] -
436:25, 437:1,	372:3, 373:7, 373:23,	226:17, 229:18,	decimating [1] -	362:10
437:12, 437:13,	374:6, 374:9, 374:11,	230:2, 233:1, 238:2	272:13	defending [1] - 300:7
438:13, 441:14,	375:4, 375:10,	259:7, 279:23,	DECISION [1] -	defense [1]-411:21
444:3, 451:14,	376:13, 376:16,	281:25, 297:1, 345:6,	201:5	defense-of-life-and
455:14, 458:13	376:17, 377:10,	345:7, 367:25,	decision [26] - 212:8,	-property [1] - 411:21
COVE [2] - 203:9,	377:19, 378:8,	442:24, 463:9, 463:22	213:6, 305:5, 305:20,	defer [1]-418:2
369:15	378:10, 378:11,	Dated [1] - 467:8	314:12, 318:12,	deferring [2] -
cover [5] - 215:10,	379:2, 379:4, 379:5,	dates [6]-229:1,	324:10, 325:9,	279:17, 335:9
229:19, 229:24,	379:13, 379:14,	229:14, 279:23,	325:15, 325:18,	defined [1] - 266:7
230:25, 231:2	379:17, 379:24,	294:10, 299:25	325:21, 337:6,	defining [1] - 322:3
covered [4] - 215:9	380:8, 380:10,	David [50] - 201:21,	364:18, 438:7, 438:9,	definite [1] - 400:8
275:21, 371:23, 372:2	380:12, 380:17,	202:24, 204:3,	443:7, 450:9, 450:12,	definitely [9] -

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2
265:11, 265:16,
291:19, 329:15,
332:16, 339:25,
374:5, 374:11, 392:21
definitively [1] -
320:17
degrades [4] -
371:17, 371:20,
372:3, 372:4
degree [4] - 290:21
291:10, 328:21, 331:5
delay [1] - 239:22
delayed [3] - 216:22,
239:25, 268:16
delegation [1] -
300:2
deliberations [1] -
277:20
delineation [2] -
219:6, 337:15
demands [1] - 239:8
demise [1] - 368:5
demography [1] -
233:17
den [10] - 256:22,
256:23, 257:3, 257:7,
271:12, 271:13,
287:20, 310:22,
380:19
Dene [2]-242:12,
463:17
Denis [1] - 202:6
denning [18] -
217:23, 217:24,
218:13, 219:4, 243:3,
257:4, 261:5, 268:24,
271:7, 271:8, 271:15,
282:14, 287:20,
368:1, 368:3, 368:13,
368:15, 375:22
dens [14]-232:9,
256:21, 269:13,
269:14, 269:15
269:17, 271:9,
271:16, 308:10,
310:21
density [3]-211:6,
246:25, 247:7
department [21]-
209:22, 211:1,
281:15, 285:20,
300:18, 302:16,
304:3, 323:10,
323:15, 327:3,
328:11, 329:9, 365:8,
387:15, 387:25,
388:16, 393:24,
$388: 16,393: 24$,
$394: 11,441: 12$,
456:24, 457:7
Department [2] -
211:5, 412:2
departmental [1] -
326:21
departments [1] -
263:5
deplete [1] - 319:9
deploy [1] - 253:19
deployed [2] -
225:16, 261:16
deploying [2]-
253:11, 253:19
deputy [1] - 326:22
derived [1] - 354:14
describe [1] - 421:14
design [1] - 304:14
designed [1] -
260:18
desired [1] - 447:20
despite [2] - 229:7,
247:25
destroy [2] - 366:12,
366:15
destroyed [1] -
366:13
destroying [1] -
406:15
detailed [1] - 316:1
details [5] - 207:25,
354:17, 356:14,
432:2, 432:3
detain [1] - 282:16
detect [8]-256:19,
287:11, 353:11,
367:12, 390:8,
390:11, 390:13, 391:4
detected [1] - 382:25
detectible [1] - 288:7
detecting [2] -
320:14, 389:17
deter [1]-292:20
deteriorating [1] -
422:24
determinations [1] -
360:18
determine [11] -
221:8, 222:21,
253:17, 263:23,
271:4, 315:12,
333:19, 355:6,
383:16, 384:3, 447:22
determined [6] -
223:18, 229:15
315:18, 315:20,
360:11, 435:16
determines [1] -
215:25
deterrence [3] -
209:3, 290:11, 328:24
detriment [2] -
429:4, 439:5
develop [7] - 342:9,
342:19, 342:21,
343:14, 345:8,
385:15, 388:7
developed [11] -
224:5, 225:3, 318:23,
319:15, 321:10,
341:10, 343:18,
343:19, 356:22,
399:11, 419:18
developing [3] -
335:3, 339:5, 399:20 development [4] -
342:17, 344:15,
354:12, 402:1
device [4] - 254:18,
254:20, 257:16,
259:19
devices [3] - 252:10,
258:22, 289:14
DFO [3] - 340:4,
351:7, 400:16
dialects [1] - 464:23
dictates [1] - 289:19
die [1] - $266: 2$
died [3]-265:11,
350:6, 366:3
diet [9]-219:4,
221:18, 221:20,
221:21, 421:9,
421:10, 421:15,
424:15, 426:14
diets [2]-224:17,
224:18
difference [9] -
220:6, 231:11,
231:13, 353:16,
353:17, 354:10,
354:15, 386:14,
420:25
differences [6] -
228:23, 354:14,
383:24, 386:19,
386:20, 390:5
different [49] -
221:18, 228:9,
228:12, 228:17,
238:13, 238:14,
257:5, 260:25, 263:9,
267:25, 269:24,
269:25, 277:10,
278:5, 278:13,
278:14, 278:17,
288:3, 294:22,
303:15, 311:21
311:24, 327:25
328:25, 344:18,
358:12, 358:16,
361:14, 361:21,
383:20, 390:24
391:1, 397:1, 397:5,
410:8, 420:22,
420:24, 421:3, 421:6,
436:21, 437:7,
437:20, 448:2, 457:3,
464:7, 464:8, 464:23
differently [1] -
321:23
difficult [12] - 280:9,
293:20, 299:20,
301:6, 309:12, 325:9,
333:6, 334:24,
412:18, 413:3, 461:9, 463:16
difficulties [1] -
463:22
difficulty [1] - 389:17
diggings [1] - 271:13
diminishing [1] -
241:16
direct [3] - 304:13,
398:16, 448:23
directed [1] - 400:6
direction [4] -
251:19, 298:9,
298:10, 304:15
directly [2]-238:15,
368:4
director [3]-272:6,
272:7, 465:25
Director [7] - 202:2,
202:3, 202:4, 202:14,
202:18, 202:22,
202:23
directors [2] -
278:21, 463:24
disagreement [2] -
354:2, 409:15
disappear [1] -
407:20
disappeared [1] -
277:8
disappears [1] -
255:16
disapprove [1] -
305:1
disaster [1] - 341:17
discard [1] - 268:8
discrete [2]-214:2,
214:11
discuss [3] - 399:12,
433:15, 446:11
discussed [5] -
209:14, 391:21,
419:12, 419:13,
459:19
discussing [3]
419:5, 419:21, 446:17
discussion [5] -
408:12, 411:12,

434:3, 435:6, 442:13
discussions [7] -
331:8, 331:21, 386:7,
386:9, 410:17, 412:2,
455:17
disease [1] - 221:10
diseases [2] -
312:21, 313:12
disk [2] - 220:10,
398:1
dislike [1] - 338:2
disobey [1] - 424:17
dispel [1] - 300:4
dispute [1] - 419:17
disrupting [1] -
424:15
disruption [1] -
363:10
dissimilar [1] -
248:22
dissociative [2] -
396:23, 397:6
distance [6]-232:1,
252:22, 253:9,
266:11, 269:22, 382:6
distances [4] -
253:16, 269:11,
393:4, 393:20
distinct [1] - 222:15
distributed [1] -
339:18
distribution [4] -
213:21, 213:24,
338:16, 338:19
disturb [4]-226:23,
258:24, 284:16, 396:2
disturbance [4] -
219:5, 226:7, 287:19,
363:10
disturbed [2] -
226:10, 424:14
dived [1] - 276:9
diversionary [1] -
240:25
divided [1] - 237:18
docile [1] - 377:23
document [1] -
250:18
documentaries [1] -
297:12
documented [4] -
211:12, 462:5,
464:22, 464:25
documents [1] -
453:13
dog [13]-273:10,
273:11, 273:20,
290:4, 290:5, 290:7,
290:8, 292:3, 292:5,
292:11, 292:16,
292:17
dogs [6] - 292:7,
292:19, 292:21,
367:18, 373:15
done [67]-214:15,
223:11, 223:12,
223:23, 226:9, 230:3,
240:25, 242:23,
243:25, 247:4,
247:16, 248:19,
248:20, 254:12,
257:7, 258:9, 260:3,
267:4, 267:14,
271:21, 272:8, 272:9,
275:11, 276:2, 279:9,
282:8, 282:22, 288:4,
290:11, 294:14,
297:16, 298:18,
298:24, 303:20
308:15, 324:1, 325:1,
$327: 6,333: 13$,
$333: 17,337: 11$,
344:11, 356:12,
360:5, 367:18, 369:6, 377:6, 380:6, 381:22, 382:21, 385:22,
387:24, 393:22,
395:2, 395:3, 395:22,
396:18, 399:2, 403:6,
435:14, 437:5, 437:9,
444:3, 447:21,
447:24, 459:10,
465:19
Donna [1] - 202:9
doom [1] - 321:3
doors [1] - 309:7
dose [1] - 265:22
dot [1] - 247:12
dots [4]-229:24,
230:1, 230:5, 349:18
dotted [1] - 281:1
double [4] - 340:12,
340:18, 376:3, 414:20
double-check [3] -
340:12, 340:18,
414:20
double-edged [1] -
376:3
doubt [4] - 254:10,
291:8, 291:14, 382:16
down [50] - 215:18,
229:5, 230:13,
233:24, 234:21,
235:24, 236:9,
236:10, 237:21,
239:25, 247:12,
260:19, 261:3, 261:7,
266:12, 266:14,
266:16, 266:17,
275:1, 277:7, 281:3,
287:3, 287:4, 288:14,
289:14, 289:17,
296:20, 297:2,
319:21, 320:3,
327:10, 328:9,
343:20, 364:2,
376:20, 389:11,
395:20, 397:13,
398:5, 399:15,
405:15, 413:25,
428:25, 429:19,
430:5, 440:22, 443:8,
460:16, 465:5, 467:5
download [1] -
259:18
downs [3] - 230:8,
234:10, 341:21
downward [6] -
209:15, 210:4,
230:10, 236:3, 246:1,

352:23

downwards [1] -
236:19
Dr [2]-202:15, 211:1
DR [60]-213:13,
252:4, 252:7, 254:16, 258:15, 263:2, 265:4,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

$\begin{aligned} & \text { 208:10 } \\ & \text { exacerbated }[1] \text { - } \end{aligned}$	$440: 24$ explanations [1] -	$\begin{aligned} & \text { false [5] - 297:15, } \\ & \text { 297:17, 298:22, } \end{aligned}$	$\begin{aligned} & 380: 20,381: 8,381: 9, \\ & 381: 15 \end{aligned}$	$\begin{aligned} & \text { field [3] - 266:5, } \\ & 296: 6,296: 18 \end{aligned}$
211:12	241:19	298:24, 300:13	feeds [2] - 292:8	fieldwork [1] - 383:4
exact [8]-266:20,	explicit [1] - 327:6	falseness [1] -	380:22	fieldworker [1] -
307:24, 308:18,	exploring [2] -	297:10	fellow [1] - 461:2	459:11
309:10, 309:15,	212:10, 285:25	familiar [1] - 464:20	felt [3]-257:6,	fight [1] - 462:25
352:23, 433:25, 434:2	explosion [1] -	families [2] - 442:2,	433:22, 434:5	fighting [3] - 301:7,
exactly [6]-222:22,	345:11	466:19	female [51] - 220:	405:12, 441:19
276:20, 308:13,	export [2]-212:20,	family [2] - 267:6,	221:3, 221:8, 223:8	figure [6]-226:24,
355:9, 381:18, 432:11	315:24	379:15	226:3, 226:4, 226:5	228:16, 264:2,
exaggeration [1] -	expressed [3]	far [14] - 215:5,	228:17, 232:7, 233:3,	353:19, 411:5, 441:21
231:22	209:9, 334:11, 448:22	217:15, 227:10,	235:5, 236:16,	fill [4] - 247:16,
examine [2] - 369:2,	expression [1] -	227:20, 227:21,	237:19, 239:4, 255:8,	247:17, 324:7, 432:2
381:10	274:22	229:25, 269:11,	255:19, 256:6,	final [11]-212:17,
example [19]-315:9,	extensively [1]	269:12, 286:15,	256:11, 256:12,	214:25, 277:15,
320:25, 327:21,	453:6	296:25, 362:18,	265:24, 268:7,	295:20, 305:24,
328:23, 329:4,	extent [2]-317:23,	378:4, 430:12, 455:10	271:16, 271:20,	386:11, 430:5, 460:2,
331:16, 336:15,	397:17	fashioned [1] -	271:21, 281:2,	461:11, 462:18,
345:16, 394:1,	extinct [1] - 272:	262:10	310:20, 313:14,	465:10
395:25, 398:17,	extra [3]-229:6,	fast [5] - 227:10	319:4, 319:8, 350:17,	finalized [2] -
404:23, 407:25,	239:14, 301:10	249:14, 365:13,	368:22, 377:10,	388:11, 446:21
417:9, 425:18, 428:2,	extreme [1] - 299:	367:4, 466:13	378:6, 379:6, 379:20,	Finance [1] - 202:3
439:8, 441:8, 446:3	Ezra [17] - 204:8,	fasten [1] - 372:22	380:8, 380:10,	finances [1] - 298:20
examples [3] -	359:15, 403:6, 408:6,	faster [2]-273:21,	380:11, 405:13,	financially [3] -
224:7, 407:24, 448:19	413:21, 413:22,	273:22	405:16, 407:7, 407:8,	209:24, 298:21,
exceeded [1] - 236:7	415:4, 415:16,	fat [45] - 219:22,	407:9, 411:17,	446:13
exceedingly [3] -	415:25, 432:6,	219:23, 219:24,	435:24, 440:11,	findings [2]-303:9,
220:4, 232:6, 232:8	432:23, 432:25,	220:1, 220:4, 221:4,	440:12, 440:18, 443:6	314:6
exceeds [1] - 447:1	433:13, 434:10,	221:11, 221:16,	females [63] -	fine [6]-321:15,
except [1] - 402:14	435:4, 436:12, 455:12	223:9, 223:20,	220:13, 225:19,	322:24, 350:25,
exception [2] -		223:21, 224:16,	228:24, 232:9	374:5, 376:18, 392:1
311:4, 311:7		224:23, 224:25,	233:10, 233:11,	finger [1] - 338:4
exchange [1] -		232:2, 232:6, 232:8,	234:24, 235:13,	finish [5] - 278:4,
330:14	fabric [6]-260	232:9, 232:12,	235:14, 235:17,	388:13, 391:11,
exclude [1] - 421:9	371:16, 371:19,	232:14, 232:16,	235:21, 235:25,	444:16, 444:19
exclusively [1] -	371:24, 372:2, 372:9	232:20, 241:24,	236:6, 236:11,	finished [1] - 446:14
319:11	face [4]-299:8,	245:9, 246:2, 246:5,	236:20, 236:21,	First [1] - 296:11
Executive [1] - 202:2	$312: 16,345: 15$	$246: 6,246: 7,246: 8 \text {, }$	$236: 23,237: 1,237: 3,$	first [49] - 207:24,
executive [2] - $408 \cdot 14465 \cdot 25$	361:20	246:9, 249:15,	237:4, 237:7, 237:8,	208:9, 216:11,
$\begin{gathered} \text { 408:14, 465:25 } \\ \text { exercise [2] - } \end{gathered}$	facilitate [1] - 446:16 facilitated [1] -	$\begin{aligned} & 267: 18,312: 12 \\ & 312: 17,382: 22 \end{aligned}$	$\begin{aligned} & 237: 9,237: 16 \\ & 237: 19,237: 21, \end{aligned}$	$\begin{aligned} & 216: 14,222: 25, \\ & 232: 22,235: 23, \end{aligned}$
212:14, 357:20	296:25	382:25, 383:25,	242:15, 254:23,	240:7, 243:17, 246:4,
exist [5] - 258:2	fact [18] - 290:2	397:14, 398:2, 398:7	255:1, 256:9, 256:21,	248:17, 251:12,
259:11, 294:18,	296:16, 299:10,	399:3, 399:24, 400:13	257:20, 264:24,	257:17, 258:15,
379:21, 392:16	301:12, 308:16,	fate [1] - 261:17	267:16, 267:22,	258:21, 263:2, 265:5,
existed [1] - 420:10	313:1, 340:19,	father [3]-313:5	267:23, 271:9,	265:6, 266:20,
existence [1] -	353:15, 353:18,	313:8, 332:8	271:15, 281:1,	267:24, 271:6, 272:6,
421:15	377:22, 404:10,	fathers [2]-220:14,	309:22, 319:10,	273:17, 276:14,
existing [2] - 342:22,	404:14, 407:8,	220:17	319:12, 347:11,	279:8, 282:25,
403:25	425:12, 425:15,	fatter [1] - 298	347:16, 347:24,	287:13, 297:16,
exists [1] - 420:4	437:3, 437:8, 461:10	favour [1] - 427:1	348:14, 348:22,	297:18, 314:5,
expand [2]-218:14,	factor [3] - 287:19,	favoured [2]	350:20, 350:23,	325:24, 332:4,
225:24	290:6, 369:4	361:19, 361:20	366:8, 374:1, 375:4,	339:13, 341:16,
expands [1] - 216:14	factors [4]-2	Fawcett [1] - 202	375:10, 379:16,	348:3, 357:11, 360:2,
expanses [1] -	243:13, 280:7, 295:4	fear [1] - 292:22	379:17, 380:17,	366:24, 373:22,
	Factory [4]-242:24,	feasible [2]-217:12,	406:25, 407:10,	379:7, 380:18, 382:4,
expect [6] - 238:21	316:15, 316:23,	245:3	411:14, 434:25,	389:25, 393:12,
266:9, 379:16,	317:18	feature [1] - 220:22	436:2, 440:19	395:13, 401:3, 419:9,
424:21, 459:2, 462:21	facts [2] - 446:23,	features [3]-219:8,	fence [1]-286:18	420:1, 445:21
expectations [1] -	449:12	252:8, 253:6	Ferguson [2] -	firstly [1] - 403:6
330:16	failed [3]-223:7,	February [3] -	245:21, 351:7	fiscal [1] - 329:14
expected [1] - 212:6	261:19, 362:20	210:15, 360:24, 467:9	ferry [1] - 296:19	fish [4] - 244:25,
expensive [1] -	failures [2]-374:7,	fed [1] - 380.24	fertilized [1] - 268:16	245:15, 245:16,
244:12	374:8	federal [12] - 272:25,	fetus [3] - 309:25,	402:15
experience [4]-	fair [1] - 228:20	335:12, 363:15,	310:3, 313:18	Fisheries [2] - 211:5,
215:15, 462:8, 462:9,	fairly [1] - 233:19	365:4, 384:24, 385:6,	fetuses [1] - 310:22	245:22
463:19	faith [2]-338:2,	446:12, 446:14,	few [21] - 210:19,	fishing [2] - 241:10,
experiences [1] -	342:2	446:18, 462:15,	214:3, 240:22,	293:2
380:9	faithfully [1] - 290:20	464:10, 464:14	272:22, 276:11,	fist [2] - 255:6,
experiencing [1] -	fall [18]-216:11,	Federation [1] -	314:4, 318:7, 320:16,	373:25
215:14	235:5, 236:4, 238:22,	462:25	334:5, 347:6, 391:22,	fit [1] - 255:6
experiment [1] -	239:23, 257:4,	feed [10] - 227:10,	405:22, 407:24,	fits [3]-296:16,
440:24	260:20, 261:21,	242:2, 253:21, 256:4,	408:11, 414:9,	345:7, 373:25
expert [4] - 213:9,	268:15, 268:17,	292:8, 367:23,	427:18, 428:12,	fitting [2]-255:2,
306:24, 389:11, 393:3	344:23, 348:14,	373:15, 373:16,	428:13, 465:19,	425:4
expertise [1] - 327:3	348:22, 350:18,	380:25, 381:1	466:11,	five [44]-217:3,
explain [6]-225:9,	368:4, 368:20,	feeding [10] -	fewer [4]-279:22,	$219: 2,219: 25,220: 4,$
238:25, 318:9,	379:19, 405:19	223:14, 240:25,	280:17, 310:17,	222:9, 231:24,
434:25, 450:16	falls [2] - 325:17,	246:17, 290:25,	423:21	231:25, 232:3, 232:8,
explained [1] -	327:14	329:6, 368:21,	fidelity [1] - 216:2	249:5, 261:7, 261:9,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

262:6, 262:8, 314:10,	$407: 13,422: 2,455: 22$	230:23, 230:24,	gaining [1] - 301:10	437:4
328:18, 333:18,	food [17]-211:8,	231:5, 231:9, 231:10,	gall [1]-312:24	vernment [30]
361:17, 363:19,	211:10, 241:2,	231:12, 231:18,	gallery [2] - 452:2,	263:5, 272:7, 272:25,
374:22, 377:11,	244:14, 273:22,	239:22, 249:12	452:8	273:1, 278:10,
377:20, 378:12,	278:4, 278:9, 278:17,	freeze-up [12] -	game [1] - 242:21	301:21, 305:9,
378:13, 379:24,	290:9, 293:2, 313:6,	211:15, 229:1,	gaps [1] - 246:24	337:14, 360:13,
382:22, 383:18,	352:12, 393:16,	229:14, 230:21,	garbage [10] - 240:6,	364:3, 376:13, 385:7,
389:9, 389:13, 390:9,	393:17, 407:16,	230:22, 230:23,	240:8, 240:9, 240:11,	387:2, 422:20,
390:12, 390:14,	421:7, 429:3	230:24, 231:5, 231:9,	240:13, 240:14,	423:16, 435:19,
390:16, 390:21,	footing [1] - 363:20	231:10, 231:18,	240:21, 240:23,	441:12, 446:12,
404:17, 413:24,	FOR [2] - 201:5,	239:22	291:4, 291:8	450:7, 461:10,
429:18, 429:21,	201:6	freeze-ups [1] -	garments [1] -	461:11, 461:12,
435:1, 436:6, 438:2,	foraging [1] - 246:17	249:12	420:20	461:20, 461:24,
440:22	force [1]-328:16	freezing [1] - 366:3	gather [1] - 424:4	462:16, 462:21,
five-out-of-five [1] -	forefathers [1] -	frequencies [3] -	gauge [1] - 307:11	$464: 10,464: 14$
232:8	421:16	263:3, 264:8, $264: 9$	gear [1] - 420:20	464:16, 464:24
five-pound [2] -	foregoing [1] - 467:3	frequency [6] -	geese [1] - 350:3	GOVERNMENT [4] -
378:12, 378:13	forever [5] - 227:3,	253:13, 263:8, 263:9,	general [6]-216:6,	201:4, 202:17, 330:4,
five-pounder [1] -	227:6, 280:22,	263:20, 263:25, 264:1	238:4, 249:23, 315:1,	450:5
379:24	317:25, 464:7	frequent [2] -	316:3, 439:23	Government [20] -
five-year [2] - 249:5,	forget [5] - 333:15,	333:12, 333:17	generally [15] -	205:11, 206:18,
390:14	456:1, 457:23,	frequently [2] -	214:23, 215:18,	209:2, 209:10,
fix [3] - 344:25,	462:14, 463:10	218:3, 332:12	215:22, 216:15,	209:18, 211:22,
437:15, 437:21	forgot [2]-267:15,	fresh [1] - 271:13	219:1, 232:13,	211:25, 326:6,
fixed [5] - 214:24,	295:14	Friday [1] - 466:17	275:12, 292:8,	327:22, 328:18,
322:14, 343:23,	forgotten [3] -	friend [2] - 420:15,	316:11, 320:12,	328:19, 330:2, 330:8,
405:15, 405:22	313:14, 461:16,	440:23	368:21, 369:25,	363:16, 376:19,
flexible [10]-411:8,	463:15	front [3] - 266:15,	370:11, 383:3, 398:3	412:13, 421:14,
434:23, 440:8, 441:1,	formation [1] -	266:16, 328:7	generated [2] -	434:18, 436:23, 456:7
441:3, 442:5, 443:4,	216:22	froze [1] - 366:4	279:15, 338:21	governments [5] -
443:12, 443:13,	former [1] - 370:5	frozen [1] - 292:8	generations [1] -	297:9, 302:14,
443:20	forming [2]-369:8,	frustration [1] -	408:25	302:23, 388:6, 447:2
float [1] - 229:3	407:19	281:7	genetic [2]-395:4,	GPS [4] - 225:16,
floor [8] - 207:10,	forms [3] - 216:11,	full [3] - 268:23,	395:5	226:15, 253:3, 258:20
207:17, 330:3, 347:2,	216:13, 216:19	301:3, 326:21	genetics [8] - 219:5,	grandchildren [1] -
402:17, 402:19,	forth [6] - 284:22,	fully [2]-349:8,	220:11, 220:18	306:10
444:22, 454:21	296:19, 349:19,	438:8	221:1, 224:8, 224:9,	grandfather [3] -
flown [1] - 275:10	360:14, 375:5, 399:24	function [4] - 222:	224:10, 224:13	277:23, 278:7, 306:1
fluctuate [1] - 249:16	forums [1] - 445:7	222:7, 232:17, 367:11	gentlemen [3] -	grandfather's [1] -
fluctuates [3] -	forward [14]-278:6,	functional [2] -	356:5, 369:12, 415:5	278:3
237:11, 237:12,	317:6, 322:18,	344:9, 409:1	geographical [1] -	grandkids [1] -
414:12	329:11, 337:7, 345:9,	fund [1] - 298:23	214:18	404:21
fly [15]-226:12,	400:23, 422:6,	FUND [5] - 203:1,	Gerard [1] - 203:12	grandmother [1] -
226:13, 238:18,	437:15, 441:6, 448:1,	206:8, 206:17, 389:4,	Giles [1] - 202:5	$306: 1$
259:2, 259:11,	448:12, 455:5, 455:15	444:23	girth [1] - 219:20	graph [5] - 235:16,
260:14, 270:2,	four [27] - 233:3,	Fund [10] - 205:19	Gissing [1] - 202:18	236:1, 237:25,
276:10, 284:18,	236:18, 237:3, 237:5,	209:5, 389:2, 439:22,	given [20] - 245:21,	280:25, 413:9
296:22, 308:4,	239:14, 243:10,	444:9, 444:14,	265:25, 334:24,	grateful [1] - 445:6
349:18, 349:19,	256:14, 256:16,	444:21, 449:7, 450:4,	361:1, 389:17,	great [10] - 253:15,
383:6, 394:22	284:4, 284:9, 295:12,	452:2	422:12, 429:8, 429:9,	282:6, 306:1, 314:18,
flying [5] - 275:25,	302:23, 318:23,	funded [1] - 388:9	429:20, 430:18,	387:14, 393:4,
284:17, 284:21,	338:16, 339:2,	funding [6] - 298:21,	430:24, 431:1, 431:6,	393:20, 402:13,
350:1, 396:3	347:22, 348:4,	327:20, 329:10,	437:3, 437:8, 445:4,	455:22
focus [3]-218:21,	348:10, 380:8,	384:24, 385:6, 406:22	446:1, 447:14,	great-grandfather
325:7, 434:1	380:10, 380:12,	funds [2]-385:24,	448:22, 461:13	[1] - 306:1
focuses [1] - 421:8	414:10, 420:1,	429:22	glad [2] - 363:25,	great-grandmother
focussed [3] -	440:13, 464:11,	funny [1] - 466:9	459:20	[1] - 306:1
217:21, 218:6, 327:4	464:12, 466:13	fur [4]-311:23,	glimpse [1] - 253:12	greater [3] - 218:10,
focusses [1] -	four-year [3] -	312:5, 429:1, 429:2	global [3] - 407:17,	239:11, 253:12
217:25	236:18, 464:11,	furs [1] - 312:5	407:18	greed [1] - 442:11
folks [5] - 461:24,	464:12	furthermore [2] -	gloom [1] - 321:3	green [1] - 414:2
463:14, 463:24,	fourth [1] - 222:16	208:20, 212:10	GN [17] - 304:12,	GREENE [7] - 356:9,
464:1, 464:8	Foxe [17]-215:3,	future [27]-222:2,	346:23, 353:3, 353:9,	359:16, 408:8,
follow [18]-210:18,	228:1, 228:12,	$255: 11,275: 5,277: 4$	353:20, 357:14,	$413: 23,415: 17$
226:11, 229:8,	228:15, 228:19,	277:24, 278:1, 278:6,	360:25, 403:23,	432:7, 435:5
289:23, 303:9, 313:7,	250:2, 250:4, 250:6,	295:24, 306:10,	419:12, 447:5,	Greene [1] - 204:8
334:6, 345:17,	403:3, 406:6, 409:19,	322:20, 334:10,	447:13, 447:17,	Greenland [3] -
366:19, 389:15,	409:24, 412:9,	334:16, 342:8,	450:4, 462:15,	331:22, 420:15,
400:1, 400:2, 400:22,	414:16, 440:8, 440:16	342:13, 343:14,	463:14, 464:9	420:16
421:19, 422:2,	fraction [2]-283:23,	346:2, 346:4, 346:10,	GN's [1] - 446:11	grew [3]-256:2,
425:12, 443:11, 446:6	288:16	346:14, 378:14,	goal [13]-323:18,	373:11, 407:2
follow-up [2] -	frame [4]-215:8,	408:24, 419:14,	335:24, 335:25,	grizzly [2] - 268:9,
289:23, 389:15	227:14, 274:24	431:22, 439:13,	364:9, 405:9, 408:21,	306:7
followed [1] - 436:7	frank [1] - 434:3	447:20, 447:25, 455:5	410:17, 446:4, 448:6,	ground [1] - 386:1
following [14] -	free [2]-248:8,		$448: 15,448: 16$	Group [1] - 300:8
211:23, 228:6,	420:18	G	454:17, 460:19	group [11] - 267:6,
230:18, 235:6,	freely [1] - 348:25		goals [5]-331:4,	302:11, 314:23,
$270: 25,350: 12$	freeze [14] - 211:15,		$389: 19,442: 10,$	$323: 21,328: 17,$
351:2, 371:7, 375:7,	229:1, 229:14,	gain [2]-298:21,	$446: 1,447: 18$	$328: 19,328: 20,$
376:5, 382:16,	230:21, 230:22,	301:9	governing [1] -	334:25, 356:19,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

287:10, 288:15, 288:18, 289:8, 294:9, 294:11, 394:10 395:15, 395:19, 395:21, 395:22, 396:1, 397:13, 397:16, 397:18 handled [20] 267:23, 283:13, 283:18, 284:7, 286:9,
287:13, 349:21, 349:22, 368:20, 368:23, 379:22, 383:9, 383:10, 394:19, 395:7, 396:10, 397:12,
399:16, 428:24
handles [1]-238:1
handling [26] -
220:8, 223:3, 224:1,
256:19, 282:7, 283:19, 283:22, 284:8, 285:12, 285:15, 285:22, 286:7, 288:25 289:11, 308:21,
336:11, 343:22,
348:13, 361:18,
367:9, 395:10,
395:13, 395:18
399:9, 399:12
hands [1] - 316:8 hanging [1] - 257:16 happy [6] - 208:3,
213:10, 250:14,
272:12, 278:13, 306:4
harass [1] - 283:7
Harbour [4] - 373:12,
376:16, 440:11,
440:13
hard [14] - 242:4,
247:1, 305:3, 307:11, 327:10, 404:24,
405:2, 406:22, 410:7 421:13, 422:8, 426:5, 462:14, 466:7
harder [3] - 239:5,
443:15, 463:18
hardly [3] - 278:1,
306:17, 404:10
harmed [2] - 420:14,
422:20
Harry [8] - 203:19, 382:2, 383:1, 384:7, 425:17, 438:16, 458:4, 458:12
HARVEST [1] - 201:6 harvest [96] - 211:22,
212:9, 212:11 212:23, 213:7, 223:4, 242:11, 242:16, 243:14, 244:7, 278:23, 294:22, 294:25, 300:5, 300:8 315:14, 316:15 318:17, 319:3, 320:2, 321:16, 321:21, 321:23, 321:25, 322:1, 322:8, 322:19, 322:23, 323:19, 331:22, 333:1, 333:21, 333:22, 335:25, 346:5, 356:10, 356:20, 357:13, 357:25, 362:9, 362:13, 362:15, 362:21, 374:17, 375:1,
375:13, 385:17 400:5, 400:6, 400:9,

403:24, 404:14, 405:7, 405:15, 407:4 410:16, 410:21,
412:4, 412:6, 412:12, 412:13, 413:3, 413:5, 413:7, 413:12, 413:25, 414:1, 414:2, 415:20, 415:24, 417:9, 417:11, 420:7, 422:3, 422:5, 427:25, 429:1, 430:15, 430:19, 431:7, 431:24, 435:17, 437:25, 440:17, 445:9, 447:3, 447:22 448:3, 448:4, 448:24, 450:9, 450:13, 450:15, 453:9, 456:14
harvested [15] -
219:14, 219:16,
312:22, 313:9,
374:24, 399:13,
399:15, 399:23,
428:2, 428:4, 429:3,
435:11, 440:19,
443:9, 453:7
harvester [1]
424:25
harvesters [2] 424:16, 446:19 harvesting [19] 214:20, 240:15,
242:12, 242:22,
242:23, 299:18,
300:6, 316:11,
325:16, 400:15,
400:18, 406:24,
407:23, 411:14,
425:25, 434:24,
435:23, 436:2, 453:11
harvests [4] -
214:14, 245:24,
314:8, 409:3
hauled [1] - 247:3
Hazen [1] - 297:22
head [9]-257:16,
266:12, 266:13,
266:16, 266:17,
266:21, 267:13,
339:17
headed [2] - 228:10,
228:14
heads [2] - 349:5,
390:16
heads-up [1] -
390:16
health [1] - 367:6
healthier [1] - 380:22
healthy [13] - 244:15,
244:16, 244:17,
293:13, 293:15,
293:20, 319:25,
331:19, 331:23,
376:18, 392:22,
393:1, 408:23
hear [30] - 226:8,
272:19, 273:8, 273:9,
277:19, 278:23,
287:24, 289:2, 290:8,
291:6, 297:10,
299:22, 303:8, 305:7,
307:4, 312:7, 330:12
350:4, 386:19,
407:17, 407:18,
427:12, 427:24,
430:12, 433:5,
439:18, 446:23,
457:3, 461:17, 466:16
heard [27] - 208:14,
211:14, 213:21,

240:15, 242:18, 243:20, 261:10, 272:20, 273:24, 275:25, 278:7, 278:13, 289:25 308:10, 329:16 331:21, 332:20, 380:10, 386:8, 396:15, 401:21, 411:8, 416:21, 423:8 437:10, 446:17, 460:18
HEARING [1] - 201:4
hearing [21] - 207:3,
207:22, 272:13
291:5, 307:11, 401:8,
423:8, 423:10,
425:19, 430:9,
433:22, 440:7,
442:17, 444:17,
446:10, 453:14,
454:6, 455:23,
456:21, 458:24, 466:1
heart [3] - 367:3,
367:10, 454:9
hearts [1] - 365:24
heavier [3]-234:11,
234:12, 235:1
heaviest [1] - 378:5
heavily [2] - 327:4,
370:16
heavy [5] - 225:7,
226:4, 234:12,
236:14, 384:2
held [1] - 433:13
HELD [1] - 201:13
helicopter [10] -
219:11, 257:6,
266:10, 267:1, 285:4,
285:6, 296:5, 296:16,
377:13, 394:22
helicopters [1] -
218:10
help [14]-227:7,
295:1, 336:18,
385:18, 386:25,
395:17, 398:16,
408:10, 423:23,
439:6, 447:25,
463:11, 464:25, 465:1
helped [4] - 257:10,
298:23, 412:3, 463:24
helpful [11] - 318:8,
324:5, 324:9, 339:22,
401:11, 432:1, 433:1, 439:3, 439:11,
439:14, 451:5
helping [1] - 304:14
helps [3]-324:7,
336:21, 447:22
herds [1] - 336:20
hereby [1] - 467:3
hi [1] - 396:14
hiccup [1] - 345:10
hide [3] - 311:25,
312:9, 420:21
hides [9]-243:1,
312:3, 316:24,
317:21, 422:16,
422:18, 422:19,
422:21, 441:12
high [13] - 220:3,
233:19, 235:21,
236:7, 245:9, 276:18,
276:22, 331:22,
333:3, 389:18,
446:25, 466:3
higher [10]-322:1,
323:16, 370:3,
370:11, 403:24,

410:25, 428:10,
432:15, 442:7, 442:21
highlighted [1] -
453:3
hind [1] - 266:23
hindrances [1] -
461:15
hips [2] - 219:23,
232:1
hire [1] - 447:16 hired [2] - 387:25,
447:10
historic [2] - 225:10,
334:14
historical [1] - 317:2
histories [1] - 414:24
history [4] - 284:5,
316:9, 317:10, 398:14
hit [2] - 259:12,
358:20
hitch [1] - 465:23
hold [9] - 226:3,
303:9, 303:16,
358:14, 372:6, 423:5,
425:20, 448:18,
458:15
holding [1] - 446:10
hole [2]-254:10,
257:17
holes [3]-246:24,
247:15, 257:13
holistic [1] - 386:16
home [8] - 238:5,
273:21, 418:13,
418:17, 423:11,
465:14, 466:16,
466:18
honestly [1] - 401:10
hope [9]-282:1,
324:25, 401:12,
401:19, 405:15,
405:23, 457:10,
459:2, 466:18
hopeful [1] - 378:16
hopefully [8]
227:17, 263:3,
263:10, 378:13,
387:1, 402:3, 454:18,
456:25
hoping [3]-229:10,
386:22, 438:9
hormonally [1]
268:18
hormones [2] -
221:7, 221:15
HOTEL [1] - 201:13
hour [5] - 267:6,
267:10, 267:14,
349:7, 444:18
hours [3] - 288:7,
349:8
house [2] - 306:13,
366:4
housed [3] - 371:9,
371:12, 371:22
houses [1] - 366:2
housing [1] - 371:23
HTO [27] - 203:5,
203:9, 203:14,
203:18, 203:23,
205:15, 205:16,
205:17, 205:18
206:5, 206:6, 206:13,
272:5, 339:18,
359:22, 364:10,
369:15, 382:1,
384:14, 399:13,
436:17, 436:18,
438:24, 441:13,
451:1, 451:2, 451:8

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

HTO's [1] - 422:3
HTOs [15] - 303:12, 411:15, 423:4,
426:20, 426:21,
428:15, 435:24,
439:3, 439:6, 439:8, 439:12, 439:15
457:4, 461:18, $462: 1$
Hudson [147]
210:1, 210:2, 210:3,
210:8, 210:12, 211:4
211:7, 211:12,
212:13, 213:6,
214:12, 215:1, 215:2,
215:3, 215:6, 215:7,
216:7, 216:13,
216:25, 217:24,
218:5, 221:21,
221:22, 221:23,
227:25, 228:3,
229:17, 229:18, 230:16, 230:24, 230:25, 242:6,
243:18, 245:12,
245:16, 245:23
247:22, 247:23,
247:24, 248:1, 248:3,
248:8, 248:18,
248:21, 248:25,
249:1, 249:4, 249:7,
249:11, 249:19, 249:20, 249:21,
249:23, 249:24,
249:25, 250:5, 250:7, 251:4, 253:22, 261:16, 263:13, 272:21, 274:20, 275:12, 275:22, 277:5, 280:20, 282:11, 293:14, 293:25, 294:13, 294:23, 295:2, 295:15, 308:9, 314:12, 315:22, 316:14, 316:24, 317:18, 317:20, 318:10, 320:10, 320:18, 320:20, 324:8, 330:10, 330:18, 330:22, 332:8, 337:11, 337:12, 338:18, 342:15, 349:15, 350:19, 351:16, 351:17, 352:1, 355:13, 355:14, 357:7, 357:16, 357:24, 360:4, 360:21, 369:25, 370:12, 370:14 370:18, 375:20, 402:18, 403:4, 403:21, 405:17, 409:19, 409:20, 409:24, 412:8, 412:16, 414:16, 415:11, 418:11, 418:12, 418:16, 420:3, 421:5, 425:7, 430:10, 431:8, 437:11, 437:14, 438:20, 442:1, $443: 3$ 446:4, 448:5, 448:8, 448:9, 452:10, 453:4, 453:9, 455:13
HUDSON [1] - 201:7 huge [16] - 241:15, 244:13, 302:9, 302:13, 320:7, 345:20, 350:3, 378:9
$390: 4,390: 5,390: 10$,
$390 \cdot 12390: 20$ 390:12, 390:20, 390:22, 391:5, 465:20 hugely [1] - 422:21 Hugh [10] - 203:24, 384:13, 385:3, 386:4, 387:9, 414:12,
414:13, 439:17 451:23, 457:25
human [16] - 208:22, 208:23, 237:25, 293:6, 331:9, 333:2, 353:14, 360:1, 361:11, 362:4, 362:21, 441:23, 446:22, 447:6, 447:23, 458:20 human-and-bear [1]

- 361:11
human-bear [4]
208:23, 237:25,
333:2, 360:1
human-polar [1] 446:22
human-polar-bear-
conflict [1] - 447:23
humans [2]-211:19, 409:22
hundred [2] - 214:3,
339:16
hundreds [1] -
283:15
hunt [19] - 211:20,
232:19, 239:5,
257:23, 288:1,
306:19, 311:23,
319:11, 366:10,
366:17, 368:8, 404:3,
404:4, 411:19,
414:13, 416:15,
420:12, 420:18,
425:21
hunted [1] - 421:7
hunter [12]-235:14,
239:4, 245:24, 400:4,
416:17, 416:24,
417:22, 425:23,
425:24, 427:10, 441:5
hunters [15] -
219:15, 254:17,
257:12, 273:17,
274:25, 303:12,
303:18, 375:7,
385:16, 400:18,
413:4, 416:13,
424:14, 424:16, 442:1
hunting [32] -
232:18, 241:10,
246:11, 251:23,
251:24, 253:13
253:16, 254:10
254:12, 256:3, 256:5, 268:15, 293:2, 306:6, 306:18, 307:2, 307:3, 316:19, 317:1, 369:6, 404:2, 409:4, 409:10, 413:17, 414:3, 414:4, 414:7, 416:15, 420:20, 421:8
hunts [1] - 414:3

\mid
ice [106] -210.23

ice [106]-210:23,
211:13, 211:14, 211:20, 215:7, 215:9, 215:10, 215:17, 215:18, 215:20, 215:22, 215:25,
216:11, 216:13,

216:17, 216:18, 216:20, 216:21, 216:23, 217:10, 220:14, 225:14, 226:12, 227:10, 227:22, 228:24, 229:3, 229:4, 229:8, 229:13, 229:15, 229:19, 229:21, 229:24, 230:23,
231:2, 231:12, 231:19, 232:13, 232:17, 233:1, 233:13, 234:15, 235:3, 235:20, 238:3, 238:5, 238:9, 239:3, 239:24, 239:25, 240:3, 244:2, 245:7, 245:9, 245:11, 247:3 247:6, 248:5, 248:8, 253:5, 253:6, 255:10 256:5, 258:11,
268:14, 275:12,
277:3, 277:4, 277:6,
286:23, 293:18,
294:10, 297:13,
297:14, 297:20,
297:22, 297:23,
297:24, 297:25,
298:3, 298:4, 298:8,
319:17, 319:20,
320:9, 320:22,
320:23, 322:16,
322:19, 331:7,
331:25, 337:24
345:12, 345:17,
345:18, 368:8,
368:10, 369:6, 369:8,
382:11, 382:12,
382:15, 394:4, 407:19
ice-free [1] - 248:8
idea [5] - 261:12,
263:8, 300:19,
317:12, 375:23
ideally [1] - 397:12
identified [4]
219:13, 337:24
338:1, 355:22
identifies [1] - 348:8
identify [3] - 334:16,
356:12, 447:23
identifying [1] -
331:15
if.. [1] - 354:20
Iglulik [1] - 440:10
ignored [1] - 461:20
illegal [2]-414:9,
420:12
imagery [4] - 229:15,
229:16, 286:2
immensely [2] -
463:25, 465:2
immobile [1] - 267:2
immobilize [5]
265:8, 267:19,
286:12, 348:15,
396:15
immobilized [7] -
219:12, 266:9, 285:9 347:25, 349:17,
367:3, 381:10
immobilizing [1]
394:24
impact [23]-212:11,
229:2, 233:15,
245:17, 245:18,
256:6, 256:14,
256:18, 257:6, 257:9,
257:12, 257:14
280:23, 282:20,

287:7, 287:12,
300:20, 300:23,
316:15, 352:12,
368:9, 378:10
impacted [2] - 212:6,
285:2
impacting [1] -
249:24
impacts [20] -
267:20, 267:25,
268:2, 284:14, 285:1,
286:24, 287:23,
293:19, 295:11,
316:11, 320:13,
320:18, 320:19
320:20, 323:3,
394:12, 395:24, 414:7
impartial [1] - 301:21
impeding [1] -
257:23
impetus [1] - 374:25 implant [2]-268:20,
397:4
implantation [1] -
268:17
implants [2] -
268:16, 268:17
implementation [2]
375:12, 448:19
implementing [1] -
375:5
implications [3]-
271:4, 335:17, 410:6 important [25] 209:25, 246:16,
260:6, 260:8, 271:6,
289:6, 289:8, 289:12, 342:20, 343:5, 343:9,
353:5, 353:12,
365:14, 385:25,
401:8, 409:5, 410:4,
413:15, 421:10
422:22, 434:12,
454:8, 454:10
impression [2] -
336:23, 353:6
improve [4] - 285:15,
288:19, 396:8, 402:4
improvements [1] -
395:23
inch [1] - 255:20
inches [1] - 255:7
incident [2]-240:16,
459:23
incidental [1] -
453:10
include [8]-269:16,
284:7, 298:5, 322:16,
322:17, 344:16,
457:13, 461:24
includes [1] - 284:5
including [11]
210:25, 212:25,
271:9, 328:18, 336:2,
388:7, 445:12,
445:15, 446:13,
447:6, 447:18
incorporate [4] -
344:16, 356:22,
388:21, 445:13
INCORPORATED [3] - 347:3, 434:21,

453:18
Incorporated [3]
205:12, 206:3, 206:15
incorporated [3] -
223:22, 296:4, 356:25
incorrect [2] - 299:5,
355:18
increase [23] -

208:22, 238:24,
$241: 14,242: 20$,
243:15, 248:6, 248:7,
315:10, 341:3,
353:25, 390:5,
423:24, 424:25,
425:14, 425:25
428:18, 430:18,
441:2, 450:9, 450:13,
458:18, 461:17,
463:16
increased [10] -
208:12, 208:19,
211:17, 351:20,
412:22, 413:1, 429:7,
447:22, 459:3, 459:22
increases [5]
211:18, 239:20,
352:4, 370:15, 370:17
increasing [12]
225:2, 233:25, 241:7, 241:19, 273:9, 274:9, 320:6, 321:1, 321:2,
431:7, 446:24, 448:21
independent [2] -
233:2, 350:24
independently [1]387:2
index [3] - 219:22,
219:24, 247:7
Indian [1] - 463:17
indicate [5] - 210:6,
392:22, 448:11,
452:24, 453:21
indicated [4] -
209:15, 210:20,
211:6, 211:24
indicates [3] -
208:11, 212:5, 446:7
indicating [1] - 353:4
indication [1] -
238:16
indicator [8] -
238:21, 249:18,
392:15, 392:18
392:21, 393:13,
393:15, 393:18
indigenous [4]
208:11, 208:17,
300:1, 384:20
individual [13] -
219:13, 224:21
228:23, 235:11,
263:3, 284:2, 292:4,
292:5, 292:13, 339:7,
350:17, 400:2
individuals [8]
214:4, 300:11, 301:5, 339:15, 383:20,
398:6, 400:1, 400:22
industry [5] - 290:4,
291:11, 291:12,
291:19, 350:2
infancy [1] - 286:5
infant [1] - 416:9
inferred [1] - 210:9
influence [2] -
330:24, 342:21
inform [3]-325:24,
326:18, 452:25
information [146] -
207:16, 211:21,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

252:14, 252:23,	injury [3] - 349:14, 369:1	202:9, 202:10	invite [1] - 429:15	$376: 11,377: 1,$
253:1, 253:14,	369:1, 369:3	interpreters [2] -	invited [3]-391:19,	$378: 22,380: 15,381: 4$
257:11, 257:19,	inlet [1] - 382:12	328:9, 464:2	457:22, 463:25	jail [1] - 283:8
261:5, 261:24,	INLET [4]-201:14,	interval [6] - 308:23,	inviting [6] - 452:15,	January [3] - 201:11,
262:10, 262:23,	203:5, 203:18, 382:1	390:14, 411:1, 432:9,	452:16, 458:6,	$376: 14,376: 15$
264:2, 270:7, 274:13,	Inlet [21] - 205:17,	433:2, 433:3	458:11, 458:15,	Jared [8] - 204:14,
280:14, 280:16,	227:21, 270:20,	intervals [9]-249:3,	459:25	396:14, 396:19,
280:17, 281:10,	309:6, 309:9, 311:6,	276:13, 276:17,	involve [1] - 464:17	397:10, 397:19,
281:12, 281:23,	381:24, 382:9,	279:20, 389:18,	involved [11] -	399:6, 399:17, 401:1
286:20, 286:25,	384:10, 384:11,	390:1, 390:8, 390:18,	209:19, 303:12,	Jason [2] - 202:2,
287:17, 288:22,	409:25, 414:20,	390:23	328:5, 328:19,	465:25
288:24, 289:16,	414:22, 415:1,	intervene [1] - 364:5	328:21, 344:12,	job [13] - 300:3,
295:8, 297:17,	416:17, 416:24,	intervention [1] -	357:4, 364:25, 406:8,	308:4, 338:3, 338:5,
298:22, 298:24,	417:22, 451:17,	367:8	419:2, 459:13	339:4, 359:3, 395:8,
300:12, 300:14,	451:20, 458:1, 458	interviewed [1] -	involvement [1] -	431:5, 441:1, 445:16,
301:2, 301:22,	innovation [1] -	442:19	304:13	457:10, 465:16,
302:10, 303:18,	259:6	intimidate [1] -	involves [3] -	465:20
310:15, 310:18,	input [4] - 387:3	426:12	285:22, 328:17,	John [2]-202:7,
310:24, 313:23,	408:13, 408:14,	introduce [1] -	344:17	465:18
315:3, 315:18,	462:17	391:15	involving [1] -	join [1] - 347:1
315:25, 316:1,	inquiries [1] - 300:17	introduced [1] -	365:15	joined [1] - 461:22
316:21, 317:17,	inside [5] - 296:22,	243:12	IQ [14] - 304:23,	joint [1] - 356:20
323:20, 325:7,	306:13, 366:4, 420:3,	introducing [2] -	305:4, 305:13,	Jones [3]-202:11,
325:17, 327:1, 328:6,	421:1	384:18, 384:22	305:15, 386:10	467:12, 467:13
330:13, 330:14,	insight [1] - 432:18	INUARAK [10] -	416:6, 416:7, 416:8,	Jorgen [10] - 201:23,
333:22, 336:2,	Instagram [2] -	269:4, 272:2, 277:15,	416:10, 433:24,	251:14, 252:4, 254:5,
336:21, 336:25,	299:7, 300:16	303:4, 415:9, 423:2,	461:16, 464:21	264:17, 265:2, 268:5,
337:2, 337:5, 337:9,	instance [5] -	426:19, 430:4,	Iqaluit [3] - 422:16,	268:11, 460:3, 460:22
337:13, 338:6,	336:16, 349:16,	449:10, 462:13	422:19, 445:2	judge [2] - 423:19
338:14, 339:6,	350:5, 368:8, 380:11	Inuarak [1] - 201:20	Irngaut [1] - 202:22	July [3] - 230:13,
339:11, 339:20,	instead [3] - 267:8,	Inuit [68] - 205:20,	IRNGAUT [10] -	284:20, 420:19
340:1, 340:4, 340:17,	407:23, 444:17	277:20, 295:24,	347:4, 347:19,	jump [3]-254:9,
341:9, 342:13,	instituted [1] - 243:7	296:4, 298:14,	348:20, 350:11,	397:2, 414:8
342:19, 349:23,	integrated [1] -	298:18, 302:14,	351:5, 352:9, 434:22,	jumping [1] - 267:3
351:6, 351:8, 351:9,	409:1	302:23, 304:22,	436:14, 450:22,	June [1] - 230:15
352:6, 353:19,	integration [1] -	304:23, 305:4, 306:8,	455:21	jurisdiction [3] -
354:22, 355:12,	387:17	306:25, 325:16,	island [2]-277:23,	336:2, 364:24, 443:18
356:25, 357:15,	intelligent [1] -	354:4, 363:12,	278:6	jurisdictional [7] -
357:20, 360:15,	404:12	364:10, 364:17,	Island [3] - 228:2,	302:14, 326:2,
360:16, 360:17,	intended [1] - 228:20	371:1, 388:6, 392:14,	300:21, 313:8	327:11, 327:20,
361:1, 361:3, 367:2,	intensive [1] -	392:21, 393:13,	islands [1] - 275:25	335:5, 335:11, 388:6
376:25, 377:4,	358:18	393:18, 404:2, 407:1,	issuance [1] - 315:4	jurisdictions [3] -
384:16, 385:1,	intention [3]-	407:23, 409:5, 409:8,	issue [23]-288:11,	329:7, 335:10, 410:8
385:12, 388:24,	338:14, 339:7, 348:9	410:23, 411:1, 411:3,	290:4, 310:24,	justification [1] -
$388: 25,394: 8$, $398: 10,399: 22$	interact [1] - 446:19	$414: 3,416: 8,416: 11$, $420: 11,420: 14$	325:10, 325:24,	$433: 23$
398:10, 399:22,	interacting [1] -	420:11, 420:14,	326:11, 332:18,	
400:4, 400:8, $400: 17$, $402: 3,429: 17$,	$\begin{aligned} & \text { 239:12 } \\ & \text { intera } \end{aligned}$	420:23, 421:7,	$333: 9,343: 19$	K
431:22, 431:25,	211:18, 239:15	426:6, 426:16,	364:16, 365:4, 365:5,	Kablutsiak [3] -
433:6, 433:16,	239:21, 360:1, 361:12	426:20, 426:23,	367:7, 418:7, 419:4,	203:16, 459:1, 459:18
434:13, 435:18,	interactions [7] -	426:25, 427:1,	427:23, 435:6, 435:7,	KABLUTSIAK [1] -
436:22, 438:8, 441:5,	208:22, 208:23,	427:21, 428:7, 428:9,	447:23, 450:19	459:18
444:4, 448:8, 448:9,	237:25, 239:13,	428:17, 428:23,	issued [1] - 212:20	kamiks [1] - 312:6
452:17, 453:16,	241:13, 329:8, 333:2	428:25, 429:3, 429:5,	issues [12]-294:19,	Kane [4]-212:15,
453:23, 453:24,	intercept [1] - 239:24	429:14, 430:6,	325:6, 331:13,	320:20, 320:24,
454:16, 457:11,	intercepted [1] -	432:12, 432:14,	353:23, 362:3,	356:18
457:12	333:7	445:9, 448:4, 457:21,	363:17, 367:10,	Katchu [1] - 306:2
informations [1] -	interest [5] - 252:13,	458:17, 461:9,	367:19, 376:7, 376:8,	keep [15] - 229:7,
394:17	359:9, 385:14,	461:14, 462:10,	413:14, 423:9	240:1, 260:5, 266:13,
informative [3] -	394:11, 454:7	464:15	issuing [1] - 315:21	288:14, 302:20,
212:16, 347:6, 456:11	interested [3] -	INUIT [1] - 391:16	item [2]-354:9,	302:21, 302:24,
informed [1] - 387:1	228:25, 252:20,	Inuk [4]-297:21,	452:23	302:25, 304:17,
infrastructure [1] -	385:22	306:9, 424:24, 458:18	items [1] - 459:19	397:12, 407:14,
406:22	interesting [4] -	Inukjuak [1] - 453:7	ITK [2] - 388:7, 388:8	416:6, 431:5, 466:4
infrequently [1] -	253:21, 338:9, 377:5,	Inukness [1] -	itself [12] - 229:7,	keeping [3] - 224:12,
264:4	419:22	422:22	250:9, 257:14,	266:15, 350:23
inhumane [2] -	internal [3]-367:1,	Inuktitut [2] - 207:10,	262:15, 316:23,	keeps [4] - 292:5,
$363: 25,364: 6$	$367: 19,410: 1$	464:4	$320: 5,320: 7,321: 6$	403:8, 405:25
initial [3]-234:12,	international [9] -	Inuvialuit [1] -	$343: 3,344: 8,371: 11$	kept [5] - 242:17,
243:19, 344:10	212:19, 217:2,	443:19	398:23	366:14, 375:3,
initiate [1] - 217:17	299:25, 315:24,	Inuvik [1] - 360:24	itsivautaaq [2] -	377:15, 417:13
initiation [1] - 243:7	362:11, 362:17,	invasive [5] - 279:17,	325:4, 418:5	key [1] - 322:3
initiative [1] - 446:12	374:21, 445:7, 445:8	282:7, 310:23,	IUCN [1] - 362:11	KIA [6]-204:2,
initiatives [6] -	internationally [3] -	$367: 15,396: 6$		391:12, 391:13,
328:20, 363:1,	362:10, 362:18	invertebrates [1] -	J	427:7, 431:15, 464:8
375:25, 385:7, 387:7,	interpret [2] - 281:8,	244:25		kicking [1] - 224:14
387:21	281:9	investigation [1] -	Jackie [12] - 203:11,	kid [3] -404:16,
injures [1] - 254:21	interpretation [1] -	354:5	370:23, 371:5,	404:25, 405:3
injuries [3]-255:18,	419:10	investment [1] -	372:13, 372:17,	kids [5] - 386:23,
255:23, 437:23	Interpreter [2] -	447:5	$373: 4,373: 20$	$404: 17,404: 21 \text {, }$

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

405:4, 442:3
kill $[13]-239: 6$
(
349:14, 361:15,
404:3, 406:1, 414:25,
416:19, 417:14 425:21, 437:9, 458:7, 458:8, 458:9
killed [7]-209:7,
349:17, 406:3,
413:14, 418:16,
424:22, 443:6
killer [10]-351:8,
351:9, 351:15,
351:16, 351:20,
351:22, 351:25,
352:3, 352:5, 352:12
killing [2]-407:14,
407:15
kills [19] - 405:24,
406:4, 411:21,
412:21, 412:24, 413:1, 414:1, 414:8, 414:9, 414:21, 414:24, 417:9, 418:11, 420:13, 429:19, 429:24,
441:10, 443:5, $448: 25$
kilogram [2]-
234:21, 368:22
kilograms [7] -
226:2, 234:22, 235:7,
235:9, 236:12,
236:14, 368:24
kilometre [1] -
247:12
kin [3] - 420:23,
461:3
kind [19]-219:15,
251:17, 252:1, 254:7,
264:25, 316:3,
318:16, 323:25,
325:18, 326:23,
332:5, 332:13, 335:8, 335:14, 371:2, 371:3,
404:23, 411:25, 442:9
kinds [1] - 326:4
kit [1] - 399:13
Kitikmeot [1] -
422:17
Kivalliq [58]-205:14,
205:20, 228:21,
245:24, 249:22,
273:10, 303:11,
303:18, 306:5,
336:14, 339:9,
340:11, 346:25,
356:6, 362:5, 402:16,
408:9, 408:13, 409:6,
409:16, 410:9,
410:16, 410:19,
411:15, 413:19,
415:18, 415:21,
422:17, 423:4, 424:3, 425:16, 426:10, 426:12, 426:19, 426:23, 426:25, 427:1, 427:10, 427:21, 427:23, 428:5, 428:7, 428:15, 428:17, 429:7, 429:12, 429:20, 429:22, 429:23 440:6, 441:13, 442:18, 442:23, 444:5, 450:24, 455:7, 464:9
KIVALLIQ ${ }_{[4]}$ -
205:22, 356:8,
391:16, 402:20
knife [1] - $313: 9$

457:23
LAKE
[3] - 203:23,
384:14, 438:24
lance ${ }_{[1]}-245: 13$
land [18]-211:17,
211:18, 226:13,
241:8, 241:9, 243:5,
256:21, 256:22,
258:10, 266:8,
266:25, 274:7, 281:6,
293:2, 306:9, 306:11,
348:23, 368:6
Land [9]-325:13,
325:18, 327:16,
420:9, 421:6, 421:8, 421:10, 421:13,
461:19
landing [1] - 257:6
lands [1] - 299:1
large [11]-216:9,
217:9, 242:16, 249:3,
276:5, 276:6, 284:12
360:3, 374:24, 439:4
largely [1] - 289:19
larger [1]-427:24
last [36]-215:20,
229:4, 230:2, 236:2,
236:15, 237:5,
237:14, 241:1, 268:7,
280:1, 318:12, 325:2
332:7, 340:25,
351:19, 354:9, 383:9,
383:18, 389:25,
398:20, 399:7, 404:6,
405:7, 405:19,
413:24, 414:25,
415:1, 420:5, 422:2, 428:1, 428:13, 433:21, 443:1, 443:9, 455:10, 464:5
lasted [1]-219:2
lastly [2] - 448:3,
449:1
lasts [2]-262:6,
262:8
lat [1]-253:4
late [16]-216:15,
217:1, 218:6, 231:4,
231:7, 231:10,
233:18, 233:20,
234:14, 243:6,
243:18, 310:13,
317:19, 318:25,
374:16, 378:19
latest [4]-231:9,
279:13, 433:4, 448:7
law [3] - 312:23,
424:22, 430:16
law-abiding [1] -
424:22
laws [1] - 430:14 lawyer [2] - 430:8,
465:3
lay [1] - 460:25
lead [1] - 251:4
leader [1] - 329:1
leadership [1] -
466:1
leading [1] - 448:5
leads [1]-255:4
learn [7]-313:10,
328:25, 329:3,
386:24, 388:21,
388:23, 429:14
learned [5] - 280:3,
441:18, 445:14,
457:19, 459:1
learning [3] - 387:22,
388:2, 463:9
least [27] - 215:5,

218:19, 234:5,
236:23, 237:3, 249:24, 258:19, 260:21, 263:4, 263:16, 279:8, 290:17, 291:20, 325:14, 341:5, 350:20, 351:18
351:25, 353:25,
354:5, 362:18, 369:4
374:16, 390:16,
400:16, 405:10,
431:15
leave [10]-226:11,
226:14, 256:24,
283:1, 285:10,
291:23, 349:12,
374:4, 398:18, 448:13
leaving [3]-269:14,
374:5, 382:15
led [7]-209:18,
233:16, 243:15,
304:12, 374:21,
388:9, 447:21
LEE [4]-352:18,
418:25, 433:11,
453:19
Lee [10]-202:24,
336:17, 347:7,
352:17, 354:21,
418:23, 432:17,
433:10, 434:8, 453:17
leeds [1]-215:10
leeway [1] - 420:7
left [16] - 215:8,
215:19, 227:14,
227:15, 238:6,
272:22, 287:20,
325:1, 348:14,
349:24, 350:6,
381:15, 391:12,
425:2, 444:14, 452:7
leg [2] - 369:1, 369:3
legal $[6]-212: 21$,
324:15, 325:2, 410:6,
465:3, 465:14
Legal [1]-202:8
legality $[1]$ - 447:14
legislation [1]
335:7
legs [4]-266:15,
266:16, 266:23
length [3]-219:19,
219:22, 343:25
less [18] - 218:3,
226:2, 231:19,
232:14, 246:6, 246:7,
273:25, 279:17,
279:21, 293:23,
298:13, 298:16
301:14, 331:7,
331:12, 343:9, 436:7, 460:5
lessons [1] - 445:14
letter [9]-207:15,
207:24, 212:18,
213:18, 326:21,
430:25, 431:7,
453:12, 453:20
letters [2]-462:2,
462:5
letting [1] - 456:21
level [27]-212:23,
293:14, 316:19,
318:14, 319:5, 321:21, 322:19,
323:12, 328:13,
331:10, 331:18,
332:23, 333:11,

358:14, 364:3, 367:5,
369:25, 370:3,
370:13, 375:8,
410:15, 410:16,
438:1, 440:18, $448: 3$
levels [15]-221:13,
221:14, 224:19,
224:25, 282:20,
294:22, 334:14,
356:20, 369:20,
370:14, 370:15,
412:5, 413:12,
446:24, 448:2
lie [1] - 285:3
Iies $[1]-335: 15$
life [10]-209:7,
222:19, 222:22,
227:8, 260:11,
270:19, 411:21,
412:21, 412:24, 413:1
lifetime [4]-284:10,
287:15, 348:4, 348:10
lifted [1] - 315:25
lifting [1] - 267:13
light [2] - 226:5,
235:10
lighter [7]-234:10,
235:8, 235:18,
256:12, 274:14,
423:25
lightest [1] - 281:2
likely [6] - 221:8,
243:14, 244:16,
340:9, 361:22, $425: 19$
likewise [1] - 362:12
limit [7] - 395:16,
424:13, 424:18,
424:19, 426:14,
426:15, 433:4
limitations [1] -
325:16
limited [4]-218:7,
301:15, 375:14,
453:24
limits [2] - 285:7,
432:10
line [13]-217:14,
219:19, 227:24,
229:17, 235:4,
235:16, 281:1, 281:3,
281:5, 323:18, 330:2,
368:14, 368:17
linear [1] - 386:15
lines $[9]-214: 10$,
214:13, 214:24,
222:15, 222:21,
247:25, 308:21,
321:12, 323:2
linked [3]-225:16,
244:1, 244:3
lion's [1] - 251:24
lions [2]-251:21,
251:22
liquid [1] - 312:14
list [11]-264:7,
264:17, 338:16,
338:19, 338:24,
339:1, 339:14,
339:16, 356:6,
359:25, 392:3
listed [2]-219:2,
335:2
listen [1] - 455:3
listening [7]-
213:16, 259:3,
403:12, 403:20,
407:2, 428:10, 455:16
listing [1] - $335: 7$
literally [1] - 351:23
literature ${ }^{[1]}$

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

408:16
litter [4]-237:10,
237:11, 237:13,
$274: 19$
274:19
littlest [1] - 377:15
live [5] - 223:1,
273:11, 309:6, 408:3,
462:6
lived [1] - 309:9
liver [1] - 367:11
livers [2] - 365:24,
367:16
living [6] - 245:8,
292:17, 403:9,
405:21, 441:19,
445:14
loaded [2] - 293:16,
389:23
local [10] - 209:19,
209:20, 242:12,
296:10, 313:4,
365:16, 400:17,
414:7, 439:2, 447:1
localized [1] - 253:14
locals [1] - 464:20
locate [2]-219:11,
263:24
location [2] - 253:8,
263:11
locational [1] - 254:1
locations [7] - 226:6,
226:15, 227:23,
253:4, 263:12,
271:22, 339:3
logistically [2] -
217:12, 217:15
logistics [1] - 209:20
lone [1] - 350:24
long-distance [2] -
252:22, 269:22
long-term [16] -
221:16, 230:9,
230:19, 235:1, 236:3, 245:2, 286:13,
286:15, 286:24,
287:5, 287:6, 287:12, 287:22, 319:22,
357:17, 394:12
longest [1] - 403:10 look [60]-213:8,
220:11, 220:19,
221:3, 221:9, 221:13, 221:14, 221:17, 222:1, 223:9, 223:10, 224:25, 228:7, 228:16, 228:25,
229:18, 230:9,
230:21, 231:1,
231:11, 231:14,
231:25, 233:9,
234:11, 234:17,
234:23, 236:25,
240:11, 246:6, 248:5, 253:7, 253:21, 254:1, 256:8, 270:10, 275:2, 278:6, 281:20, 284:6, 287:9, 295:5, 305:1, 325:19, 332:17, 342:22, 356:15, 358:13, 361:22,
374:23, 398:13,
414:18, 414:25,
423:19, 442:25,
443:15, 455:4,
455:15, 460:25
looked [11] - 217:7, 219:3, 219:4, 219:5, 232:25, 248:13, 280:4, 356:21,
looking [52] -
216:23, 221:1, 221:6, 221:15, 222:24, 224:13, 224:19, 225:4, 232:25, 233:16, 241:4, 243:8, 245:22, 245:25, 253:6, 253:25, 257:19, 267:13, 274:24, 275:1, 277:2, 280:10, 285:5, 286:1, 286:6, 288:20, 290:21, 294:20, 305:12, 314:13, 314:25, 315:17, 318:17, 319:2, 323:23, 328:23, 330:22, 355:2, 355:24, 359:4, 385:22, 390:18, 396:6, 400:11, 412:20, 422:6, 427:8, 433:20, 435:15, 437:20
looks [1] - 267:18
loose [1] - 373:24
loosely [1] - 265:6
loosen [2] - 372:16,
372:24
lose [10] - 245:10,
292:19, 298:4, 342:15, 345:15, 368:22, 440:13, 440:14, 458:18 losing [6] - 297:13,
297:20, 382:11,
382:22, 382:25,
383:18
loss [3]-245:7,
258:6, 319:20
lost [6] - 292:22,
312:24, 338:2,
368:24, 403:10, 445:3
lot's [1] - 410:13
loud [2] - 401:21,
447:4
Louie [1] - 440:3
Louis [1] - 202:10
low [14]-236:11,
242:9, 242:17,
247:20, 257:16,
276:18, 276:23,
333:5, 345:20,
369:25, 370:15,
375:3, 413:2, 413:4
lower [18]-236:9,
279:19, 323:16,
331:10, 331:16,
332:15, 332:23,
333:15, 334:9, 355:8,
355:16, 355:17,
355:20, 413:12,
426:9, 441:2, 442:20,
443:8
luck [3] - 383:12,
383:14, 452:18
lunch [5] - 311:3,
324:3, 324:14, 324:25
lunches [1] - 465:21
lungs [1] - $367: 11$
Lunn [2]-202:15,
211:1
LUNN [56] - 213:13,
252:4, 252:7, 254:16,
258:15, 263:2, 265:4, 268:13, 269:22, 274:4, 279:6, 282:25, 290:15, 293:16,
296:3, 299:4, 302:4,
304:3, 307:18,
$310: 11,317: 10$,
$318: 22,329: 19$, 332:4, 338:13, 340:8, 342:5, 347:14, 348:3, 348:13, 349:3,
350:16, 351:14,
354:24, 356:18,
360:10, 362:2,
364:15, 366:24,
369:24, 371:7,
372:19, 373:22,
377:3, 379:7, 381:6, 383:3, 385:5, 388:19,
389:23, 393:12,
396:21, 397:21
399:19, 401:17,
451:25
luxury [1] - 301:16

\mathbf{N}
machine [2] -

machine [2] -
273:21, 296:23
machines [1] -
406:16
mad [1] - 441:17
magic [1]-295:2
magnitude [1] -
317:24
main [4]-217:21,
217:24, 261:2, 408:5
maintain [5] - 322:2,
404:1, 408:23,
410:18, 446:5
maintained [1] -
363:12
maintains [1] -
357:14
major [1] - 363:1
majority [4]-275:13,
304:22, 305:3, 347:10
Makayak [1] - 201:24
MAKAYAK[2] -
254:6, 463:7
Makivik [3] - 410:10,
452:25, 453:16
MAKIVIK [2] -
206:14, 452:20
Maktar [1] - 203:12
male [12]-220:20,
220:22, 225:20,
231:23, 239:5,
265:22, 265:23
353:25, 366:2, 366:6,
440:18
male-to-female [1] -
440:18
males [17]-220:24,
220:25, 225:19,
234:9, 234:16,
234:18, 269:12,
311:20, 319:7, 319:8,
319:9, 319:11, 400:7,
407:9, 411:16, 443:9,
443:10
mammals [2] -
221:18, 221:20
manage [11] - 242:5,
331:10, 331:17,
332:22, 333:9, 334:8,
389:10, 412:18,
413:4, 456:15
managed [3] - 362:8,
362:13, 362:15
Management [12] -
202:4, 202:5, 202:6,
205:6, 205:9, 205:23, 206:1, 206:9, 206:11,
296:9, 452:9
MANAGEMENT ${ }_{[7]}$

201:2, 251:13, 314:1,
$415: 8,431: 18,449: 8$, 449:16
management [91] -
212:15, 213:1, 214:7,
214:15, 222:24,
227:24, 228:1, 234:3, 283:2, 283:4, 283:10,
285:17, 286:20
289:17, 294:1,
302:17, 302:18,
304:7, 305:2, 315:1, 315:9, 317:3, 321:20,
321:22, 322:4,
322:22, 325:5,
327:15, 328:24,
331:3, 331:4, 331:15,
332:16, 333:12,
334:13, 335:3, 335:9,
335:11, 335:15,
335:21, 335:22,
336:3, 336:21, 357:3,
357:5, 357:6, 358:1,
358:16, 360:13,
375:25, 388:2,
388:12, 389:10,
389:16, 389:19,
392:17, 408:20,
409:6, 410:7, 411:16,
413:11, 413:16,
420:21, 420:22,
435:24, 440:25,
442:10, 442:13,
445:4, 445:21,
445:23, 445:25
446:2, 446:4, 446:11,
446:16, 447:7,
447:18, 448:6,
448:13, 448:15
448:18, 448:20
449:2, 450:10, 453:4,
457:2, 457:7
manages [1] -
362:23
managing [5] -
334:14, 334:16,
341:2, 341:3, 389:16
Managing [1] -
202:14
mandate [5] - 305:5,
428:8, 430:24,
430:25, 460:11
mandated [1] -
446:15
manipulation [1] -
442:11
Manitoba [53] -
215:21, 215:24,
216:4, 216:5, 216:8,
216:10, 216:16,
217:16, 218:10,
229:6, 229:7, 238:1,
238:16, 238:19,
242:12, 242:21,
242:22, 242:24
261:4, 270:21,
270:23, 282:15,
283:1, 283:4, 283:9,
284:5, 284:8, 287:14,
287:15, 292:6,
292:12, 296:15,
316:11, 316:13
316:16, 328:19,
329:3, 353:22, 354:5,
357:21, 362:22,
363:1, 364:19,
364:24, 382:6,
382:10, 405:10,
410:22, 411:4,
415:22, 429:18

Manitoba-Ontario
[1] - 238:19
manoeuvres [1] -
243:3
manufacturer [1] -
259:7
map [9] - 214:10,
214:13, 214:24,
227:12, 227:24
269:6, 338:8, 338:17,
339:5
maps [6]-214:14,
247:25, 338:15,
339:2, 341:21, 401:24
March [7] - 267:21,
376:14, 377:8,
380:18, 438:10,
454:18
Marcus [1] - 340:1
marine [5] - 211:10,
221:18, 221:20,
245:5, 393:16
mark [9] - 243:25,
270:8, 270:18, 308:3, 348:7, 357:17,
383:17, 395:3, 395:4
marked [2] - 349:19,
349:20
market [1] - 242:25
mass [4] - 234:8,
234:23, 235:4, 349:24
master's [1] - 290:21
matched [1] - 222:22
matches [1] - 342:23
mate [1] - 268:14
material [6]-371:2,
$371: 4,371: 16$,
371:19, 416:8
math [1] - 435:14
mating [3]-220:14,
220:23, 298:6
matnaa [2]-417:18,
455:18
matter [10]-299:10,
356:11, 364:3, 364:7,
390:21, 420:24,
421:5, 437:9, 437:24, 460:8
Matthew [1] - 203:21
maximize [3] -
321:16, 447:3, 448:24
maximum [3]
215:10, 319:3, 336:1
mayor [1] - 364:1
meal [1]-421:17
mean [61]-215:24,
218:16, 234:8,
234:23, 235:7,
237:10, 237:11,
244:10, 245:14
247:23, 247:24,
255:20, 258:20,
260:18, 265:21,
274:5, 274:12, 275:9,
275:25, 279:7, 280:4, 281:6, 286:1, 286:4,
289:4, 290:13,
290:17, 291:22,
292:23, 294:6,
300:22, 302:8, 304:6,
304:11, 304:15,
317:14, 319:8,
321:19, 321:22,
322:20, 323:10,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

390:15, 401:21,	448:22, 460:2,	239:6, 239:8, 239:9,	$342: 25,343: 2,343: 3,$	319:9, 335:1, 349:21,
418:14, 419:15,	461:21, 464:6, 464:9,	239:19, 241:24,	$343: 15,344: 14$,	350:22, 350:23,
431:15	466:3	244:24, 245:11,	344:18, 344:24,	352:24, 353:10,
meaning [2] -	MEMBERS [1] -	251:10, 259:20,	345:8, 345:14	354:11, 363:13,
$212: 22,406: 15$	201:18	263:10, 276:5, 279:3,	345:19, 345:22,	363:24, 363:25,
means [8]	464:10	290:6, 293:22	356:21, 357	370:3, 370:5, 37
226:25, 290:8,	464:10	299:23, 301:15,	358:19, 358:25, 359:2	371:25, 379:11,
294:17, 329:7, 343:4,	memberships [1] -	302:4, 309:10,	modelling [5] -	379:13, 447:8, $456: 24$
355:9, 434:11	464:12	316:22, 322:5, 323:5,	322:10, 341:2,	mostly [4] - 327:20,
meant [1] - 442:21	mention [6] - 305:25,	330:24, 331:13,	341:12, 341:25,	372:9, 443:9, 443:10
meanwhile [1] -	354:1, 381:1, 397:14,	333:25, 334:6,	346:13	mother [6]-363:23,
460:15	416:17, 437:20	336:22, 337:21,	models [20] - 225:8,	373:8, 376:17,
measure [9]- 219:19, $219: 20$,	mentioned [33] 207:22, 251:16,	$337: 25,342: 20$, $352: 15,358: 10$,	294:20, $322: 11,322$	$\begin{aligned} & 376: 23, \\ & 380: 18 \end{aligned}$
219:21, 221:7,	278:4, 287:19,	372:21, 379:9,	341:24, 342:7, 342:9,	mother's [2] -
237:15, 265:14,	289:23, 303:5, 310:1,	379:16, 384:25,	342:17, 342:19,	223:15, 223:20
287:8, 287:9, 287:18	313:3, 315:6, 326:7,	390:24, 398:19,	343:6, 343:7, 344:22,	mothers [1] - 220:12
measurement [1] -	328:13, 330:22,	456:11	345:5, 345:21,	motivated [1] - 430:9
219:21	331:9, 341:1, 341:13,	migrate [1] - 298:11	345:24, 345:25,	MOU [3]-418:8,
measurements [10] -	344:15, 344:19,	migratory [1] -	346:2, 346:11, 357:1	419:15, 446:7
219:10, 219:17,	347:8, 347:21, 351:6,	336:19	molt [1] - 247:5	MOUs [1] - 294:4
219:18, 225:8,	352:22, 373:10,	military [11] - 217:13,	molting [4] - 247:5,	mouth [3] - 232:5,
310:21, 348:16,	380:16, 397:11,	242:11, 243:2, 243:5,	247:6, 312:6, 313:17	351:21, 351:23
378:3, 383:7, 385:17,	410:13, 414:12,	316:16, 316:20,	molts [1] - 255:17	move [27] - 214:18,
394:10	416:10, 422:1,	317:11, 317:13,	mom [7] - 267:12,	215:16, 215:18,
measures [4] -	429:18, 432:8,	375:21, 375:22	348:15, 351:2, 378:7,	231:3, 255:8, 278:5,
208:25, 326:8, 378:3,	433:13, 433:19,	milk [11] - 223:7	378:8, 381:8	278:9, 278:13,
447:6	464:21	223:8, 223:9, 223:10,	mom's [2] - 377:17,	278:17, 289:12,
meat [6] - 287:25,	mentioning [2]	223:15, 223:18,	378:2	292:21, 299:22,
288:2, 288:6, 288:12,	366:10, 433:17	223:20, 223:21,	moment [5] - 285:9,	322:18, 347:2,
376:18, 429:2	Mercer [1] - 204:13	223:22, 232:11	288:24, 361:5,	348:24, 349:4, 349:7,
mechanism [5] -	mercury [8] - 221:13,	mind [1] - 462:3	362:14, 396:9	359:20, 369:13,
226:16, 261:22,	221:14, 252:15,	minimal [1]-345:18	moms [1]-373:23	370:4, 372:20,
262:2, 364:20, 372:7	252:17, 369:20,	minimize [13] -	money [7] - 301:10,	381:24, 382:14,
mechanisms [11] -	370:13, 370:14,	286:7, 288:14, 289:1,	301:12, 301:17,	394:4, 409:17,
259:5, 259:10,	370:17	308:20, 323:18,	301:19, 304:8,	437:15, 446:14
259:14, 260:10,	merit [1] - 399:19	335:24, 348:6,	378:14, 422:22	moved [9]-227:19,
261:8, 261:15,	mesh [1] - 303:16	395:11, 395:24,	monitor [10] -	227:21, 228:5,
284:16, 364:21,	message [5] - 238:5,	396:4, 396:5, 398:22,	252:11, 284:25,	228:13, 228:19,
365:11, 395:25	301:4, 302:19,	399:12	333:23, 367:3, 367:4,	253:9, 278:14, 368:4,
medicine [3] -	401:21, 447:4	minimum [6] - 235:4,	367:6, 386:25, 424:1,	373:12
312:15, 312:25,	messaging [4] -	235:8, 284:15,	425:23, 425:24	movement [11] -
367:17	300:2, 303:1, 445:16,	285:15, 288:17,	monitored [1] -	214:17, 214:22,
meet [6]-216:18,	445:17	345:17	409:2	215:4, 253:7, 253:10,
321:9, 358:14,	met [1] - 360:20	mining [1] - 387:2	monitoring [13] -	266:18, 368:4,
360:14, 405:8, 425:17	metabolize [1] -	minister [9]-326:22,	209:23, 294:10,	368:11, 368:14,
meeting [27] -	266:1	328:4, 387:22,	327:24, 333:17,	368:17, 401:24
210:15, 216:17,	metal [3]-371:12,	450:11, 450:17,	333:21, 384:18,	movements [11] -
281:3, 301:15, 303:6,	371:21, 371:23	462:7, 462:18, 465:6	385:10, 385:15,	219:6, 229:11,
305:8, 313:20, 330:7,	method [2]-256:1,	minor [2]-354:17,	385:25, 389:13,	247:24, 253:15,
332:7, 337:8, 337:16,	271:3	405:22	390:15, 399:21, 451:7	263:22, 269:23,
355:11, 360:23,	methodologies [1] -	minute [1] - 401:3	month [3]-211:16,	291:21, 337:25,
361:1, 361:6, 363:3,	269:24	minutes [5] - 264:13,	420:16, 424:2	338:8, 339:7, 394:2
413:11, 425:18,	methods [5] -	267:6, 285:10,	months [12] -	moving [20]-215:12,
427:8, 431:4, 438:10,	279:17, 308:2, 308:3,	391:22, 444:12	232:10, 261:20,	216:16, 216:22,
439:3, 439:4, 454:18,	375:7, 390:7	miscommunicating	267:22, 284:19,	227:25, 228:3,
$456: 10,456: 11,465: 4$	mic [3]-311:9,	[1] - 302:9	$311: 21,359: 1,359: 4$, $359: 12$ $359: 13$	239:23, 240:1,
meetings [14]-	391:15, 439:24	misconceptions [1]	359:12, 359:13,	266:16, 266:21,
299:23, 299:25,	Michael [13]-202:8,	- 298:25	369:7, 377:8, 466:11	267:11, 291:25,
332:6, 337:15,	325:3, 326:13,	miserably [1] - 223:7	moratorium [5] -	304:8, 304:15,
405:12, 417:14,	329:21, 331:8, 418:2,	misinformation [3] -	411:13, 434:23,	339:10, 339:12,
$423: 3,423: 5,423: 13$, $425: 16,425: 20$	$418: 4,418: 22,419: 1$, $419: 11,434 \cdot 17$	299:16, 300:4, 302:15	435:1, 435:10, 435:22	$349: 5,349: 20,365: 9$
425:16, 425:20,	419:11, 434:17,	misjudged [1] -	morning [15] - 207:2,	$382: 17,400: 23$
433:15	450:3, 465:14	265:14	207:4, 207:12, 291:3,	Mr [75] - 251:15,
melt [1] - 229:20	microphone [1] -	miss [4]-276:5,	325:7, 331:1, 336:12,	252:3, 258:1, 264:18,
Member [8] - 201:20,	427:17	276:7, 276:11, 437:22	338:8, 340:3, 341:1,	265:1, 268:6, 268:10,
201:21, 201:22,	microphones [1]	misses [1] - 259:20	341:13, 341:21,	269:4, 272:2, 274:1,
201:23, 201:24,	207:9	missing [5] - 259:18,	369:17, 373:10,	297:6, 303:4, 303:24,
201:25, 203:7, 204:8	$\underset{\text { mid [5] - 230:13, }}{ }$	275:9, 276:5, 276:6,	448:10	304:21, 306:23,
member [9]-203:10,	230:15, 247:10,	276:11	mortality [1] - 349:24	309:21, 310:8,
203:11, 203:12,	248:12, 248:16	mistake [1] - 347:20	Moshi [2] - 442:15,	311:12, 314:3,
203:19, 203:20,	mid-July [1] - 230:13	mitigate [1] - 329:7	442:18	329:22, 330:5, 331:1,
203:21, 203:25,	mid-June [1] -	mixture [2] - 412:11,	most [36] - 215:20,	334:4, 336:6, 340:24,
277:18, 297:9	230:15	416:12	215:22, 217:20,	346:20, 347:4,
members [19] -	middle [7] - 215:8,	mixups [1] - 263:19	217:23, 219:11,	352:18, 359:23,
209:21, 251:12,	227:13, 247:17,	MLA [1] - $311: 5$	220:23, 227:23,	363:8, 365:20,
264:17, 275:24,	253:22, 263:13,	MLAs [1] - 430:8	235:12, 235:14,	369:16, 370:22,
282:5, 304:14, 305:3,	271:18, 312:13	model [23] - 232:24,	246:13, 247:2,	370:24, 382:3,
336:13, 386:9, 406:8,	might [44]-227:11,	322:16, 322:18,	282:12, 282:18,	384:15, 385:2, 387:8,
433:17, 434:4, 447:3,	238:21, 239:3, 239:5,	341:6, 341:9, 342:21,	284:2, 284:8, 291:25,	389:5, 391:18,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2
$391: 23,392: 10$,
$402: 22,415: 9,416:$ 417:5, 418:25, 419:25, 421:24 423:2, 424:9, 427:19, 427:21, 430:22, 431:20, 433:11, 434:19, 436:19, 438:3, 438:25, 439:16, 440:2, 444:24, 450:6, 451:3, 452:14, 455:8, 456:8, 457:17, 457:24, 458:23, 459:6, 460:4, 460:21, 460:23
MS [23] - 205:8,
207:19, 208:7, 208:9,
302:7, 311:11,
311:12, 314:3,
314:18, 316:7, 318:3,
323:7, 324:4, 326:15,
328:10, 334:22
387:13, 431:20
432:25, 434:10
439:20, 449:18, 456:19
multi [1] - 320:21 multi-year [1] -
320:21
multiple [6] - 212:24,
267:23, 326:25, 327:8, 411:20, 435:12 muscle [1] - 400:13
musk [1] - 443:17
must [4]-208:24,
208:25, 212:20,
212:23

\mathbf{N}
naive $[1]-246: 12$
name $[7]-311: 13$,
n30:1

name
339:1, 396:13,
396:14, 427:20,
445:1, 459:18
names [1] - 339:1
Napayok [1] - 203:11
NAPAYOK ${ }^{6}$ [
370:24, 372:14,
373:5, 376:12,
378:23, 380:16
narrow [1] - 308:22
NATEELA ${ }^{515}$ -
384:15, 386:5,
438:25, 451:22,
457:17
Nateela [1] - 203:24
National [3]-217:22,
228:6, 261:2
national [1] - 296:8
Nations [1] - 296:11
natural [6] - 254:19,
319:21, 363:11,
364:5, 393:8, 393:17
nature [4] - 330:17,
353:14, 364:2, 423:7
Naujaat [2] - 382:18,
440:7
Ndeloh [1] - 202:6
NDF [2] - 334:19,
335:17
near [5] - 208:13,
240:8, 240:17, 257:3,
283:20
nearest [3] - 417:12,
417:16, 419:10
neat [1] - 394:21
necessarily [19] -
216:5, 221:24,
244:23, 270:14,

277:8, 321:7, 321:13,
321:15, 322:24
323:17, 325:8,
333:24, 343:3,
356:25, 385:13 387:17, 393:23, 400:20, 434:1 necessary [2] 315:4, 436:9 neck [3]-257:15, 372:10
necks [1] - 254:11 need [60] - 211:17, 220:24, 232:9, 232:11, 246:14 265:15, 267:5, 281:25, 285:16, 286:14, 286:25, 289:9, 299:18,
305:12, 305:14 327:8, 329:9, 335:23, 339:11, 355:22, 357:5, 358:1, 386:24, 387:5, 387:15, 390:2,
390:7, 390:10,
391:21, 393:7,
394:20, 394:23,
395:20, 396:10, 398:16, 398:18,
398:25, 399:16,
400:22, 402:23,
406:23, 407:13,
407:22, 426:16,
427:24, 428:18,
431:21, 434:14 438:7, 443:15,
445:23, 446:2, 449:1
455:25, 457:11, 461:17, 463:3, 464:16
needed [4] - 209:7,
320:1, 447:10, 447:14
needs [6]-255:10,
294:12, 391:3,
409:10, 432:21,
435:18
negative [5] -
256:14, 256:18,
257:11, 279:2, 366:25
negatively [1] -
212:6
Netser [1] - 204:7 never [41] - 235:8,
239:18, 256:12,
260:8, 260:16,
260:21, 261:9,
261:10, 261:11,
262:12, 262:15,
270:20, 270:21,
270:24, 270:25
281:4, 288:3, 291:2,
297:22, 308:11,
346:3, 351:17, $368: 7$
368:10, 379:7,
379:10, 393:14,
393:17, 397:23,
404:14, 404:20,
408:1, 420:11,
422:11, 424:12,
441:15, 443:7, 460:13
new [31] - 209:13,
210:5, 212:9, 213:6, 224:4, 225:3, 242:7, 244:5, 259:23,
259:24, 279:15,
279:16, 286:6, 314:7, 314:8, 314:12, 315:3, 315:25, 322:7,
322:21, 341:9, 355:8, 355:20, 355:24
356:21, 361:3, 361:4,

396:6, 462:21, 463:8
New [1] - 384:20
newer [2] - 294:20, 396:7
news [2] - 443:1,
443:3
next [66]-210:17,
213:19, 215:6,
216:24, 218:4, 219:7
220:7, 222:3, 223:6,
225:11, 227:11,
229:12, 231:10,
231:20, 232:20,
233:15, 234:5,
234:22, 235:24,
236:15, 236:25,
237:1, 237:2, 237:24, 242:5, 244:7, 245:5, 245:19, 247:22,
250:3, 250:12, 253:8 264:17, 270:23,
275:1, 275:6, 277:2, 285:11, 293:10,
312:11, 329:14, 330:2, 341:19, 350:18, 355:11,
356:6, 361:6, 370:5, 383:15, 391:11, 396:2, 402:9, 403:9, 412:19, 413:5, 413:8 414:10, 414:18, 417:11, 435:13 436:3, 436:4, 440:14 452:7, 454:18, 465:4 nice [8] - 241:24,
251:3, 304:11, 380:3, 401:12, 403:22,
405:7, 449:21
Nicholas [1] - 203:15
nick [1] - 451:1
Nick [126] - 202:15,
207:14, 207:16
208:3, 210:17,
213:12, 251:1, 251:2, 251:8, 252:5, 254:4, 254:15, 257:24,
258:14, 262:17,
263:1, 264:10, 265:3, 268:4, 268:12, 269:2, 269:21, 271:25,
274:3, 277:13, 279:5, 282:3, 282:4, 289:22, 293:9, 299:3, 302:3, 302:8, 304:19, 307:16, 309:19 310:10, 311:1, 316:10, 317:9, 318:1, 318:21, 323:22, 325:22, 327:18, 328:13, 329:17,
330:6, 330:7, 330:12, 330:21, 331:4, 332:3,
334:2, 338:12,
339:22, 340:7,
340:22, 342:4,
346:18, 346:21,
347:5, 347:13,
347:17, 348:2,
348:18, 349:2, 350:9, 350:15, 351:3,
351:13, 352:7,
352:21, 354:23
356:3, 356:17,
359:14, 359:21
360:8, 360:9, 361:8,
361:9, 361:25, 363:6,
363:7, 364:12,
365:18, 366:23,
369:10, 370:19
371:6, 372:12,
$372: 18,373: 3$,
$373: 21,376: 10$ $373: 21,376: 10$
$377: 2,378: 18$, 380:14, 381:5,
381:21, 383:2, 384:6, 385:4, 386:3, 388:18,
389:22, 391:7,
393:11, 396:11,
396:20, 397:9,
397:20, 399:5,
399:18, 400:25,
425:17, 436:17,
438:4, 438:6, 438:21,
451:11, 451:13,
454:15, 456:23, 459:5
Nick's [2] - 340:25,
387:24
night [1] - 424:1
nine [1] - 441:10
Ningeogan [1] -
427:20
Ningeongan [1] -
204:3
NINGEONGAN [3] -
391:17, 427:19,
430:22
nipples [2]-381:10, 381:12
Nirlungyak [1] -
432:18
Noah [5] - 201:24,
254:5, 254:14, 463:5,
464:3
nobody [4] - 299:12,
341:7, 345:21, 443:19
nobody's [1] -
466:17
noise [4] - 230:7,
231:3, 235:2, 238:3
non [2]-287:10,
298:14
non-handle [1] -
287:10
non-Inuit [1] -
298:14
nonco [1] - 445:4
nonco-
management [1] -
445:4
nondetriment [4] -
213:4, 314:6, 314:20,
314:25
nondetrimental [1] -
314:7
none [3] - 227:20,
414:17, 446:20
nonhunting [1] -
458:7
nonselective [3]
374:17, 375:1, 375:13
nonselectively [1] -
375:4
north [14] - 216:22,
216:24, 218:1,
228:11, 290:12,
297:21, 320:21,
327:16, 365:2, 385:7,
408:2, 430:13,
445:14, 445:18
northeast [1] -
228:11
Northern [3] -
263:17, 420:5, 420:7
northern [3] - 250:5,
263:16, 382:6
northwards [1] -
216:16
northwest [5] -
215:13, 216:12,
216:13, 277:22, 313:6

Northwest [1] -
316:12
notably [1] - 447:8
note [10]-209:22,
209:25, 210:13
213:4, 271:20,
271:23, 323:15,
325:6, 412:14, 433:2
noted [3] - 211:3,
435:7, 438:22
notes [5] - 210:19,
243:8, 243:9, 409:17,
467:6
noteworthy [1] -
208:16
nothing [16] -
218:20, 247:16,
273:15, 287:11,
287:18, 291:24,
301:8, 315:19,
322:13, 329:19,
338:20, 363:3,
374:23, 404:25,
439:22, 452:3
nothing's [1] -
207:10
notice [2] - 230:4,
373:17
noticed [7] - 248:5,
248:6, 312:7, 312:13,
353:20, 369:19, 416:9
notices [1] - 384:24
noticing [1] - 244:19
noting [2]-212:17,
387:21
November [7]
216:15, 231:2, 231:3,
231:7, 231:8, 365:25,
366:11
NTI [20] - 202:21,
347:2, 353:18,
353:21, 356:4,
360:25, 361:2,
421:14, 427:1,
430:24, 432:18,
434:20, 450:21,
453:20, 453:23,
455:11, 455:20,
462:15, 463:13, 464:8
NTI's [2] - 412:2,
440:5
nuisance [3] -
423:15, 423:21
number [113]-209:6,
213:19, 216:19
219:17, 221:5,
231:14, 235:6, 237:8,
237:21, 238:23,
242:3, 244:8, 247:8,
248:22, 252:11
258:5, 260:4, 265:10,
269:7, 270:5, 270:11,
276:5, 276:6, 276:15,
276:17, 279:15,
279:19, 283:20
285:16, 288:14,
289:9, 293:15,
293:20, 294:7,
294:15, 294:16
294:17, 295:2, 295:3,
295:12, 295:17,
299:24, 301:14
307:24, 308:5,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

355:7, 355:8, 355:15,	Nunavut's [1] -	OF [4]-201:4,	283:23, 285:16,	ongoing [2] - 363:19,
355:19, 358:8,	211:25	202:17, 330:4, 450:5	286:14, 291:22,	365:11
358:16, 360:3,	nuts [2]-372:15,	off-take [1] - 318:13	292:3, 292:5, 292:10,	Ontario [12] -
375:24, 379:13,	372:16	offer [3] -445:19,	292:23, 293:10,	215:21, 215:23,
385:18, 390:4, 390:5,	NWMB [32] - 202:1,	447:12, 447:13	293:11, 294:3, 296:5,	216:7, 216:8, 216:9,
392:23, 395:11,	207:20, 207:25,	offhand [1] - 404:15	297:19, 300:22,	218:3, 228:3, 238:19,
395:14, 395:17,	209:9, 212:7, 212:10,	office [2] - 258:10,	300:24, 301:10,	248:10, 261:4, 337:12
411:6, 411:7, 412:8,	213:13, 213:19,	406:9	304:16, 306:4,	Ontario-Manitoba
412:9, 412:23,	250:20, 325:19,	Officer [2] - 366:1,	309:14, 310:23,	[1] - 261:4
415:14, 416:18,	325:25, 326:18,	366:12	312:11, 314:5,	onwards [2] -
416:22, 423:18,	332:7, 339:18, 340:9,	officers [2] - 238:13,	317:11, 317:14,	234:17, 236:13
423:20, 423:24,	340:20, 402:17,	447:9	317:16, 317:24,	Oolooyuk [1] -
424:25, 425:10,	403:23, 429:6,	offices [1] - 445:12	318:4, 319:4, 319:6,	204:11
425:14, 427:24,	435:19, 439:12,	Official [1] - 467:14	319:7, 320:23, 322:3,	open [15] - 215:9,
428:19, 430:15,	440:6, 441:1, 444:25,	often [20]-239:16,	322:7, 325:8, 325:19,	215:11, 240:6, 240:8,
431:23, 432:1, 432:7,	446:10, 448:14,	251:22, 295:10,	326:17, 327:5, 329:2,	251:8, 251:11,
432:19, 433:6,	448:19, 455:16,	297:19, 298:10,	330:20, 332:16,	259:13, 290:19,
433:14, 433:21,	455:21, 457:9,	338:10, 364:6, 379:5,	332:17, 332:21,	311:24, 410:9,
433:22, 433:25,	459:19, 466:3	380:18, 381:7,	333:8, 333:25,	411:12, 415:6, 434:3,
434:2, 446:25,	NWMB's [2] - 325:9,	386:19, 401:23,	335:14, 338:22,	435:6, 454:21
448:13, 454:13,	325:15	420:16, 423:3,	339:17, 342:7, 342:9,	open-pit [1] - 240:8
461:18, 464:15	NWT [2] - 416:11,	423:11, 429:16,	345:4, 346:1, 346:12,	opened [1] - 441:11
number's [1] -	420:10	461:16, 461:19,	348:3, 348:5, 349:15,	opening [2] - 326:8,
350:22		463:11, 464:21	350:5, 350:21,	418:8
numbered [1] -	O	oil [1] - 312:17	351:17, 352:22,	operate [1] - 429:12
222:15		old [9]-222:17	355:8, 356:9, 357:	opinion [8] - 208:2,
numbers [30] -	obese [1] - 220:4	222:19, 225:6,	358:20, 360:2,	282:19, 282:24,
210:24, 233:23,	objective [13] -	261:13, 262:10,	361:19, 361:20,	290:10, 293:14,
234:19, 235:24,	213:2, 315:9, 315:10,	295:10, 349:9,	365:15, 366:1,	333:8, 353:1, 389:12
239:1, 242:8, 242:17,	321:22, 322:4,	355:20, 377:8	369:17, 369:18,	opinions [1] - 365:1
243:15, 244:20,	331:15, 331:18,	old-fashioned [1] -	371:2, 371:18,	opportunities [5] -
247:20, 247:21,	332:17, 335:22,	262:10	371:20, 372:20,	322:9, 385:6, 400:18,
284:12, 352:5,	336:3, 357:7, 450:10,	older [1] - 267:12	375:15, 376:18,	447:3, 448:25
355:16, 355:20,	456:13	Olympic [4] - 393:4,	376:22, 377:9,	opportunity [18] -
374:24, 390:2,	objectives [12] -	393:5, 393:7, 393:19	377:13, 378:7,	207:21, 213:14,
390:21, 397:13,	321:20, 331:3,	once [33] - 218:9,	378:23, 379:5,	281:24, 301:24,
399:16, 412:6, 421:3,	335:21, 357:5, 358:1,	223:7, 226:20,	379:16, 379:18,	311:14, 313:21,
424:19, 433:24,	358:16, 442:10,	232:13, 239:19,	379:22, 380:5, 380:7,	368:7, 391:17, 392:2,
436:21, 437:2, 437:6,	442:14, 446:16,	255:10, 256:15,	380:10, 380:20,	401:19, 427:22,
437:18, 437:20	449:2, 449:3, 450:14	259:2, 266:10,	380:21, 380:23,	429:25, 431:2, 431:6,
Nunavummiut [1] -	obligation [1] -	272:16, 278:9,	380:24, 381:1,	444:25, 445:5, 455:1,
453:10	212:21	278:10, 284:17,	381:15, 381:17,	456:5
NUNAVUT [15] -	oblige [1] - 423:6	284:18, 287:13,	385:8, 386:8, 387:23,	opposed [1] - 440:25
201:2, 201:4, 201:14,	observation [1] -	342:25, 343:23,	388:22, 389:5,	opposite [2] -
202:17, 251:13,	330:19	348:5, 348:9, 360:14,	389:25, 392:23,	266:20, 298:3
314:1, 330:4, 347:3,	observations [11] -	360:22, 375:5, 379:2,	392:24, 393:2, 394:1,	opposition [1] -
415:8, 431:18,	275:15, 317:5, 331:6,	380:20, 396:1,	395:4, 398:18,	336:10
434:21, 449:8,	331:25, 337:22,	398:17, 404:9,	405:12, 405:19,	option [2]-212:11,
449:16, 450:5, 453:18	353:25, 354:3, 354:7,	404:19, 407:19,	406:10, 407:25,	434:6
Nunavut [71] - 205:6,	381:8, 385:16, 441:5	428:24, 440:23,	408:19, 409:4,	options [4] - 333:25,
205:9, 205:11,	observe [1] - 453:6	454:25	409:11, 409:22,	357:2, 434:13, 443:16
205:12, 205:23,	observing [1] - 354:4	one [229]-207	410:2, 410:5, 411:12,	oral [1] - 445:5
206:1, 206:3, 206:9,	obtained [1] - 223:4	217:1, 217:4, 218:18	411:16, 412:4,	orange [1] - 412:23
206:11, 206:15,	obvious [2] - 349:12,	218:23, 219:8,	412:14, 412:20,	order [12]-212:18,
206:18, 209:2,	454:8	219:25, 222:14,	413:5, 413:9, 414:3,	231:15, 233:6,
209:10, 209:18,	obviously [5] -	222:15, 222:16,	414:11, 414:17,	233:11, 246:15,
216:17, 216:20,	214:25, 221:4, 326:1,	222:21, 222:22,	414:18, 415:1,	283:16, 284:9,
218:2, 272:25,	382:17, 426:13	224:7, 226:3, 227:7,	417:12, 421:2, 421:4,	298:21, 317:1, 359:1,
278:10, 282:6, 282:8,	occasionally [1] -	227:14, 227:18,	425:2, 431:1, 431:21,	364:9, 394:7
294:4, 295:22,	412:24	228:4, 228:8, 228:17,	434:22, 435:12,	organism [3] -
295:25, 296:8, 297:2,	occur [3]-214:1,	230:5, 231:22,	435:13, 435:21,	392:15, 392:18,
305:14, 326:7,	239:21, 390:12	231:23, 231:24,	435:23, 436:2, 436:7,	392:22
327:22, 328:18,	occurred [4] -	231:25, 232:3,	440:9, 440:11,	organization [4] -
329:2, 330:2, 330:9,	364:24, 368:6, 390:3,	232:24, 233:3,	440:17, 441:18,	303:22, 445:3,
336:11, 338:5, 341:4,	419:7	236:23, 237:4,	446:17, 452:23,	445:20, 465:22
361:15, 363:16,	occurrence [1] -	238:16, 238:25,	453:22, 454:11,	organizations [16] -
373:17, 384:23,	419:14	239:17, 239:18,	454:13, 462:23	209:4, 264:6, 302:14,
386:18, 392:20,	occurring [9]-	241:16, 241:17,	one's [2]-291:10,	302:23, 305:9, 318:8,
400:13, 408:20,	210:8, 230:12,	241:21, 242:4,	310:20	357:21, 361:2,
410:21, 411:4,	230:13, 249:12,	242:10, 244:4, 244:5,	one-to-one [2] -	365:10, 416:14,
412:11, 412:13,	249:23, 317:22,	244:11, 245:6, 246:7,	319:4, 436:2	428:16, 455:23,
415:22, 416:11,	385:10, 390:14	247:14, 247:18,	one-way [1] - 388:22	456:3, 457:4, 464:8,
418:10, 420:2, 420:9,	occurs [3] - 220:14,	250:3, 254:7, 254:22,	one-year [1] - 247:14	464:17
420:13, 421:1, 421:3,	232:13, 232:15	255:19, 259:24,	ones [13]-243:25,	organs [4] - 365:23,
423:16, 434:6,	oceanography [1] -	260:9, 260:12,	252:12, 261:15,	367:1, 367:12, 367:19
434:18, 436:23,	294:13	261:19, 263:17,	262:21, 269:11,	orgs [1] - 388:7
445:13, 445:23,	Oceans [2] - 211:5,	264:3, 265:20, 267:8,	269:13, 273:17,	originally [1] - 395:1
448:18, 452:9,	245:22	269:8, 269:19, 275:9,	370:3, 380:22,	orphaned [1] -
453:11, 456:7, 457:8,	October [3] - 216:15,	280:3, 281:10,	413:24, 416:22,	364:18
460:6, 460:20, 463:21	284:21, 311:22	281:12, 282:13,	417:7, 462:24	Ottenhauf [1] -

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

$\begin{aligned} & \text { 204:14 } \\ & \text { OTTENHOF } \end{aligned}$	$\begin{aligned} & \text { 297:10, 297:22, } \\ & 298: 8,301: 2,301: 3, \end{aligned}$	$\begin{aligned} & 436: 16,455: 20 \\ & 456: 6.459: 17 \end{aligned}$	402:14, 404:10, 405:4, 405:16, 406:8,	$\begin{gathered} \text { periodically [3] - } \\ 218: 4,258: 16,314: 10 \end{gathered}$
396:14, 397:11,	309:1, 314:22,	459:18, 460:1, 463:18	$413: 11,413: 16$	periods [2] - 236:5,
399:7, 400:24	319:21, 325:14,	Paul's [1] - 440:4	420:16, 421:12,	248:15
Ottenhof [1] - 396:14	335:14, 352:4,	pay [2] - 405:17,	421:19, 423:11,	permanent [1] -
ourselves [4]-	353:14, 359:3,	461:23	425:15, 425:22,	383:17
224:14, 252:23,	362:24, 364:4,	PBSG [1] - 355:4	426:12, 430:11,	permit [3]-212:20,
386:25, 387:7	366:24, 367:21,	PBTC [1] - 355:4	436:7, 440:24,	283:21, 315:23
outcomes [1] - 345:3	370:8, 371:9, 371:11,	Pearson [1] - 202:3	441:16, 442:19,	permits [2]-315:4,
outline [1] - 450:10	372:1, 374:14	peat [1]-271:13	447:16, 448:24,	315:21
output [1] - 344:21	374:15, 382:13,	pelts [1]-212:19	454:11, 455:23,	permitted [2] -
outside [12] -	393:14, 399:20,	penalization [3] -	457:5, 458:25,	213:5, 316:20
215:15, 257:15,	405:15, 409:1, 409:5,	411:17, 435:23, 436:3	462:22, 462:25,	person [10]-251:6,
270:24, 293:3,	424:14, 424:15,	penalizations [4] -	463:12, 463:25	272:19, 273:11,
306:11, 306:15,	445:9, 445:16, 446:20	411:13, 434:24,	people's [1] - 406:15	292:11, 309:5, 309:8,
387:5, 419:4, 420:2,	partially [1] - 432:8	435:10, 436:8	per [17] - 212:1,	312:16, 405:21,
420:3, 445:20, 453:11	participants [2] -	penalized [1] -	229:2, 247:12, 268:3,	458:18, $458: 19$
outsiders [1] -	434:4, 435:8	405:14	277:1, 283:5, 296:18,	personal [2] -
422:24	participate [1] -	penalizing [1] -	310:14, 339:15,	341:11, 406:15
over-harvesting	456:21	434:24	347:9, 347:14,	personally [3] -
434:24, 435:23, 436:2	participated [1] -	people [168]	347:16, 347:22,	299:21, 301:8, 371:2
overall [3] - 324:8,	209:21	208:25, 214:5, 214:9,	364:25, 368:22,	personnel [2] -
360:3, 424:6	participating [2] -	214:17, 214:19,	385:23, 397:18	243:3, 447:10
overdosages [1] -	401:8, 459:13	217:5, 217:7, 219:11,	percent [56] -	perspective [16] -
264:20	participation [2] -	224:5, 225:3, 226:8,	209:15, 210:4, 212:2,	249:9, 266:3, 266:4,
overdose [3] -	209:5, 304:13	227:4, 239:12,	214:4, 221:21, 226:2,	274:11, 279:2,
265:15, 266:2, 266:3	particular [14] -	240:10, 241:7, 241:8,	229:19, 229:20,	281:19, 286:19,
overdosed [3] -	235:14, 270:14,	241:9, 241:10,	229:24, 230:1,	334:15, 367:17,
264:20, 264:21,	276:4, 283:23, 284:7,	241:12, 242:8,	230:17, 230:23,	388:12, 390:15,
265:11	290:24, 291:1, 327:3,	242:13, 242:18,	230:25, 231:2,	410:19, 441:22,
overdosing [1] -	338:17, 367:21,	242:25, 243:5,	236:22, 237:2, 237:4,	445:19, 447:25, 450:8
265:4	368:6, 368:8, 369:4,	243:11, 243:21,	237:8, 245:25, 246:3,	perspectives [1] -
overdue [1] - 446:15	383:15	244:6, 244:9, 244:13,	246:5, 246:15, 249:4,	445:15
overlap [1] - 249:3	particularl	250:11, 252:18,	260:13, 260:22,	phonetic [4] - 306:2,
overnight [1] - 291:2	239:3, 316:13, 457:4	253:18, 256:23,	261:17, 262:4,	443:11, 453:8, 463:18
oversight [1] -	parties [2] - 209:11,	258:18, 259:1, 260:6,	276:16, 284:1,	phonetic) [1] - 228:4
333:12	460:13	265:7, 270:5, 273:9,	295:13, 318:13,	photographs [1] -
overview [1] - 207:24	partner [1] - 445:4	276:1, 276:2, 276:3,	318:23, 319:7, 320:2,	351:22
owe [1] - 437:22	partners [4] -	279:23, 280:9,	320:11, 321:4, 321:7,	phytoplankton [1] -
own [12]-223:14,	327:20, 411:16,	284:21, 285:14,	321:10, 321:17,	245:1
226:21, 298:19,	435:25, 448:14	285:25, 286:1, 286:6,	322:25, 323:17,	pick [6] - 226:19,
348:25, 384:21,	partnerships [1] -	288:1, 288:12, 289:4,	336:1, 352:22,	235:3, 244:14,
387:2, 417:10,	209:4	289:18, 292:21,	353:13, 354:15,	256:13, 262:11, 390:5
420:20, 421:19,	parts [5] - 207:23,	292:24, 293:2, 294:5,	354:16, 358:6,	picked [3] - 260:5,
424:16, 439:6, 465:7	212:19, 307:10,	294:12, 295:24,	358:13, 405:8,	366:2, 463:4
owners [1] - 292:17	327:25, 342:5	296:4, 296:10,	407:13, 411:5,	picking [1] - 263:24
ox [1] - 443:17	partway [1] - 268:24	296:11, 296:13,	415:12, 415:13,	picture [5] - 226:18,
oxygen [1]-367:4	passed [3] - 332:9,	296:14, 296:17,	415:20, 425:11	273:5, 286:3, 371:10,
		296:19, 297:12,	percentage [2] -	424:11
	2	297:17, 300:25,	318:18, 415:12	piece [6]-250:9
	224:6, 272:6, 272:23,	301:1, 302:9, 303:7	percentages [1] -	281:10, 281:11,
p.m [1] - 466:23	273:14, 274:14,	304:16, 305:10,	433:24	281:12, 300:13,
P.M [1] - 324:22	274:21, 277:25,	307:21, 307:23,	perceptions [1] -	355:12
package [1] - 250:23	278:8, 284:7, 284:12,	309:3, 309:6, 313:4	241:18	pieces [8] - 223:2,
page [2] - 418:9,	292:12, 295:23,	313:17, 317:5,	perfect [2]-345:	224:14, 252:11,
419:8	306:14, 315:23,	317:12, 319:16,	388:15	295:8, 300:12,
PAGE [1] - 205:3	317:3, 327:7, 349:22,	320:14, 320:15,	performance [1]	356:24, 367:16,
pages [2]-201:12,	373:15, 376:12,	335:1, 337:10,	210:21	372:23
467:3	377:6, 379:3, 379:17,	337:16, 338:2, 338:7,	perhaps [18]	piles [1] - 242:
paint [3]-348:7,	382:22, 421:19,	338:19, 338:22,	249:18, 249:22,	illow [1] - 306:4
429:1	433:19	339:12, 339:20,	263:4, 274:25,	pinpoint [1] - 286:3
panel [6] - 216:12,	patch [1] - 299:14	341:8, 342:7, 342:9,	281:20, 309:13,	pit [1] - 240:8
230:14, 233:2, 233:9,	patches [1] - 298:8	342:10, 342:11,	316:7, 333:2, 338:23,	place [19] - 210:15
372:21, 391:24	pathway [1] - 223:19	342:12, 342:13,	358:22, 376:7,	217:15, 227:1, 230:5,
panels [2]-228:8	patiently [1] - 455:9	343:13, 343:16,	399:14, 399:15,	271:22, 277:5,
paralytic [1] - 396:17	Patricia [2] - 202:3,	344:7, 345:23, 350:1,	421:17, 424:21,	298:13, 311:4,
parcel [1] - 309:1	465:18	350:2, 350:4, 354:25,	425:3, 464:24	311:10, 327:22,
parents [3]-240:12,	patrol [1] - 45	355:23, 357:2, 365:2,	period [28] - 227:13,	357:16, 363:21,
304:24, 312:11	patrols [2] - 447:7,	365:3, 365:13,	228:10, 231:10,	364:21, 365:11,
Park [3] - 217:22,	447:16	373:17, 374:18,	231:15, 231:18,	418:18, 445:24,
228:6, 261:2	pattern [2] - 215:25,	374:20, 375:12,	231:19, 233:21,	447:9, 457:8, 458:10
park [1] - 296:8	230:23	375:14, 375:19,	234:13, 234:20,	places [11]-215:23,
parked [1] - 406:16	Paul [24] - 202:22,	376:1, 376:5, 376:7,	235:19, 236:12,	217:8, 217:10,
Parks [1] - 285:14	203:16, 213:3,	378:24, 379:8,	236:18, 236:23,	245:11, 255:25,
part [47]-228:2,	347:12, 347:18,	379:11, 379:21,	246:1, 248:8, 249:5	257:2, 275:8, 293:1,
244:5, 250:5, 250:22,	348:1, 348:19, 349:1,	384:20, 385:21,	251:10, 273:5, 279:8,	304:14, 320:9, 333:5
258:15, 262:22,	350:10, 350:14,	386:17, 386:18,	280:5, 284:24,	Plan [1] - 408:21
263:2, 267:16,	351:4, 351:12, 352:8,	386:20, 394:2, 394:3,	331:24, 341:16,	plan [9]-335:4,
270:22, 271:6, 272:3,	352:16, 434:20,	395:13, 401:23,	346:16, 382:24,	335:11, 364:9,
274:23, 293:17,	435:3, 436:13,	401:25, 402:2,	412:22	367:15, 445:24,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

446:11, 446:14,	277:1, 278:15,	policies [1] - 238:14	232:12, 247:21,	242:12, 392:19,
$\begin{gathered} \text { 448:15, 461:1 } \\ \text { planning [2] - } \end{gathered}$	$\begin{aligned} & \text { 278:20, 278:23, } \\ & \text { 280:1, 280:13, } \end{aligned}$	policy [5] - 282:8, 420:8, 423:4, 439:14,	$\begin{aligned} & 262: 22,282: 9,305: 6, \\ & 308: 1,308: 4,446: 13 \end{aligned}$	392:22 present [10]-208:2,
209:19, 397:3	280:18, 280:22,	459:19	possibly [2] - 308:8,	245:16, 281:10,
plans [11] - 234:3,	282:15, 288:2, 288:3,	political [1] - 410:6	334:19	281:23, 355:21,
334:13, 335:5,	288:4, 288:5, 288:12,	political-legal [1] -	Post [1] - 317:18	392:19, 402:17,
335:12, 384:17,	297:13, 297:18,	410:6	post [2]-242:24,	403:22, 444:15,
384:22, 387:1, 387:6,	297:20, 298:1,	polynyas [1] -	316:24	444:25
445:22, 446:18,	298:11, 299:18,	215:10	poster [1] - 339:6	presentation [31] -
446:20	301:18, 302:10,	poof [1] - 259:13	posters [2]-339:8,	207:13, 208:3,
plant [1] - 376:18	306:3, 306:7, 306:16,	poor [4]-220:3,	402:1	210:18, 213:22,
plastic [1] - 372:2	307:19, 307:20,	239:9, 268:20, 299:14	posts [1] - 243:1	213:23, 250:16,
platform [1] - 211:20	307:25, 308:8,	popped [1] - 256:24	potential [3] - 317:2,	250:22, 251:9, 269:6,
play [6] - 280:7,	308:13, 309:17,	popping [1] - 372:25	345:3, 358:23	324:7, 340:3, 340:11,
288:9, 317:3, 374:11,	310:2, 310:14,	population [102] -	potentially [6] -	347:5, 347:8, 351:6,
382:13, 423:19	310:20, 311:21,	208:12, 208:19,	289:24, 323:3,	352:21, 353:8,
playground [1] -	312:1, 312:8, 312:9,	209:14, 210:6, 210:7,	353:23, 419:4,	360:22, 369:17,
442:3	312:17, 312:21,	210:10, 210:12,	440:10, 440:21	392:3, 401:4, 401:7,
pleased [1] - 209:24	312:23, 312:24,	211:2, 211:11,	pound [2]-378:12,	402:9, 413:21,
plots [1] - 338:17	313:4, 313:9, 313:12,	211:23, 212:2,	378:13	442:24, 444:6,
plotting [1] - 253:5	313:15, 313:18,	212:14, 219:6,	pounder [1] - 379:24	444:10, 444:12,
plugs [2]-224:8,	316:12, 316:24,	233:17, 233:18,	pounds [6] - 377:11,	445:5, 449:19, 452:5
224:12	317:20, 318:24,	233:22, 234:4,	377:12, 377:21,	presentations [3] -
pod [1] - 351:22	319:24, 319:25,	237:24, 241:18,	378:7, 378:8, 378:9	208:14, 360:24,
Point [3] - 416:25,	324:8, 325:16,	250:4, 270:7, 272:11,	power [1] - 461:18	$442: 18$
417:23, 417:24	327:14, 328:15,	279:1, 279:10,	powerful [3] -	presented [5] -
point [29]-217:6,	335:1, 336:11,	282:11, 282:12,	222:24, 223:2, 421:25	304:12, 305:8,
233:23, 235:10,	337:16, 341:7,	282:17, 282:18,	practical [1] - 326:4	446:23, 448:9, 452:17
253:10, 270:17,	342:10, 343:12,	283:23, 283:25,	practice [2]-393:2,	presenting [7] -
276:14, 276:24,	349:17, 352:12,	286:15, 293:11,	421:16	207:22, 251:6,
280:18, 280:23,	356:13, 359:25,	293:13, 293:15,	practices [1] -	352:21, 353:7,
294:3, 308:6, 308:14,	360:2, 360:10,	293:21, 294:2, 294:4,	328:24	403:20, 409:23, 444:4
318:13, 328:22,	361:13, 361:21,	294:22, 295:6, 295:7,	prayer [1] - 207:5	preserve [1] - 460:19
346:4, 346:9, 353:10,	362:11, 362:13,	295:21, 303:21,	PRAYER[1] - 207:6	president [2] - 427:7,
355:2, 355:17,	363:10, 363:14,	315:10, 317:2,	pre [1] - 383:5	427:20
355:25, 357:8, 361:5,	363:17, 363:18,	318:25, 319:4, 320:1,	pre-decide [1] -	President [2] -
373:23, 390:24,	363:23, 363:25,	320:5, 320:6, 321:2,	383:5	204:3, 204:6
419:22, 423:16,	364:4, 364:7, 365:22,	321:4, 321:8, 322:4,	precautionary [10] -	pressure [1] - 243:5
426:10, 433:3	365:23, 366:7, 366:9,	322:11, 331:3, 331:4,	212:8, 281:16,	prestigiousness [1]
pointing [1] - 338:4	369:19, 373:11,	331:10, 331:12,	281:21, 318:6,	- 420:13
points [7] - 210:10,	373:14, 374:17,	331:19, 331:23,	318:14, 318:18,	presumably [5] -
210:18, 354:8, 355:6,	374:18, 374:22,	333:1, 333:23, 334:9,	321:11, 321:16,	238:10, 355:10,
408:5, 409:11, 453:3	374:23, 375:2,	337:15, 353:5, 353:8,	322:23, 448:11,	357:14, 360:25, 374:9
Polar [7]-208:18,	375:15, 376:2, 376:6,	357:8, 360:1, 360:2,	precious [1] - 458:16	presume [1] - 234:24
210:14, 300:8, 337:7,	376:21, 379:1, 379:8,	360:4, 360:22,	precise [1] - 276:9	pretty [4] - 372:4,
360:12, 360:19,	379:11, 382:16,	375:11, 389:11,	predator [1] - 244:14	425:9, 444:14, 463:8
408:20	385:11, 385:20,	392:13, 395:5, 405:9,	predefined [2] -	preventing [1] -
POLAR [1] - $201: 7$	392:13, 392:16,	407:12, 410:18,	226:17, 259:14	369:5
polar [250] - 208:22,	392:23, 392:25,	410:20, 412:9,	predict [2]-343:2,	prevents [2]-
209:3, 211:8, 211:17,	393:3, 393:15,	412:10, 415:17,	345:8	291:24, 372:25
211:19, 212:19,	394:13, 394:16,	418:11, 418:12,	predictable [1] -	previous [8] -
214:1, 214:5, 214:7,	402:18, 404:2, 404:7,	418:16, 420:4, 420:6,	266:6	209:16, 210:4,
214:8, 217:3, 217:5,	404:11, 404:22,	425:4, 425:7, 431:23,	predicted [2] -	210:23, 211:23,
218:19, 218:20,	405:1, 406:16,	433:20, 442:8,	345:19, 345:21	284:4, 352:25,
218:22, 218:24,	407:24, 408:23,	442:22, 446:6, 446:8,	predicting [1] -	354:14, 355:7
219:4, 221:10,	408:25, 409:17,	448:7, 450:11,	342:23	previously [1] -
221:19, 221:21,	410:12, 410:13,	452:10, 453:5, 454:19	predictions [1] -	375:18
222:6, 222:7, 222:12,	410:20, 412:12,	populations [20] -	346:14	prey [1] - 221:23
222:22, 222:23,	416:15, 416:18,	244:15, 244:18,	predicts [1] - 346:8	price [2] - 405:17,
223:10, 223:13,	417:22, 420:12,	274:8, 280:20,	predominant [1] -	461:23
224:17, 225:14,	420:14, 420:17,	295:15, 319:19,	221:23	primarily [4] -
229:2, 234:4, 240:11,	421:12, 425:13,	319:24, 320:13,	pregnant [16] -	215:13, 215:21,
242:7, 243:22,	426:4, 426:20,	320:16, 334:14,	220:5, 221:4, 221:5,	223:19, 225:13
244:10, 244:15,	427:11, 427:23,	335:5, 355:19,	221:8, 232:6, 232:8,	primary [1] - 327:13
244:17, 244:19,	428:2, 428:22,	360:10, 362:14,	234:25, 256:20,	prime [2]-233:10,
245:3, 245:18, 246:6,	430:10, 430:13,	370:2, 370:5, 375:2,	264:24, 267:16,	292:6
246:11, 246:13,	430:15, 437:8,	375:15, 445:10,	267:19, 268:21,	print [1] - 398:11
247:23, 249:20,	437:11, 437:14,	448:21	271:9, 309:23,	priorities [1] -
249:21, 252:19,	437:23, 437:25,	port [1] - 217:14	309:24, 310:20	365:15
252:21, 258:2, 258:4,	438:2, 441:25, 445:8,	poses [1] - 208:22	prejudiced [1] -	priority [1] - 455:25
258:6, 262:23, 263:6,	445:10, 445:23,	position [4] - 211:22,	297:8	privilege [1] - 466:5
263:14, 263:15,	445:25, 446:11,	326:21, 334:7, 374:10	preliminary [2] -	probability [4] -
263:17, 264:5, 265:7,	446:22, 447:6, 447:7,	positioning [1] -	210:3, 211:8	211:18, 239:12,
268:7, 268:14, 269:5,	447:11, 447:23,	252:23	premature [1] -	239:21, 241:13
269:7, 269:10, 272:8,	448:6, 448:21, 451:6,	positive [1] - 213:5	323:25	problem [24]-238:7,
272:10, 272:14,	452:10, 453:4, 453:9,	possessions [1] -	premolar [1] - 222:3	238:8, 241:22, 283:2,
272:22, 272:24,	453:22, 456:14,	209:1	prepared [7] - 289:5,	291:10, 293:6, 302:9,
273:1, 273:3, 273:6,	457:19, 458:19,	possibility [2] -	358:3, 358:4, 358:6,	310:19, 332:17,
273:9, 273:14,	458:24	337:9, 466:12	358:13, 439:4, 447:13	343:1, 344:18,
273:19, 276:20,	pole [1] - 370:4	possible [8] -	presence [3] -	361:20, 363:2,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

$363: 22,407: 5$	209:8, 411:21,	$452: 8,452: 16,465: 5$	$403: 7,455: 13$	quick [6] - 324:3,
413:11, 416:21,	412:21, 412:24, 413:1	PUBLIC [3] - 201:4,	qualified [2]-439:7,	$324: 4,352: 19$
423:16, 423:22,	proportion [1] -	204:10, 392:9	439:10	373:22, 389:6, 434:22
437:8, 437:25, 450:1,	221:19	Public/Elders [1]	qualities [2]-	quickly [8] - 253:9,
459:24	proportions	206:7	220:21, 220:25	333:19, 363:22,
problematic [1] -	221:24	PUBLIC/ELDERS [3]	Quebec [5] - 228:3,	399:6, 415:1, 431:17,
334:15	PROPOSAL [1] -	- 206:19, 440:1,	228:14, 420:4, 420:6,	436:20, 466:14
problems [6]-	201:5	452:12	420:7	quite [25] - 215:15,
244:12, 255:25,	proposed [1] -	ublication [2]	questioning [2]	222:23, 228:17,
406:6, 409:22,	446:11	340:15, 340:16	330:1, 416:21	230:17, 235:20,
423:14, 451:8	protec	published [1]	Questions [23]	235:21, 236:7,
procedures	371:23, 424:24	232:22	205:6, 205:9, 205:11,	236:11, 247:13,
285:13, 396:6	protecting [1] -	pull [5] - 222:9,	205:12, 205:14,	249:3, 331:23, 334:5,
Proceeding [1]	377:17	222:20, 260:2,	205:15, 205:16,	341:5, 351:9, 373:13,
207:1	rotect	261:21, 397:14	205:17, 205:18,	374:12, 374:20,
proceedings [1] -	361:17, 375:9,	pulled [2]-261:24	205:19, 205:20,	399:8, 403:25,
467:5	423:25, 455:25	397:15	205:21, 205:23,	409:12, 412:22,
Proceedings [2]	protection-wise [1] -	pulse [1] - 234:12	206:1, 206:3, 206:5,	414:4, 414:22, 431:5,
324:20, 466:23	423:25	punch [2]-220:9,	206:6, 206:7, 206:9,	443:10
PROCEEDINGS [1] -	protective [2] -	397:25	206:11, 206:13,	qujannamiik [3] -
324:22	377:14, 377:1	pups [2]-246:12,	206:15, 206:18	325:4, 418:5, 419:16
proceeds [1] -	rotects [1] - 217:22	298:7	TIONS [23]	quorum [1] - 466:4
216:14	protocol [4] -	purely [1] - 383:13	251:13, 314:1, 330:4,	quota [40]-243:7,
process [16]-267:5,	283:22, 371:8, 388:7,	purple [2]-217:21,	347:3, 356:8, 359:22,	243:10, 278:11,
270:8, 270:17,	388:14	217:25	369:15, 382:1,	342:15, 376:1, 376:5,
281:11, 311:4,	proud [2]-286:17,	purpose [1] - 235:9	384:14, 389:4,	404:11, 404:13,
313:18, 314:11,	430:6	purposes [4]-223:5,	391:16, 392:9, 415:8,	405:20, 411:8,
315:15, 316:3,	prove [1] - 212:22	231:22, 286:21, 290:5	431:18, 434:21,	412:15, 412:16,
323:13, 328:5,	proved [1] - 212:16	pursue [1] - 359:9	436:18, 438:24,	413:13, 413:15,
335:19, 365:11,	proven [1] - 224:2	ush [1] - 271:19	440:1, 449:8, 449:16,	414:5, 422:6, 422:7,
398:4, 445:20, 463:8	provide [32] -	pushed [1] - 255:22	450:5, 451:2, 453:18	422:9, 423:23,
produce [7] - 220:23,	213:14, 213:17	put [83] - 213:22,	questions [109] -	424:13, 426:15,
220:25, 223:21,	213:23, 219:15,	219:12, 220:9, 223:6,	208:4, 213:10,	429:6, 434:23,
232:11, 234:25,	226:6, 232:11, 250:1,	225:13, 225:15,	218:22, 250:14,	436:21, 440:8,
313:16, 319:13	285:18, 288:23,	225:18, 225:25,	251:8, 251:11,	440:22, 441:1, 441:3,
produced [4] -	301:21, 317:1,	226:21, 229:16,	251:12, 251:16,	441:9, 441:22, 442:5,
235:5, 237:23, 281:3,	318:11, 322:22,	241:6, 242:21,	254:5, 258:11,	442:7, 442:20,
338:15	327:20, 329:10,	251:21, 252:12,	264:11, 264:16,	442:22, 443:5,
produces [1] - 235:9	339:9, 339:25,	253:20, 254:18,	264:19, 282:4,	443:12, 443:13,
producing [2] -	344:20, 345:2,	254:20, 254:22,	285:17, 285:20,	443:20, 459:21
220:20, 257:5	356:14, 356:19,	254:23, 255:3, 255:9,	286:8, 288:17,	quotas [12]-214:14,
production [1] -	357:20, 357:25,	255:24, 256:2,	288:24, 289:6,	243:12, 243:20,
280:19	385:23, 402:2,	256:24, 259:1,	289:18, 293:10,	243:23, 333:5, 375:6,
productive [2] -	419:18, 433:23,	259:16, 259:23,	297:5, 299:4, 311:2,	375:8, 375:12,
330:12, 331:12	433:25, 434:5, 445:5,	261:1, 261:6, 261:19,	311:5, 311:8, 313:24,	424:20, 425:21,
productivity [6] -	449:19, 456:23	263:20, 263:22,	314:4, 324:17, 325:2,	459:3, 461:18
236:16, 236:17,	provided [19] -	266:10, 283:8,	326:16, 326:17,	quote [2]-229:21,
237:22, 249:17,	208:1, 286:19,	284:13, 284:24,	330:20, 332:10,	293:20
$310: 16,330: 24$			$\begin{aligned} & 332: 12,334: 5, \\ & 337: 14.337: 17 . \end{aligned}$	
$\begin{aligned} & \text { program [13] - 209:3, } \\ & 209: 12,217: 19, \end{aligned}$	$\begin{aligned} & 340: 4,353: 19,375: 8, \\ & 375: 9,381: 19, \end{aligned}$	$\begin{aligned} & 299: 8,304: 8,309: 23 \\ & 310: 1,310: 5,312: 8 \end{aligned}$	$\begin{aligned} & 337: 14,337: 17, \\ & 347: 6352 \cdot 14 \end{aligned}$	R
218:21, 263:6,	385:13, 400:10,	313:19, 316:2, 327:6,	356:7, 359:19	achel [28] - 202:14,
282:15, 329:2,	400:16, 412:12,	328:7, 329:11, 337:6,	359:21, 366:16,	207:14, 208:5,
357:17, 394:15,	412:13, 431:25,	339:5, 341:24, 342:2,	369:11, 369:12,	250:25, 299:23
399:10, 406:17,	432:14, 436:5, 453:3,	348:7, 355:12,	369:14, 370:21,	302:4, 302:6, 303:2,
406:19, 447:13	453:24	365:22, 366:8, 368:2,	378:21, 381:25,	304:6, 314:17, 316:5,
programmed [1] -	provides [4] - 227:9,	372:14, 372:15,	382:5, 384:8, 384:11,	318:21, 323:5, 323:6,
259:6	292:7, 349:23, 357:2	373:7, 373:24, 374:3,	384:13, 389:2,	325:21, 326:7,
programs [6] -	providing [8] -	377:23, 377:24	389:24, 391:13,	326:14, 328:8,
219:1, 284:11,	213:14, 250:16,	382:5, 383:16, 394:7,	391:22, 391:24,	329:20, 329:24,
384:19, 385:15,	301:3, 301:9, 377:5	397:24, 410:10,	392:5, 392:7, 393:10,	334:6, 334:21, 336:4,
386:1, 400:15	408:9, 453:22, 465:12	424:19, 434:13,	393:23, 393:24,	352:21, 387:12,
project [1] - 217:17	Province [1] - 467:8	441:6, 448:12,	393:25, 394:8,	388:18, 457:15
projected [2]-277:3,	provinces [1] -	454:16, 457:6,	394:20, 394:23,	racist [1] - 297:8
		$458: 10,465: 23$	$395: 6,395: 7,395: 21 \text {, }$	radio [1] - 430:12
projecting [1] -	provincial [2]	puts [1] - 458:8	396:9, 396:12,	radioactive [1] -
346:2	335:7, 365:5	putting [14]-225:22,	399:25, 400:20,	370:7
projections [3] -	Public [1] - 205:21	226:10, 247:25,	401:2, 401:5, 401:9	rail [1] - 217:14
277:3, 279:24, 344:6	public [30]-207:21,	252:19, 258:23,	415:6, 420:1, 421:22,	rainbow [1] - 245:15
projects [1] - 338:1	290:1, 295:5, 305:1,	260:25, 264:6,	422:8, 431:14,	raised [3]-244:9,
prolonged [1] -	305:19, 311:5,	285:21, 289:13,	431:16, 434:17,	255:5, 373:23
211:15	325:12, 325:14,	324:9, 327:10,	434:18, 434:19,	ran [2]-344:1,
promise [1] - 399:7	325:20, 325:25,	336:19, 348:6, 428:25	436:10, 436:15,	358:15
proof [1] - 362:17	$326: 1,326: 10$		$436: 17,438: 6$	random [6] - 383:17,
proper [2]-438:1,	326:18, 328:12,	Q	438:11, 438:23,	$383: 22,383: 24,$
439:10	329:5, 332:20, 362:4,		439:1, 439:9, 439:19,	384:1, 384:4, 398:6
properly [3] -	366:15, 392:6,		439:20, 439:23,	randomly [1] - 383:5
366:10, 366:18,	409:12, 433:21,	qaujimajatuqangit	443:25, 444:1, 449:7,	$\text { range }[10]-214: 3 \text {, }$
367:23	439:23, 441:23,	[2] - 409:8, 411:3	449:14, 450:3,	234:21, 234:22,
property [6] - 209:1,	444:1, 444:15, 452:1,	Qovik [3] - 204:7,	450:21, 451:22, 452:5	308:16, 358:2,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2
$377: 20,378: 9$,
$432: 11,432: 13$,
432:16
RANKIN [2] - 201:14,
203:5
Rankin [31] - 227:21,
239:17, 309:6, 309:9,
311:6, 384:11, 403:9,
404:9, 405:20,
406:11, 415:1,
416:17, 416:24,
417:9, 417:22,
418:14, 436:25,
437:12, 438:18,
438:19, 438:20
441:15, 443:9,
443:12, 451:20,
455:14, 458:1, 462:22
rare [1] - 380:17
rate [5] - 233:6,
294:9, 322:17, 346:5,
367:4
rates [8]-229:11,
253:7, 253:10, 254:1,
310:21, 318:24,
323:16, 356:24
rather [2]-217:9,
458:18
ratio [7] - 319:4
319:14, 411:17,
435:12, 435:25,
436:8, 440:18
rationale [3] -
335:21, 411:7, 411:22
re [4]-216:11,
216:19, 356:10, 369:8
re-forming [1] -
369:8
re-forms [2] -
216:11, 216:19
reach [3] - 240:3,
405:9, 460:11
reaching [1] - 382:8
react [1]-266:5
read [11]-208:2,
251:19, 403:15,
408:22, 418:6, 418:9,
418:14, 419:9,
419:11, 449:19,
464:24
reading [1] - 252:16
real [5] - 237:13,
248:17, 256:13
257:11, 300:22
reality [1] - 443:4
realize [6] - 353:13,
353:23, 354:17,
384:23, 424:11,
453:19
really [88] - 216:18,
217:5, 218:6, 218:11,
218:21, 218:23,
220:22, 221:6, 222:5,
233:5, 250:20,
253:12, 255:3, 255:4,
256:13, 257:10,
265:12, 265:13,
268:20, 271:19,
272:14, 276:25,
281:25, 285:1, 293:4,
293:17, 294:1,
294:18, 302:16
302:22, 311:14,
311:19, 312:11,
317:16, 320:1, 324:7, 327:9, 329:2, 330:12,
330:13, 334:12
335:8, 336:20,
337:11, 339:15,
341:7, 342:1, 342:17,

344:7, 344:9, 344:17, 350:16, 351:1, 364:6, 367:2, 367:11, 376:4, 376:15, 376:19,
390:2, 390:20,
394:21, 395:16,
397:22, 398:9,
403:22, 413:1, 413:2, 413:11, 414:6, 414:8, 423:18, 424:23, 425:11, 429:8, 449:10, 449:11, 457:7, 458:16, 463:12, 463:16, 466:17, 466:18 realm [1] - 419:21
reason [16] - 241:21, 244:6, 254:22, 273:7, 327:10, 336:22,
336:23, 352:11,
368:13, 380:16,
382:10, 386:6,
386:13, 398:21
418:15, 434:2
reasonable [5] -
410:24, 411:3,
432:19, 433:16,
441:22
reasons [12] - 217:2, 238:16, 238:23,
241:17, 242:3,
242:10, 242:21,
260:9, 275:9, 327:5,
342:9, 375:16
reassessing [1] -
389:7
rebel [1] - 424:17
rebellious [1] - 297:8
rebound [1] - 317:4
recapture [7] -
243:25, 255:11,
270:9, 270:18, 308:3,
357:17, 395:3
recaptured [1] -
349:22
receive [2] - 432:2,
449:20
received [2] -
384:16, 408:15
receives [1] - 338:23
receiving [2] - 312:1,
339:2
recent [14] - 209:4,
237:6, 243:25,
245:20, 250:2, 250:3,
259:6, 300:16,
315:16, 344:15,
351:19, 352:24,
353:10, 354:11
recently [5] - 212:14,
214:21, 299:7,
331:21, 341:5'
recognition [2] -
327:8, 362:20
recognize [16] -
209:2, 210:9, 211:9,
293:6, 302:21,
326:19, 326:25,
335:15, 339:10,
345:4, 379:9, 387:15,
388:16, 408:1, 455:2,
459:9
recognized [1] -
427:2
recognizes [2] -
208:10, 208:21
recognizing [3]-
293:5, 335:5, 445:9
recommend [8] -
212:7, 212:10, 446:3,

446:9, 446:12, 447:5, 447:8, 448:14
recommendation [9]

- 211:25, 327:6,

358:23, 410:21,
411:5, 411:10,
415:19, 450:15,
454:19
recommendations
[2] - 388:4, 389:16
recommended [2]
243:10, 431:22
recommends [1] -
356:10
reconsideration [1] -
410:5
record [8] - 229:25,
271:14, 300:19
345:20, 396:13,
398:11, 431:11, 454:2
recorded [3] - 220:7,
449:21, 462:4
records [3] - 317:20,
412:20, 435:16
recover [3] - 259:17,
334:14, 375:15
recovered [2] -
262:15, 349:6
recovery [3] -
260:13, 262:4, 349:4 recruitment [1] -
237:15
red [1] - 420:12
reduce [6] - 285:1,
288:21, 396:8,
400:19, 400:20, 450:9
reduced [11] -
284:15, 316:15,
353:8, 414:6, 428:18,
430:14, 440:10,
441:10, 442:22,
448:5, 451:7
reduces [1] - 310:16
reducing [1] - 282:9
reduction [8] -
317:3, 332:23,
333:10, 334:16,
341:3, 352:23,
353:13, 447:6
refer [1]-295:10
reference [2] - 243:9,
341:6
references [1] -
408:17
referred [3]-314:8,
316:10, 318:7
referring [1] - 316:14
reflect [1]-276:3
reflective [1] -
445:18
reforms [1] - 216:19
refresher [1] - 207:8
refrigerator [2] -
371:16, 372:2
refrigerators [1] -
371:15
refuse [1] - 443:19
regard [1] - 305:2
regarding [10] -
209:13, 254:6,
297:17, 363:9,
363:22, 415:10,
421:12, 425:22,
459:21, 464:19
regards [2] - 402:17, 452:10

Regehr [4] - 344:14,
356:22, 358:24, 359:5
Regher [1] - 341:10
Region [15] - 273:10,

303:11, 303:18,
306:5, 336:14,
415:21, 426:10,
426:20, 426:24,
427:10, 427:23
428:5, 428:15, 429:7, 429:23
region [23]-211:13,
392:21, 403:2,
403:21, 404:1, 404:8,
405:10, 410:1,
415:11, 422:10,
422:11, 422:12,
428:21, 429:14,
429:16, 430:13
436:5, 439:14, 441:8,
447:1, 454:10, 455:15
region's [1] - 422:11
regional [3]-361:2,
417:14, 439:13
Regional [1] - 204:7 regions [2]-336:14,
456:4
registered [1] -
453:13
regular [5] - 302:22,
328:2, 336:25, 338:6,
414:2
regulation [2] -
364:22, 423:5
regulations [10] -
242:13, 242:22,
316:13, 316:16,
316:21, 376:5,
420:11, 422:1,
430:14, 430:16
reiterate [3]-277:16,
410:14, 455:1
reject [2] - 450:12,
462:18
rejecting [1] - 462:20
rejects [1] - 462:19
rejigged [1] - 345:25
relate [1] - 236:17
related [1] - 316:9
relates [2]-210:7,
232:21
relation [3] - 232:25,
238:2, 420:14
relative [2]-221:19,
226:5
relatively [4] - 214:2,
214:11, 217:8, 217:11
relatives [1] - 420:2
relaxes [1] - 306:18
relaxing [1] - 306:19
release [17] - 226:16,
226:17, 258:9, 259:5,
259:9, 259:10,
259:12, 259:14,
260:9, 261:8, 261:15,
261:22, 262:1,
284:16, 372:7, 395:25
released [2]-
226:18, 441:12
releases [1] - 226:21
relevant [3]-213:18,
446:8, 446:9
reluctant [1] - 410:9
rely [1]-208:16
relying [1] - 223:14
remain [2] - 409:1,
446:21
remaining [1] -
215:20
remains [1] - 229:4
remarks [3] - 326:8,
454:21, 463:6
REMARKS [1] -

Remarks [1] - 206:20
remember [12]
240:20, 240:24,
241:25, 243:21,
280:25, 313:2,
313:12, 341:15,
374:15, 376:8,
376:21, 404:19
$241 \cdot 1$
241:1
remiss [1] - 453:21
remotely [1] - 284:25
removal [2]-212:1,
323:16
Renewable [2] -
366:1, 366:11
replace [1] - 458:19
replaceable [1] -
458:19
report [15]-272:19,
273:23, 317:15,
317:24, 340:5, 340:9,
340:14, 340:19,
353:2, 353:3, 353:7,
353:20, 353:21,
355:23, 360:20
reported [2]-
300:24, 351:17
Reporter [1] - 467:14
reports [9]-273:3,
273:16, 273:23,
278:20, 303:13,
337:9, 337:18,
412:12, 412:13
represent [2]
461:4, 463:20
representatives [3] -
302:22, 328:17,
416:13
representing [3] -
353:3, 430:6, 455:15
reproduce [3] -
222:25, 235:11,
235:13
reproducing [1] -
223:1
reproductive [3] -
210:21, 318:24,
356:24
Repulse [2]-351:9,
382:18
request [7] - 316:8,
338:9, 430:17,
430:18, 437:4, 450:8,
462:3
requested [1] -
436:25
requesting [1] -
425:14
requests [1] - 337:21
require [5] - 286:8,
288:18, 333:16,
395:7, 397:25
required [2] - 320:4,
424:19
requirement [1] -
219:9
requires [2] - 296:23,
354:5

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

258:2, 258:4, 258:17, 265:8, 269:6, 278:19, 279:7, 279:9, 279:10, 279:14, 279:16, 279:20, 282:8, 282:10, 283:5, 283:9, 283:12, 286:13, 286:15, 286:24 287:22, 295:20, 295:25, 296:1, 298:5, 298:8, 298:18, 301:9, 301:11, 301:12 301:20, 302:1, 303:16, 303:20, 307:5, 307:9, 312:20, 340:11, 349:16, 351:15, 354:3, 374:25, 380:7, 380:11, 382:21, 387:25, 395:22,
406:21, 406:23
researched [1] -
382:24
researcher [1] -
251:4
researchers [9] -
225:15, 227:5,
254:18, 263:5,
297:11, 297:19,
298:20, 303:8, $307: 3$
researchers' [1] -
303:9
reserve [1] - 303:10
reside [1] - 420:3
residing $[1]-418: 10$
Resolute [1] - 217:17
resolve [1] - 437:23
resolved [2] - 364:8,
438:2
Resource [2] -
366:1, 366:12
resources [1]-241:2
respect [10]-281:22,
320:9, 325:5, 325:15,
326:4, 326:10,
328:12, 419:5,
429:14, 430:9
respectful $[2]$ -
441:21, 445:18
respond [5] - 238:14,
304:2, 354:23,
432:21, 453:20
response [6] -
300:16, 300:18,
307:18, 326:5,
358:25, 386:5
responsibilities [1] -
327:11
responsibility $[7]$ -
214:6, 305:5, 326:3,
327:13, 357:3,
419:14, 419:16
rest [5] - 260:11,
291:2, 368:3, 379:18,
421:3
restrict [1] - 255:1
restricted $[3]$
283:21, 291:13
result [4]-334:18
345:15, 358:12, 434:3
resulted [1] - 331:23 results [7]-210:3,
210:13, 210:19
211:23, 307:5,
307:13, 432:8
resume [2]-402:12,
402:16
return [1] - 382:9
returns [1]-214:19 reuse [1]-259:22
review [2] - 360:14, 434:12
revisit [1] - 436:8
ribs [1] - 220:2
Richard [1] - 203:25
rights [1] - 407:24
ring [11]-211:7,
245:20, 245:23,
246:2, 247:1, 247:11,
247:18, 247:20,
247:21, 249:13
ringed [1]-221:22
rings [2]-222:12
rip [1] - 372:3
ripped [1]-374:9
risk [9]-294:21,
348:6, 356:10, 358:1,
358:4, 358:13, 360:5,
360:6
RISKMAN [8] -
341:6, 341:7, 341:8,
343:18, 343:19,
343:22, 344:5, $344: 8$
risky [2]-358:9,
358:10
ritualized [1]
290:23
River [2]-351:21,
351:24
road [7]-218:7,
240:2, 275:2, 277:7,
289:14, 343:20, 465:5
robust [1]-209:3
rocket [1] - 406:18
room [10]-255:7,
255:8, 270:4, 307:22,
307:23, 309:4,
321:25, 335:1, 393:24
root [1] - 222:8
rope $[1]$ - 219:19 rough [2] - 342:18,
372:4
roughly [1] - 234:20
round [1] - 372:1
route [1] - 422:5
routinely $[3]$ -
296:16, 367:5, 398:2
row [2]-228:14,
383:13
rubber [1] - 371:20
rubberized [1] -
371:24
Rule [1] - 364:22
rule [3] - 407:4,
418:18, 418:19
rules [3]-375:18, 422:1, 430:15
rump [1]-221:17
run [13]-294:21,
342:21, 343:1,
344:20, 345:6, 345:8,
345:9, 346:9, 358:24,
359:2, 359:11, 364:9,
456:10
running [4] - 266:9,
285:5, 350:25, 381:7
runs [1] - 343:25
runt [1] - $381: 15$
rust [2]-372:6,
372:24
RWOs [4] - 416:22,
439:12, 446:10,
461:18

\mathbf{S}
$\boldsymbol{\operatorname { s a d }}[2]-442: 9$,
$459: 23$

safe [13]-265:20,
266:2, 266:3, 266:4,
271:17, 271:18,
271:22, 310:7,
425:10, 466:16, 466:18, 466:19
safer [3]-442:1,
442:21, 442:23
safety [27]-208:23,
208:25, 238:24,
241:15, 290:1, 293:6, 295:5, 325:12,
325:14, 325:20,
325:25, 326:1,
326:11, 326:18
328:12, 329:5,
332:20, 332:21,
362:4, 362:21,
366:15, 409:12,
441:23, 447:2,
448:24, 454:11
SAHANATIEN[8] -
314:3, 316:7, 318:3,
324:4, 431:20,
432:25, 434:10,
449:18
Sahanatien [1] -
202:4
sake [1] - 393:21
sale [1]-316:25
salve [1] - 312:14
sample [14] - 223:9,
224:4, 224:23,
224:24, 308:5,
379:15, 383:5,
383:23, 383:24,
395:17, 398:1, 398:6,
398:14, 400:7
sampled [1] - 400:21
samples [18] -
219:10, 220:9, 221:2,
223:18, 223:25
224:2, 224:25, 225:3,
225:5, 283:14,
397:21, 398:9,
398:22, 398:25
399:14, 399:23,
400:12, 400:16
sampling [4] -
396:18, 397:14,
397:17, 400:9
sand [1] - 245:13
Sandy [3]-416:25,
417:23, 417:24
SANGOYA 5 [
297:6, 305:24,
419:25, 422:16, 461:8
Sangoya [1]-201:22
SARA [9]-334:12,
334:13, 334:17,
334:18, 334:24,
334:25, 335:10,
335:14
SARA-compliant [1]

- 335:14

Saskatchewan [3] -
223:13, 263:16,
263:17
sat [1] - 377:15
satellite [20] -
214:22, 225:16,
226:10, 229:11
229:15, 229:25,
252:7, 252:25, 253:1, 258:20, 259:21,
260:24, 260:25,
261:8, 261:11, 262:7
286:2, 289:14, 396:1
satellite-linked [1] -
satellite-type $[1]$ 258:20
satisfactory [1] -
403:25
satisfy [1] - 289:1
saw [16]-247:23,
254:7, 256:21, 259:9,
259:11, 269:7,
271:20, 271:23,
275:14, 280:5, 309:8,
338:8, 409:17,
409:23, 424:11,
462:23
scale [3] - 275:7,
277:10, 377:23
scales [2]-277:11,
287:3
scanning [1] -
262:10
scare [2] - 283:7,
426:11
scared [3] - 306:8,
404:9, 407:10
scarey [1] - 306:3
scenario [1]-446:7
scenarios [3] -
212:12, 294:21,
358:17
schedule [2] - 389:7,
389:13
school [1] - 442:3
Science [2] - 326:23,
327:19
science [41] -
212:25, 224:10,
249:9, 274:11,
274:16, 276:12,
281:8, 281:9, 281:19,
295:6, 302:17,
303:15, 304:4,
308:12, 308:16,
308:18, 309:2,
309:14, 309:15,
320:25, 321:1, 327:4,
365:7, 379:10,
385:14, 386:9,
386:12, 386:20,
388:3, 406:24, 407:1,
407:10, 407:25,
411:4, 428:11,
428:23, 429:11,
432:20, 456:23,
457:13
sciences [1] - 387:18
scientific [35]
209:13, 210:11
210:19, 211:2, 212:4,
212:21, 213:7, 217:6, 243:17, 286:19,
300:8, 303:16, 305:4,
305:7, 305:11,
305:13, 305:15
305:18, 308:3,
314:21, 315:7, 316:2,
323:23, 335:18,
340:15, 354:3,
355:12, 356:19
356:21, 360:16,
386:15, 392:13,
393:14
scientist [7] -
274:10, 280:10
281:13, 281:14,
387:25, 393:22,
406:18
Scientist [1] - 202:15
scientists [12] -
210:25, 229:21,
269:25, 274:24,
296:10, 298:20,

298:23, 301:11
$301: 25,353: 6$
388:20, 462:16
score [2]-219:24,
219:25
scratch [1]-254:11
se [9]-229:2, 268:3,
277:1, 283:5, 296:18,
310:14, 339:15,
364:25, 385:23
sea [68]-210:23,
211:13, 211:14,
211:20, 215:7,
216:11, 216:17,
216:18, 216:20,
216:21, 216:23,
217:10, 220:14,
225:14, 226:12,
227:10, 227:22,
228:24, 229:13,
229:15, 229:19,
229:24, 232:13,
232:17, 233:1,
233:13, 238:3, 238:5,
238:9, 239:3, 239:24, 239:25, 240:3, 244:2,
245:7, 245:8, 245:10,
247:3, 247:6, 248:5,
253:5, 253:6, 255:10,
256:5, 268:14,
275:12, 277:3, 277:4,
277:6, 286:23,
293:18, 294:10,
319:20, 320:9,
322:16, 322:19,
331:7, 331:25,
337:24, 345:12,
345:17, 345:18,
368:8, 368:10, 369:6, 369:8, 394:4
Sea [3] - 252:21,
320:9, 320:19
seafood [1] - 402:14
seal [10]-239:6,
246:7, 246:12,
247:11, 292:9,
299:13, 340:11,
340:17, 345:11
sealing [1] - 299:17
seals [42]-211:7,
221:22, 232:18,
232:20, 244:11,
244:24, 245:17,
245:20, 245:23,
245:25, 246:2, 246:7,
246:17, 246:18,
246:20, 246:22,
247:1, 247:5, 247:8,
247:19, 247:20,
247:21, 248:4,
249:13, 254:9,
268:15, 298:7,
311:18, 320:22,
340:4, 345:12, 351:7,
366:19, 368:10,
369:6, 382:15,
382:16, 385:16,
400:17
seamstress [2] -
311:16, 311:25
seamstresses [1] -
313:13
season [8] - 210:1,
298:10, 311:25,
312:23, 405:7,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

second [9]-263:2,
267:16, 270:10,
316:9, 361:11,
367:21, 374:14,
420:9, 430:9
secondly [1] - 388:5
seconds [1] - 222:9
secretary [1] -
463:15
Secretary/Manager [2] - 203:6, 203:24
section [5] - 222:11,
325:18, 418:6, 418:8,
418:9
sedative [2] -
396:22, 397:7
see [120] - 214:12,
220:1, 220:2, 220:16,
225:13, 227:17,
227:18, 230:15,
231:25, 232:1, 232:2,
233:5, 233:21,
235:18, 236:7, 236:9,
236:19, 238:20,
239:16, 239:18,
239:19, 240:9,
240:13, 243:8,
251:22, 255:12,
255:13, 255:14,
255:15, 255:23,
256:4, 256:5, 256:10,
256:11, 265:21,
270:2, 270:3, 271:12, 273:3, 273:5, 274:10, 274:15, 275:3, 276:3, 276:10, 292:10,
298:10, 299:11,
299:21, 303:6,
303:11, 303:23,
304:11, 306:9, 313:7,
315:22, 333:24,
334:9, 337:1, 337:25 338:19, 340:18,
341:13, 342:22,
345:7, 349:17,
349:20, 350:12,
350:18, 351:2, 365:3,
366:9, 367:9, 371:17,
371:25, 372:21,
378:13, 379:5,
379:21, 381:7, 381:8,
381:16, 381:18,
383:6, 390:4, 390:8,
391:12, 392:8, 393:2,
393:5, 398:14, 402:2,
404:20, 412:10,
412:23, 414:5, 414:7, 414:11, 414:21,
416:12, 420:12,
423:14, 428:2,
429:10, 429:13,
436:6, 444:2, 447:20,
454:12, 460:25,
463:22, 466:2
seeing [29]-230:22,
246:21, 248:7,
249:15, 250:10,
270:4, 274:6, 274:7,
276:21, 278:2,
319:19, 320:7, 320:8,
320:15, 320:18,
320:19, 320:20
341:18, 350:4, 352:4,
370:15, 370:17,
374:24, 375:16,
383:9, 401:25,
436:21, 446:1
seek [1]-463:11
seem [13]-213:18,
236:5, 236:6, 238:11,

249:10, 257:21, 275:16, 291:25,
320:22, 344:7,
350:25, 448:10,
463:15
selected [2] - 432:1,
433:7
selective [2] - 407:4, 407:11
selves [1] - 349:9
send [7]-259:19,
259:22, 264:7,
286:11, 339:16,
364:5, 364:23
sending [3]-330:7,
364:1, 364:16
Senior [2]-202:19,
203:2
sense [4]-292:23,
335:8, 344:7, 425:9
sensitive [1] -
338:20
sent [6] - 332:9,
338:21, 365:2, 365:4,
376:20, 422:16
sentence [2] - 418:8,
419:9
sentiment [1] - 209:9
September [7] -
236:1, 236:4, 238:18
259:15, 275:11,
345:17, 368:12
series [1] - 234:6
serious [2]-326:5,
437:23
seriously [1] -
208:24
serve [1] - 325:14
Service [3]-302:11,
326:23, 327:17
set [20] - 226:17,
230:10, 259:8,
259:15, 300:19,
321:21, 321:23,
322:14, 331:3,
333:15, 336:3,
343:23, 344:3, 359:2,
402:21, 418:19, 442:10, 442:24,
465:20
sets [1] - 315:10
setting [4]-218:8,
321:12, 335:22,
447:19
Settlement [1] 453:12
seven [4] - 351:23,
359:4, 403:2, 466:2
several [1] - 433:19
severe [4] - 411:13,
435:10, 435:23, 436:8
severely [1] - 412:15
sex [4]-248:14
347:15, 407:4, 407:11
sex-selective [2] -
407:4, 407:11
shall [1] - 461:24
shallow [2] - 222:8
shape [2]-225:19,
372:4
share [7]-338:14,
343:10, 423:6,
425:19, 441:14,
461:25, 462:3
shared [13]-297:11,
298:22, 298:25,
336:25, 337:6,
337:10, 338:10,
415:10, 426:7,
460:24, 461:14,

462:15, 463:13
shares [1] - 304:4
sharing [6] - 330:13,
338:6, 382:18,
415:23, 424:3, 449:11 shave [1] - 221:11
Shewchuk [1] -
201:19
shift [1] - 245:7
shifting [1] - 320:23
shoot [7]-242:15,
394:22, 405:19,
406:25, 407:3, 407:9, 407:10
shooting [2] -
317:14, 374:18
shore [12]-215:23,
229:9, 232:10,
239:11, 239:13
239:20, 241:11,
259:17, 275:13,
368:21, 368:23, 369:7
short [11]-221:16,
269:9, 273:5, 285:2,
285:6, 298:15,
364:15, 370:16,
390:17, 449:18, 466:3
short-term [3]
221:16, 285:2, 285:6
shorthand [2] -
467:5, 467:6
shot [1] - 400:1
shoulders [1] -
219:20
show [8] - 215:4,
242:14, 337:19,
355:1, 404:14, 412:6, 426:4
showed [11] - 210:4,
233:17, 244:1, 244:2,
272:10, 279:11,
280:6, 280:25, 281:1,
289:7, 341:21
showing [7] -
223:15, 235:16,
237:22, 274:13,
349:4, 353:24, 447:25
shown [2]-369:17,
382:7
shows [8] - 220:6,
236:2, 279:20,
280:17, 297:12
412:4, 413:6, 413:10
siblings [1] - $377: 11$
sick [3] - 299:12,
312:22, 365:24
side [11] - 248:8,
273:25, 286:18,
288:5, 304:7, 325:6,
327:18, 337:5, 352:2,
388:2, 457:2
sides [1] - 361:14
SIGARDSON [2] -
438:19, 458:2
Sigardson [1] -
203:7
sight [2] - 216:2,
285:9
sightings [3]
208:13, 351:16,
351:20
sign [1] - 244:22
signal [1] - 263:24
signals [2] - 250:8,
259:3
signed [2] - 217:3,
326:21
significant [2] -
268:2, 390:2
signs [1] - 349:4
similar [15] - 222:12, 228:13, 228:18,
230:22, 234:25,
236:2, 249:6, 256:17,
262:21, 267:25
270:3, 271:10, 339:6,
394:9, 414:10
similarly [2] - 216:6,
355:17
Simon [8] - 203:10,
369:14, 369:22,
370:20, 438:15
451:14, 458:13,
458:21
simple [2] - 262:20, 322:5
simply [14] - 227:14,
227:15, 232:16,
237:14, 237:15,
239:15, 244:24,
245:23, 252:23,
295:16, 296:16,
309:17, 363:2, 375:3
simulations [2] -
233:23, 344:1
sincerely [1] -
465:16
single [26] - 224:3,
238:25, 241:21,
242:4, 247:24, 267:5,
271:21, 284:17,
286:4, 300:13,
300:24, 307:20
307:25, 308:8,
308:17, 308:23,
308:24, 309:5,
309:17, 321:8, 378:6,
379:14, 398:4, 398:7,
414:25, 435:11
SINIKTARVIK [1] -
201:13
sink [1] - 240:16
sisters [1] - 377:12
sit [6] - 229:2,
266:14, 280:8,
349:10, 391:20, 437:3
sites [1] - 241:5
sitting [7]-226:19,
227:5, 262:11, 272:7,
286:18, 374:2, 438:1
situation [10] -
305:2, 309:13,
322:25, 328:3,
419:13, 419:18,
437:8, 438:2, 441:17, 447:15
situations [1] -
264:21
six [7]-261:20,
333:19, 359:4,
359:13, 368:12,
368:23
size [12]-210:12,
214:3, 221:12,
237:10, 237:11,
237:13, 274:20,
294:4, 317:15, 322:4,
377:20, 395:17
skew [1] - 400:7
skill [2]-223:24,
467:6
skilled [1] - 239:4
skills [3] - 386:24
465:12, 465:23
skin [10] - 220:10,
224:8, 224:12,
224:15, 312:15,
312:17, 312:18,
398:1, 398:14
skinniest [1] -
skinny [4] - 366:5
366:13, 366:14,
367:21
skull [1] - 219:21
sleep [13] - 306:6,
306:9, 306:10,
306:13, 306:14,
309:24, 310:1, 310:5,
312:8, 313:19,
365:22, 428:25
slide [29] - 213:20,
216:24, 218:4, 219:7,
220:5, 220:7, 222:14,
223:6, 225:11,
227:11, 229:12,
231:10, 231:20,
231:21, 232:20,
233:15, 234:5,
234:22, 235:24,
237:24, 244:7, 245:5,
245:23, 247:22,
250:12, 339:5,
355:18, 412:19, 413:8
slides [5] - 234:6,
236:3, 244:3, 340:12,
352:22
slight [2] - 255:19
slightly [1] - 266:22
slot [1] - 250:14
slow [1] - 328:8
slower [1] - 339:12
slump [1] - 266:13
small [19]-217:12,
254:10, 283:22
291:13, 296:5,
296:23, 301:13,
309:4, 376:15,
376:16, 376:19,
376:21, 377:9, 378:1,
381:17, 384:1, 384:3, 429:8
smaller [3] - 254:24
258:22
smallest [10] -
376:22, 377:9,
377:10, 377:13,
377:21, 378:4, 378:8,
380:20, 380:21,
380:23
smart [2] - 376:21,
377:18
smells [2] - 241:5,
293:3
smelt [1] - 245:16
smile [1] - 272:12
Smith [1] - 202:19
snack [2] - 402:8,
402:13
snapshot [1] - 270:2
snares [1] - 218:8
snow [1] - 406:16
SNT [1] - 323:22
social [4]-293:22,
294:19, 332:18,
440:24
soliciting [1] -
301:17

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

257:5	345:24, 367:9, 377:6,	461:25	266:9, 266:21,	step [2] - 249:5,
sometime [3] -	394:17, 400:13	SPOKEN [2] -	269:12, 284:20,	339:13
230:13, 361:16,	sounds [2]-292:21,	206:14, 452:20	298:7, 305:12,	Steve [1] - 340:18
367:24	292:24	sport [1] - 404:3	313:17, 320:2,	Steven [2]-245:21,
sometimes [15]	source [4] - 208:20	sports [3] - 414:3,	324:16, 330:6,	340:10
230:8, 254:8, 254:9,	211:8, 352:12, 407:16	414:4, 414:6	339:20, 341:2, 357:9,	stick [1] - 257:14
260:16, 261:18,	sources [10] -	spot [5] - 216:5	367:15, 386:17,	still [38] - 225:21,
298:21, 409:21,	211:10, 212:24,	253:15, 290:24,	386:18, 386:25,	247:20, 261:23,
410:1, 411:19, 439:4,	278:18, 326:25,	291:1, 374:3	387:6, 400:11,	262:13, 267:19,
462:19, 466:4	387:19, 387:23,	spots [1] - 296:24	401:23, 435:10,	273:2, 273:3, 273:13,
somewhat [1] -	388:1, 388:8, 388:17,	spray [1] - 348:7	454:22, 454:24	287:16, 287:17,
290:2	388:24	spring [6] - 229:19,	started [40] - 214:14,	290:4, 290:6, 331:11,
somewhere [15]	south [5] - 229:8	235:6, 246:11,	217:1, 217:19, 218:9,	350:13, 350:24,
230:14, 231:15,	229:9, 364:2, 409:25,	267:24, 379:17, 442:2	218:16, 218:18,	366:11, 379:20,
233:6, 233:19,	453:8	springtime [14]-	218:21, 219:1, 219:2,	379:21, 381:23,
233:20, 241:4,	southeast [1] -	220:15, 246:15,	242:19, 242:20,	388:13, 395:6,
244:23, 247:11,	215:19	246:16, 247:4, 257:1,	258:4, 258:21,	400:22, 403:13,
258:10, 265:18,	southern [1] - 228:2	267:21, 298:9, 377:7,	260:25, 265:5, 265:6,	404:16, 405:8, 405:9,
283:16, 283:24,	Southern [21] -	378:10, 379:15,	265:7, 269:8, 272:4,	411:14, 411:15,
284:4, 347:16, 441:9	210:2, 210:3, 211:4,	379:24, 379:25,	272:7, 272:13, 278:2,	422:2, 423:10,
son [1] - 312:23	215:3, 216:6, 228:3,	380:8, 382:11	278:11, 293:11,	435:25, 449:21,
son-in-law [1] -	247:23, 248:3,	spurious [1] - 345:15	294:2, 315:15,	455:15, 463:23
312:23	248:18, 248:20,	square [3] - 247:12,	335:19, 341:4, 344:6,	stood [1] - 364:1
song [1] - 306:2	249:1, 249:3, 249:24,	371:9, 371:21	345:23, 349:16,	stop [8] - 222:25,
soon [1] - 466:11	250:7, 320:19,	stab [1] - 318:22	351:15, 375:5, 375:6,	266:12, 292:13,
sooner [1] - 363:20	320:20, 337:12,	stability [5] - 234:13,	376:23, 388:5,	299:17, 313:18,
sophisticated [1] -	338:18, 355:13,	234:20, 235:19,	394:15, 395:13,	315:21, 380:20, 414:6
232:23	409:19, 448:8	280:5, 433:20	422:18, 443:8	stopped [3] - 242:22,
sophistication	southward [2] -	stabilize [1] - 233:22	starting [10] -	246:4, 261:20
253:17	216:14	stable [25] - 225:1,	220:18, 221:14,	stopping [2]-248:1,
sorry [5] - 328:10,	Soviet [1] - 370:6	234:1, 234:4, 236:5,	222:16, 228:25,	299:17
371:6, 413:23,	spaces [1] - 308:5	278:25, 279:3,	229:20, 236:18,	stops [1] - 407:19
434:11, 444:6	speaking [4] -	279:10, 279:11	253:19, 349:4, 357:8,	store [1] - 442:4
sort [103] - 207:22	313:21, 326:24,	280:8, 293:14,	408:3	stored [1] - 259:18
214:6, 219:2, 219:9,	355:10, 421:1	319:16, 319:24,	starts [6] - 231:12,	stores [1] - 223:20
220:6, 227:23, 228:1,	special [2] - 223:24,	319:25, 320:5, 320:7	266:13, 312:6,	stories [2] - 317:12,
228:2, 228:7, 228:11,	335:2	321:5, 321:6, 360:4,	380:19, 380:20,	317:14
228:12, 228:20,	specialist [1] -	360:6, 360:21,	382:13	ring [3] - 224:15,
229:4, 229:11,	362:12	360:22, 361:5,	starving [6] - 241:22,	293:2, 398:5
229:21, 230:22,	Specialist [2] -	407:14, 410:18,	297:14, 299:7, 299:8,	story [3] - 273:25,
231:7, 231:16,	203:2, 300:8	448:20	300:17, 366:3	376:2, 376:4
232:23, 233:18,	specialty [1] - 388:1	stadiums [1] - 393:5	state [5]-311:9,	straight [5] - 219:19,
234:3, 234:12,	species [16] -	Staff [3]-205:9,	$390: 3,396: 12$	$300: 19,368: 14$
234:13, 234:19,	221:23, 221:24,	206:1, 206:11	426:16, 427:17	368:17
234:25, 236:12,	245:7, 245:9, 245:11,	staff [10] - 313	STATEMENT[1] -	strapped [1] - 420:8
237:14, 238:15,	245:12, 245:15,	431:17, 439:7,	206:19	strategies [1] - 329:7
238:20, 243:6,	310:14, 310:17,	439:11, 449:15,	statements [1] -	strategy [1] - 333:9
243:24, 244:13,	327:13, 363:13,	450:16, 454:16,	299:5	street [2] - 388:20,
246:6, 246:15, 247:7,	392:19, 393:13,	462:15, 463:24,	states [2] - 353:3	$388: 23$
247:10, 248:17,	393:18, 443:17, 457:6	465:11	406:25	strength [2] -
250:5, 251:3, 252:8,	Species [1] - 203:2	STAFF [3] - 314:1,	stating [1] - 449:11	422:23, 422:24
252:16, 255:13,	specific [15] -	431:18, 449:16	statistic [1] - 390:20	stress [8]-221:15,
255:14, 255:15,	249:20, 283:10,	stages [1] - 266:6	statistical [5] -	221:16, 282:18,
256:15, 256:19,	329:8, 342:10,	stakes [1] - 292:7	355:5, 355:9, 390:19,	282:20, 285:7, 453:9,
257:9, 263:4, 263:22,	356:23, 383:16,	stalking [1] - 251:23	390:25, 391:4	453:23, 455:25
266:14, 266:16,	392:19, 393:23,	stand [5] - 266:22,	statistically [1]	stressed [3] - 239:9,
266:22, 267:11,	394:19, 414:24,	291:17, 436:23,	390:3	285:7, 291:25
274:25, 283:3, 286:5,	419:3, 434:2, 448:13,	437:17	statistics [1] -	stressing [1] -
288:7, 289:17,	450:19, 453:24	standard [3] -	390:25	454:11
289:20, 294:10,	specifically [4] -	219:17, 219:18, 220:9	status [9]-234	stretch [1] - 378:1
295:1, 295:11,	310:20, 330:21,	standing [3] - 285:5,	304:9, 335:6, 343:1	strict [2]-411:17,
296:12, 304:4, 304:5,	335:22, 362:22	314:24, 430:6	343:12, 360:10,	420:8
315:13, 317:20,	specifics [2] - 385:5,	standpoint [1] -	360:18, 360:21, 361:4	strip [1] - 259:22
318:14, 318:25,	385:23	389:8	stay [11]-216:9,	strive [4]-422:23,
319:4, 319:5, 319:17,	specimens [1] -	Stanley [19] - 204:6,	216:10, 225:20,	455:24, 461:24,
319:20, 321:21,	222:2	346:24, 347:1,	292:1, 328:21,	464:17
328:1, 329:6, 335:12,	speed [1] - 402	402:18, 413:20,	348:24, 349:3, 349:6,	strived [1] - 421:13
338:15, 342:18,	spend [8] - 211:17,	416:3, 416:10, 417:4,	349:10, 372:9, 404:21	strong [6]-215:15,
343:20, 344:25,	215:23, 216:1, 216:7,	417:19, 418:2,	stayed [2] - 207:9,	216:2, 250:8, 300:1,
345:2, 345:17, 352:5,	228:20, 229:6, 276:1,	421:23, 422:14,	343:25	382:12, 445:22
355:2, 355:22, 358:9,	295:22	424:8, 426:17, 427:6,	staying [2]-267:12,	strongly [2] - 448:14,
358:16, 365:15,	spending [3] -	427:15, 431:16,	$331: 23$	$448: 18$
369:3, 372:8, 374:25,	270:24, 275:18, 331:7	443:25, 455:19	stays [3] - 227:6,	structure [2] -
387:16, 389:15,	spent [4]-270:19,	start [40]-207:4	401:14, 401:20	222:25, 400:12
393:14, 400:7, 410:4,	302:13, 368:3, 368:12	207:12, 207:15,	steady [2] - 425:10	struggle [2]-455:24,
411:6, 419:21,	spine [3] - 219:23,	207:20, 208:9, 215:7,	steel [1] - 371:3	466:4
432:19, 440:5, 440:23	220:2, 232:1	216:16, 217:7,	Stenographer [1] -	struggling [1] -
sorts [10] - 223:1,	spinning [1] - 398:4	218:24, 221:1, 225:8,	202:11	404:7
223:25, 224:1,	spirit [1] - $363: 14$	225:9, 239:23, 241:4,	Stenographer's [1] -	students [2] -
301:16, 322:9,	spoken [2]-461:4,	244:19, 258:16,	206:21	386:17, 386:23

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2
studied [4]-282:12,
282:13, 286:16,
294:13
studies [18] - 219:1
245:2, 272:8, 272:9,
287:5, 287:6, 288:4,
293:12, 310:20,
310:22, 327:25,
367:18, 369:18,
392:14, 392:16,
393:15, 447:21, 447:24
study [11] - 217:21,
222:2, 244:13, 245:3,
254:19, 261:2,
341:15, 356:14,
369:24, 393:6, 458:16
studying [1] - 294:12
stuff [32] - 214:15,
218:16, 242:7,
253:25, 262:7,
274:12, 286:5,
299:22, 310:23,
317:21, 319:17,
321:13, 339:6,
348:17, 367:5,
367:15, 377:6,
379:10, 386:10,
400:9, 403:18,
403:19, 403:23,
404:1, 404:6, 405:11
405:18, 406:15,
408:6, 408:7, 462:14
stumbling [1] -
428:13
styles [1] - 420:22
subadult [4] -
225:21, 225:23,
225:25, 239:8
subadults [2] -
233:3, 239:3
subarctic [1]-
245:12
subjective [1] -
219:22
submission [21] -
207:15, 353:18,
353:21, 403:15,
408:10, 409:11,
410:11, 411:11,
411:23, 413:19,
430:8, 430:17,
430:24, 431:12,
431:25, 434:23,
440:6, 449:20,
452:25, 453:1, 453:3
SUBMISSION [12] -
205:5, 205:8, 205:22,
206:8, 206:14,
206:17, 207:18,
311:11, 402:20,
444:23, 452:12,
452:20
submit [2]-399:15,
462:5
submitted [5] -
207:25, 213:15
250:22, 328:6, 453:12
SUBPOPULATION [1] - 201:7
subpopulation [18] -
211:4, 212:9, 213:2,
263:21, 275:22,
286:4, 315:24, 327:2,
327:7, 335:20,
356:13, 360:18,
389:8, 409:14,
409:24, 409:25,
446:24, 449:2
subpopulations [14]
$-210: 8,210: 22$,
$212: 15,214: 2,214: 3$
214:11, 215:1,
334:10, 350:22,
355:24, 370:1, 375:9, 385:20, 408:24
subsequent [4] -
219:14, 243:24,
447:21
success [2] - 376:2, 376:4
successful [4] -
329:2, 376:6, 443:10,
448:19
sudden [2] - 345:14, 375:8
sufficient [1] -
389:12
sugarcoat [1] -
358:18
suggest [6] - 247:21,
249:6, 263:15,
287:11, 310:18,
318:15
suggested [4]
247:11, 279:9,
281:15, 438:21
suggesting ${ }^{77]}$
234:3, 310:24, 334:8, 353:12, 353:14,
353:15, 435:1
suggestion [4] -
411:12, 435:5, 435:9, 435:21
suggestions [1] 465:6
suggests [2]
257:22, 310:16
suitable [1] - 244:7
summer [14] -
215:23, 216:1, 216:7
228:6, 229:6, 270:24
275:18, 297:24,
297:25, 298:2,
315:23, 367:25, 368:3
summering [1] -
216:3
summertime [2] -
215:20, 312:9
sunburn [1] - 312:10
sunlight [1] - 260:19
superficial [1] -
255:20
supplement [1] -
447:13
supplemental [1] -
353:19
support [23] -
211:25, 332:19,
336:15, 336:21,
336:24, 337:21,
365:9, 365:13, 408:9,
427:12, 428:16,
429:9, 431:1, 431:6,
446:12, 447:12,
447:14, 450:8,
450:18, 455:12
456:2, 465:12, 466:1
supported [7] -
300:10, 323:16,
327:24, 362:8,
362:16, 362:17,
408:16
supporting [4]
244:17, 336:17,
381:13, 459:13
supportive [1] -
209:22
supports [1] -
supposed [2]
262:2, 417:25
surgery [1] - 397:1
surgically [1] - 397:4
surrounding [2] -
353:10, 382:14
survey [59] - 209:15,
209:16, 209:20,
209:21, 209:25
210:2, 210:3, 210:10,
210:13, 213:19,
218:12, 230:3,
232:23, 235:24,
236:15, 237:7,
238:17, 246:5,
247:10, 248:19,
248:20, 248:25,
249:1, 249:6, 250:2,
269:16, 270:22,
271:8, 275:10,
275:15, 275:17,
275:21, 276:19,
276:21, 279:8, 279:9
279:13, 279:18,
280:16, 296:21
308:2, 308:15, 353:2,
353:7, 353:22,
353:23, 355:19,
360:20, 360:25,
389:8, 390:6, 390:9,
410:25, 432:9,
432:10, 432:14,
442:15
surveying [1] - 275:8
surveys [20] -
209:17, 244:4,
246:23, 247:4, 270:1,
271:11, 275:20,
276:2, 282:14,
304:12, 333:13,
333:18, 340:17,
382:21, 389:18
390:1, 395:4, 410:22,
448:8, $448: 9$
survival [12] -
210:22, 211:3,
232:21, 232:25,
233:6, 233:7, 233:11,
233:14, 233:15,
244:3, 378:11, 378:12
survive [3] - 375:10,
380:2, 380:4
survives [1] - 299:15
sustain [1] - 268:8
sustainability [1] -
212:24
sustainable [10] -
212:22, 212:23,
315:13, 315:14,
315:19, 315:20,
319:3, 323:12, 448:6,
456:14
Suzuki [1] - 297:12
swim [2] - 393:3,
393:20
swimmers [4] -
393:3, 393:4, 393:7,
393:19
swimming [6] -
252:20, 252:22,
275:14, 275:15,
308:11, 366:19
switch [3] - 252:15,
252:17, 280:13
switches [2] -
252:17, 254:2
sword [1] - 376:3
symptomatic [1] -
249:22
system [26] - 218:7,

243:7, 244:23, 245:5,
278:12, 302:17,
327:16, 343:8, 376:1,
376:5, 389:10,
404:11, 405:14,
405:20, 411:8, 422:9,
434:24, 440:9, 441:1,
441:3, 442:5, 443:5,
443:12, 443:14,
443:20, 457:8
systematic [1] -
445:24
T t

208:7, 208:8, 213:22,
353:20, 418:7, 452:24
table [25] - 213:16,
227:4, 236:17,
242:18, 243:21,
250:11, 250:15,
250:17, 250:21,
264:13, 272:20,
305:6, 324:16,
325:11, 347:1,
354:25, 379:9,
379:12, 386:8,
391:20, 404:17,
405:4, 416:12,
454:22, 455:4
tables [6] - 234:2,
343:11, 343:12,
399:9, 411:24, 414:10
$\boldsymbol{\operatorname { t a g }}$ [9] - 214:19,
220:9, 256:24,
383:11, 416:25,
417:23, 418:13,
418:17, 440:12
tagged [12] - 214:20,
214:21, 216:9,
216:10, 219:16,
270:9, 270:11,
270:23, 284:3,
357:22, 398:24
tagging [1] - 270:6
tags [46]-219:12,
397:24, 399:11,
410:2, 414:15,
416:22, 420:6, 421:2,
423:23, 424:12,
424:13, 424:21,
424:25, 425:8,
425:21, 425:25,
426:2, 426:4, 426:5,
426:13, 426:20
426:21, 426:22,
428:4, 428:14,
428:18, 428:20,
429:9, 429:18,
429:21, 429:23,
435:12, 436:4,
440:13, 441:11,
441:14, 441:20,
442:7, 442:11, 443:2,
443:4, 443:11,
453:22, 458:8, 459:2
TAH [13]-281:23,
295:13, 314:12,
315:16, 327:6,
356:11, 411:4,
427:24, 428:10
436:3, 447:19, 448:2,
454:19
TAHs [1] - 428:3
taima [6] - 326:12,
369:10, 381:21,
389:1, 418:21, 451:10
take-home [1] -
238:5
talented [1] - 376:24
$\boldsymbol{\operatorname { t a n }}$ [1] - 311:25
tangent [1] - 346:13
Taparti [1]-202:10
tape [1] - 378:3
target [10] - 293:11,
294:3, 294:4, 294:22,
322:4, 331:16,
358:15, 398:5, 442:8,
446:7
targeted [1] - 436:1
targeting [2] -
383:25, 384:1
Tartak [1] - 203:6
taste [1] - 288:5
tastes [2]-288:2,
288:9
tattoo [1] - 397:24
tattoos [2]-219:12,
377:24
taught [4] - 407:2,
416:7, 416:8
teach [2] - 386:23,
407:22
teaching [1] - 386:17
team [6] - 273:10,
273:11, 290:8, 292:3,
292:16, 460:6
teams [7]-273:20,
290:5, 290:7, 292:5,
292:11, 292:16,
292:17
Technical [5]
208:18, 210:14,
337:7, 360:12, 360:19
technical [9] - 258:9,
305:7, 305:11,
305:18, 360:23,
408:9, 412:3, 413:18,
455:11
technique [1] -
254:10
techniques [10] -
224:4, 225:3, 254:12,
285:15, 288:19,
289:20, 328:24,
392:25, 395:4, 396:24
technologies [3] -
260:1, 396:7
Technology [2] -
326:23, 327:19
technology [3] -
259:9, 394:5, 396:1
teenagers [1]-233:3
teeth [1]-222:13
Telazol [3]-265:19,
310:12, 396:22
teleconference [2] -
419:3, 433:14
telemetry [4] -
214:22, 225:12,
336:8, 409:18
temperate [1] -
245:15
ten [11] - 264:8,
346:4, 351:19,
361:17, 363:19,
382:22, 382:24,
383:18, 390:22,
438:2, 444:12
ten-year [1] - 382:24
tend [8]-215:18,
232:14, 232:15,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

286:13, 286:15,
286:24, 287:5, 287:6 287:12, 287:21,
287:22, 319:22,
352:23, 357:17, 387:17, 392:13,
394:12, 396:15,
420:12, 423:10, 464:13
terminology [2] -
355:2, 355:18
terms [21]-222:24,
255:18, 267:20,
269:22, 275:8, 287:7,
293:25, 318:6, 323:9,
325:13, 325:20,
327:11, 328:11,
332:15, 370:13
393:19, 413:25,
464:11, 464:12
terrestrial ${ }^{22]}$ -
211:10, 327:13
territorial [4]-335:7,
365:5, 446:18, 447:2
Territories [1] -
316:12
territories [1] -
327:15
territory [4] - 335:16,
420:3, 421:5, 448:21
test $[1]-325: 18$
thank-yous [1] -
465:10
thanking [2] -
207:20, 330:6
THE [205]-201:4,
201:5, 201:6, 201:13,
207:2, 207:7, 208:5, 208:8, 250:25,
251:14, 252:5, 254:4, 254:14, 257:24, 258:13, 262:17, 262:25, 264:10, 264:15, 265:2, 268:4, 268:11, 269:2, 269:20, 271:25, 274:2, 277:13, 279:4, 282:3, 289:22, 293:9, 295:19, 297:4, 299:2, 302:3, 302:6, 303:2, 303:25, 304:19,
305:22, 306:21 307:15, 309:19,
310:9, 311:1, 313:22, 314:16, 316:5, 317:8, 318:1, 318:20, 323:6, 324:2, 324:12,
324:24, 326:13, 328:8, 329:20, 329:25, 332:2, 334:2, 334:20, 336:4, 338:11, 339:22 340:6, 340:22, 342:3, 346:18, 346:22, 347:12, 347:17, 348:1, 348:11, 348:18, 349:1, 350:9 350:14, 351:3, 351:12, 352:7, 352:16, 354:21, 356:3, 356:16, 359:14, 359:18 360:8, 361:8, 361:25, 363:6, 364:12, 365:18, 366:22, 369:10, 369:22, 370:19, 370:23 371:5, 372:12, 372:17, 373:3,
373:20, 376:10,

377:1, 378:18,
380:14, 381:4, 381:21, 382:2, 383:1, 384:6, 384:9, 385:3, 386:3, 387:9, 388:18 389:1, 389:21, 391:7, 391:10, 392:1, 393:10, 396:11, 396:19, 397:9, 397:19, 399:5, 399:17, 400:25, 402:6, 402:12, 413:20, 415:4, 415:15, 415:25, 417:3, 417:19, 418:1 418:22, 419:20, 421:21, 422:14, 422:25, 424:7, 426:17, 427:5, 427:15, 430:2, 430:20, 431:9, 432:5, 432:23, 433:9, 434:8, 434:16, 434:20, 435:3, 436:12, 436:16, 438:4, 438:15, 438:18, 438:22, 439:17, 439:21, 443:22, 444:13, 449:5, 449:9, 449:13, 449:24, 450:2, 450:20, 450:23, 451:11 451:14, 451:16 451:19, 451:23, 452:1, 452:13, 452:21, 454:2, 454:5, 455:6, 455:19, 456:6, 456:17, 457:15, 457:25, 458:4,
458:12, 458:21
459:5, 459:16, 460:1, 460:22, 461:7, 462:11, 463:1, 463:5, 464:3, 465:9
the' 60 s $[1]-243: 13$
themselves [8] -
209:21, 225:6, 226:1, 254:22, 319:25, 323:3, 345:5, 446:14 they've [22]-219:16, 248:5, 255:12, 256:15, 272:17 283:6, 283:11, 284:3, 292:22, 315:15, 349:22, 352:1, 371:1, 408:1, 414:15, 414:21, 423:10, 423:15, 425:18, 453:3, 463:13
thickness [3] -
211:7, 246:18, 340:18
thin [6]-220:3,
231:23, 299:11,
299:12, 368:19,
368:25
thinking [3] - 258:3,
272:13, 376:23
thinks [1] - 362:23
thinner [4]-221:5,
246:18, 246:19, 298:3
third [5] - 350:20,
380:21, 380:23,
381:1, 420:15
Thomas [7]-204:12,
365:19, 366:22,
392:8, 452:13,
458:22, 459:5
thoughtful [1] -
466:7
thoughts [4] -

331:14, 332:1,
340:25, 341:25
thousand [2]-214:4
410:23
threat [3] - 300:9,
362:13, 445:10
three [47]-215:1,
222:15, 222:16,
222:17, 239:14,
255:7, 256:14,
256:16, 261:10,
267:8, 267:22, 269:9
277:2, 284:4, 284:9,
284:19, 284:24,
285:10, 314:10
338:15, 339:2,
341:16, 347:22,
348:4, 348:9, 358:16
359:1, 359:12, 377:8,
377:10, 378:8, 379:2
379:4, 379:5, 379:17
380:17, 380:19,
380:25, 381:14
436:24, 437:12,
440:13, 459:9,
464:11, 466:9, 466:11
three-week [1] -
284:24
three-year [2]
341:16, 464:11
three-year-old [1] -
222:17
throughout [4]
316:12, 416:11, 424:1
throw [1]-224:9
throwing [1] - 224:14
tie [1]-218:17
tight [3]-255:3,
296:24, 390:7
tighter [1] - 308:22
tightly [2] - 225:23,
256:1
timing [2] - 230:22,
244:3
tiny [5] - 220:10,
221:16, 222:4,
377:11, 377:13
tired [1] - 431:15
tirelessly [1] - 403:7
tissue [1]-224:13
TK [5]-302:17,
388:3, 457:13, 460:8,
460:9
TO [6] - 201:4, 201:5,
201:12, 206:14,
324:22, 452:20
today [31]-215:14,
222:7, 272:18,
272:24, 273:13
273:15, 273:19,
277:8, 280:8, 283:20,
373:9, 373:13,
373:16, 385:23,
392:14, 404:21,
421:16, 427:22,
428:22, 431:11,
437:2, 437:3, 437:9,
437:21, 438:7,
446:17, 460:18
together [22]-263:7,
303:13, 303:14,
303:21, 304:5,
304:10, 324:9, 336:8,
338:18, 365:6, 372:6,
372:23, 374:22,
387:18, 454:17
456:15, 460:7,
460:12, 460:15,
460:17, 461:22, 466:6
tolerance [1] - 358:2
tomorrow [4] 275:1, 275:6, 277:9, 277:21
took [7]-237:16,
319:8, 319:12
398:20, 399:13,
403:10, 422:18
tools [1] - 345:2
Toonie [1]-221:12
tooth [10]-222:4,
222:9, 222:10,
222:20, 223:5,
397:15, 398:17,
398:19, 398:20,
400:10
top [10]-228:10,
231:22, 231:23,
233:2, 244:14,
245:23, 372:21,
393:16, 412:8, 433:4 topic [4]-404:15,
418:24, 454:8, 454:9
topics [3] - 403:13,
461:9
Toronto [1] - 445:17
total [24]-211:22,
212:9, 213:7, 244:7,
293:15, 314:8,
318:17, 347:15,
403:24, 405:6,
410:15, 410:20,
413:2, 413:5, 415:19,
415:23, 417:11,
427:25, 430:19,
431:7, 431:24,
438:20, 450:13,
450:15
TOTAL [1] - 201:6
touch [1]-316:3
touched [1]-403:19
tough [1] - 403:12
tourism [11]-290:3,
290:5, 291:11,
291:12, 291:19,
361:15, 361:18,
362:6, 362:23, 363:1,
410:14
tourist [2] - 240:10, 350:2
tourists [2]-291:18,
292:9
toward [1] - 382:17
towards [17]-218:2,
218:3, 227:19,
228:14, 228:18,
230:19, 231:5,
305:12, 331:17,
400:7, 433:4, 434:13,
446:10, 446:14,
459:14, 463:13
town [12]-218:7,
218:9, 238:8, 238:22,
239:10, 239:17,
283:6, 283:7, 291:4,
368:16, 404:19, 421:2
Towtongie [3] -
204:15, 311:13
TOWTONGIE [3] -
205:8, 311:11, 311:12
trace [1]-288:7
$\operatorname{track}[3]-260: 5$,
263:22, 320:1
tracking [2] - 258:25,
284:22
tracks [1] - 227:15
trade [9]-212:20,
212:22, 213:5, 315:4,
315:12, 315:18,
315:20, 420:19, 445:8
traded [1] - 317:21
trading [4] - 242:24
243:1, 317:20, 421:9
Trading [1] - 317:18
traditional [33]
208:11, 208:17,
213:1, 277:21,
303:10, 303:15,
303:17, 304:4, 307:1,
307:6, 309:13,
311:17, 312:12,
312:15, 312:25,
315:8, 327:25,
360:16, 365:7,
386:10, 386:13,
386:21, 387:18,
388:22, 428:9,
428:11, 429:5,
429:15, 433:18,
441:4, 445:15, 447:3,
460:10
traffic [1] - 225:19
trajectory [2] - 210:7,
280:4
tranquilize [1] -
396:16
tranquilizer [2] -
396:17, 397:6
transcribed [1] -
467:5
Transcript [1] -
467:1
transcript [1] - 467:4
transect [2]-308:5,
308:21
transferred [1] -
223:22
translated [4] -
213:24, 250:18,
339:8, 463:4
transmit [2] - 252:25,
374:11
transmitted [1] -
259:20
transmitter [1] -
252:24
transparent [2] -
401:10, 435:18
trappers [1] - 416:14
travel [7] - 217:9,
227:11, 269:10,
273:11, 273:22,
298:12, 453:6
travelled [1] - 302:18
travelling [5] - 215:6,
269:12, 273:10,
273:12, 439:5
travels [2] - 466:16,
466:19
treaty [1] - 328:15
tree [1]-222:12
tremendous [1] -
287:6
trend [15] - 210:9,
230:9, 230:10,
230:19, 231:5,
233:25, 236:3,
237:13, 246:1,
353:17, 353:22,
353:24, 354:7, 354:8,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

truck [2]-291:4,	390:1	302:24	316:6, 317:8, 318:2,	$16 \text {, }$
291:8		uplisted [1] - 362:19	318:20, 3	274:17, 377:23,
true [14]-241:23,	U	pper [2]-215:8,	324:12, 431:17	377:24, 378:7
243:22, 278:3,		215:12	432:5, 432:24, 433:9,	weighing [2] -
283:12, 291:23,	U.S [4] - 252:19,	ups [4] - 230:7	433:12, 434:9,	274:12, 289:10
297:21, 301:25,	346:12, 346:13, 359:6	234:10, 249:12,	449:15, 449:24	weight [13] - 226:2,
307:8, 346:16,	ultimate [1] - 419:16	341:20	video [1] - 253:21	226:4, 249:9, 250:10,
375:21, 424:4, 424:6,	ultimately [4] -	useful [11]-261:23,	view [3]-217:6,	255:9, 257:22, 281:2,
424:10	315:12, 323:24,	337:5, 338:9, 338:23,	304:4, 427:8	287:17, 298:4,
trump [1] - 323:13	326:20, 389:9	341:11, 345:2, 433:5,	views [1] - 303:15	298:15, 368:25,
trust [1] - 341:23	unable [2]-332:8,	449:20, 456:22,	virtually [1] - 220:1	383:18
truth [3] - 297:10,	362:24	456:25, 457:3	vital [1] - 445:9	weights [19] -
298:16, 425:11	uncertainty [4] -	users [1] - 365:16	VOLUME [1] -	234:15, 234:18,
try [30]-217:16,	276:23, 344:16,	uses [6]-250:5,	201:15	235:21, 236:2, 236:3,
269:14, 271:19,	353:10, 446:18	312:19, 313:12,		$236: 6,236: 8,256: 8,$
285:3, 286:11,	uncommon [1] -	322:10, 443:19	W	257:20, 267:21,
288:25, 302:14,	240:9	utilize [2]-337:2,		267:22, 267:24,
302:19, 303:8,	uncontrolled [1] -	354:10	wait [1] - 389:13	287:9, 289:7, 289:11,
306:25, 308:22,	374:25		aiting [1] - 455:9	348:16, 378:9, 384:3
30	under [21]-243:14,		waik [7]-229:4	weicome [4] -
331:17, 332:6,	325:11, 325:13,	valid [1] - 332:22	266:23, 290:25,	$347: 1,387: 4$
332:11, 336:1,	325:17, 325:18,	validate [1] - 346:8	291:17	well-managed [3] -
343:14, 363:2,	327:16, 328:17,	Vallender [1] -	walked [2] - 297:14,	362:8, 362:13, 362:15
366:18, 373:8, 374:6,	334:12, 334:13,	202:14	313:8	well-run [1] - 456:10
391:10, 395:11,	334:17, 334:18,	VALLENDER [12] -	walking [2]-313:8,	WESTERN [1] -
398:22, 434:1,	334:23, 335:7,	207:19, 208:7, 208:9,	380:19	201:7
444:16, 458:9	353:20, 362:19,	302:7, 314:18, 323:7,	walks [1] - 349:6	western [7]-248:7,
trying [27] - 225:9,	420:8, 424:19	326:15, 328:10,	wander [1]-241:5	352:2, 421:18,
226:23, 239:24,	underdog [3] -	334:22, 387:13,	Wanisk [1] - 228:4	428:10, 428:23,
262:23, 285:15,	378:15, 380:1, 380:2	439:20, 456:19	wants [6] - 229:5,	429:11, 432:13
288:16, 300:3, 304:8,	underdose [1] -	valuable [8]-224:3,	278:23, 316:1,	Western [90]-210:1,
304:9, 305:13,	266:2	224:13, 224:17,	378:24, 409:6, 418:18	210:12, 211:12,
311:25, 315:12,	underneath [2] -	224:19, 251:1, 251:5,	Wapusk [5] - 217:22,	212:13, 213:6,
322:21, 331:3,	244:16, 252:24	286:20, 445:13	228:4, 228:6, 261:2,	214:12, 215:2,
334:13, 344:11,	undersigned [1] -	value [2]-224:11,	296:9	216:25, 217:24,
385:15, 395:23,	467:3	287:6	warming [3] -	218:5, 221:20,
400:22, 406:20,	undertaken [2] -	values [3] - 235:22	407:17, 407:18,	221:22, 221:23,
417:17, 426:11,	212:14, 356:11	285:16, 286:14	407:19	227:25, 229:17,
431:5, 433:15,	underwater [1] -	variability [1] -	warmth [1] - 421:7	229:18, 230:16,
463:20, 463:21	276:9	230:19	warning [2] - 244:22,	242:6, 243:18, 248:1,
tundra [13]-224	undone	variable [3]-343:23,	425:20	248:24, 249:7,
$\begin{aligned} & \text { 226:19, 226:22, } \\ & \text { 261:18, 262:12, } \end{aligned}$	$\begin{aligned} & \text { undou } \\ & 276: 7 \end{aligned}$	343:24, $351: 1$ variables [6] -	washer [1] - 372:24 watch [1]-266:11	$\begin{aligned} & \text { 249:20, 249:21, } \\ & \text { 249:24, 250:7, 251:4, } \end{aligned}$
291:12, 291:15,	unfair [1] - 458:10	232:24, 239:1,	water [8]-215:10,	261:16, 274:20,
291:21, 291:24,	unfortunate [3] -	252:11, 341:22,	215:11, 247:2,	275:22, 280:2,
292:2, 349:25, 350:7	362:23, 368:5, 368:25	342:20, 344:18	252:25, 253:2, 276:9,	280:20, 282:11,
TUNNGAVIK [3] -	unfortunately [4] -	variance [2] -	366:19, 393:4	293:13, 295:2,
347:3, 434:21, 453:18	300:11, 354:6, 363:4,	308:20, 309:16	ways [18]-285:19,	295:15, 308:9,
Tunngavik [4] -	368:19	variation [1] - 234:10	285:24, 285:25,	314:12, 315:21,
205:12, 206:3,	unidirectional [1] -	varies [2]-335:6,	286:6, 288:21,	316:14, 320:10,
206:15, 461:24	319:18	335:7	294:25, 326:24,	320:18, 324:8,
turn [9] - 213:12,	unintentionally [1] -	variety [5] - 211:9,	330:14, 376:3,	330:10, 330:18,
223:5, 245:18,	373:2	294:21, 310:13,	395:23, 396:4,	330:22, 332:8,
312:13, 325:10,	Union [1] - 370:6	356:24, 357:12	400:19, 404:2,	337:10, 338:18,
378:16, 382:9,	unique [1] - 416:11	various [6]-212:11,	406:21, 421:18,	342:15, 349:15,
391:13, 440:5	units [1] - 214:15	252:10, 343:11,	427:8, 439:2	350:19, 351:17,
turning [1] - 248:1	University [3] -	344:21, 365:10,	wealth [1] - 333:22	352:1, 355:13, 357:7,
turns [3] - 224:12,	223:12, 225:15,	367:12	wean [1] - 350:21	357:16, 357:24,
265:23, 343:5	338:21	vast [2] - 269:10,	weaned [1] - 246:12	360:4, 360:21,
twice [1] - 348:6	university [1] - 359:6	420:24	wear [1] - 374 :4	370:18, 375:20,
two-males-to-one	unknown [2] -	vehicles [1] - 291:22	weather's [1] -	402:18, 403:4,
[1] - 411:16	317:25, 321:14	verbal [1] - 207:24	342:11	403:21, 405:17,
two-to-one [3] -	unless [8] - 308:17,	verbally [1] - 416:8	webbing [3] -	409:19, 409:24,
435:12, 436:7, 440:17	309:8, 367:12, 383:8,	verbatim [2] -	371:14, 371:15, 374:9	412:8, 412:16,
two-way [1] - 388:20	383:10, 383:16,	263:14, 437:13	website [1] - 315:2	414:16, 415:11,
two-year [2] -	387:12, 444:15	version [2]-208:1,	week [10]-239:18,	418:11, 418:12,
227:13, 228:10	unlikely [1] - 379:25	252:8	239:19, 251:24,	418:16, 425:7,
twofold [1] - 265:20	unrecovered [1] -	versus	259:2, 275:1, 284:17,	430:10, 431:8,
type [9]-253:13,	258:7	287:10, 363:1, 386:16	284:19, 284:24,	437:11, 437:13,
258:20, 274:12,	unregulated [5] -	vestigial [1] - 222:3	358:20, 359:11	438:20, 441:25,
304:9, 352:6, 356:14,	242:11, 242:16,	veterinary [1] -	weeks [4]-239:14,	443:2, 446:4, 448:5,
371:15, 434:6, 434:14	243:14, 317:23,	367:17	368:13, 368:23,	448:8, 452:10, 453:4,
types [9]-221:18,	374:17	vets [1] - 285:13	368:24	453:9, 455:13
223:15, 259:10,	unsure [1] - 307:4	VHF [5] - 258:22,	weigh [11] - 226:1,	Whale [40]-205:16,
310:22, 385:7, 386:1,	update [1] - 315:3	260:12, 262:6, 262:8,	234:7, 274:13,	227:20, 241:25,
399:22, 414:1	updated [1] - 445:25	263:24	274:18, 279:21,	273:12, 289:25,
typically [8]-220:4,	upgrading [1] -	viable [1] - 408:23	280:21, 295:5, 305:4,	346:25, 369:13,
247:4, 300:1, 327:23,	343:6	Vickie [17] - 202:4,	305:19, 378:1, 394:17	378:21, 381:22,
355:3, 361:2, 381:11,	uphill [2] - 301:7,	313:25, 314:16,	weighed [6] -	404:8, 404:18,

NWMB WHB POLAR BEAR HEARING, RANKIN INLET, JAN 10, 2018, Vol 2

405:19, 406:5,	426:14, 429	25	225:4, 226:7, 226:11,
406:11, 412:25,	439:6, 440:25, 456:3,	te [3]-462:1,	226:23, 227:16,
414:19, 415:2, 415:7,	460:6, 460:14,	462:2	228:10, 228:14,
416:16, 416:18,	460:15, 460:18,	writing [4]-335:12,	231:4, 233:5, 235:12
416:20, 416:24,	460:20, 463:22	408:10, 449:22, 462:4	237:3, 237:5, 238:4
416:25, 417:23,	464:20	written [15]-208:1,	238:5, 240:22,
417:24, 418:15,	willing [3]-357:18,	337:9, 340:13,	248:21, 251:5,
423:12, 426:3,	357:19, 357:24	403:15, 408:16,	255:18, 25
427:11, 431:15,	wind [5] - 298:9,	410:10, 411:10,	259:15, 262:7, 262:8,
436:25, 437:1,	298:10, 298:12,	411:23, 416:7, 430:8,	265:5, 270:12,
437:12, 437:13,	298:13	430:17, 430:23	270:15, 275:2, 2
438:13, 441:14,	window [1] - 394:22	449:19, 453:3, 462:24	277:2, 277:4, 278:9
444:3, 451:14,	winds [2]-215:13,	wrote [3]-300:18,	282:23, 287:13,
455:14, 458:13	215:17	306:2, 347:22	295:14, 298:14,
WHALE [2]-203:9,	Winnipeg [1] -	WWF [9]-240:24,	314:10, 319:16,
369:15	245:22	445:1, 445:7, 447:15,	319:17, 320:11,
whales [12]-311:18,	winter [1]-215:8	448:3, 450:18, 451:4,	322:13, 329:16,
51:8, 351:10,	winters [1] - 408:3	451:8, 462:24	330:10, 333:16,
351:16, 351:20,	wintertime [2] -	WWF's [1] - 450:8	333:19, 336:18,
$\begin{aligned} & 351: 22,351: 25, \\ & 35: 3,352: 5 \end{aligned}$	215:2, 298:9	Y	344:
$\begin{aligned} & 352: 3,352: 5,35 \\ & 443: 18 \end{aligned}$	wish [1] - 466:16		351:19, 361:17.
whatnot [1]-410:2	wishing [1] - 376:1	year [127]-212:	363:19, 369:19,
whereas [4]-	witness [1] - 373:13	216:4, 219:15	372:4, 380:6, 380:7,
235:14, 263:14,	witnessed [1] -	222:17, 222:18,	380:11, 382:22,
361:15, 386:15	381:2	222:22, 224:4,	382:25, 383:13,
whole [14]-230:9	wobbles [1] - 266	225:17, 227:13,	383:17, 383:18,
245:4, 248:2, 273:4,	woman [1] - 311:16	228:10, 228:17,	383:24, 389:9,
305:6, 343:25,	wonder [1] - 373:16	228:19, 230:5, 230:6,	389:13, 390:10,
356:24, 357:12,	wonderful [1] -	230:18, 232:15,	390:12, 390:16,
359:2, 377:20, 378:9,	465:21	233:12, 233:24,	390:22, 396:2,
403:15, 440:25,	wondering [12] -	234:11, 235:3,	403:13, 404:18,
441:17	295:23, 316:18,	235:14, 236:1,	411:20, 413:12,
wide [7] - 299:20,	331:14, 356:13,	236:18, 236:22,	414:14, 414:16,
308:16, 338:16,	360:3, 361:21,	236:24, 236:25,	414:17, 422:3, 423:9,
338:19, 390:1,	384:17, 384:21,	237:2, 237:5, 237:6,	425:3, 428:1, 428:13,
390:18, 390:23	384:25, 396:16,	237:9, 238:9, 238:15,	$435: 1,436: 6,438: 2 \text {, }$
wider [1]-257:15	397:17, 416:23	246:14, 246:24,	$459: 10,465: 15$
widespread [2] -	word [1] - 265:5	247:14, 247:18,	466:13
292:15, 367:16	words [10]-278:3,	248:10, 249:5,	yesterday [12] -
width [1] - 219:21	332:14, 427:18,	258:17, 261:19,	208:15, 209:14,
widths [1] - $308: 5$	452:5, 454:23,	261:23, 262:5, 270:9,	211:14, 213:4,
wild [1] - 399:12 WILDLIFE [15] -	455:20, 460:2, 463:6,	270:10, 270:14,	213:16, 214:9,
201:2, 203:1, 205:22,	464:5 workable [1] - 437:	272:18, $275: 6,281: 4$	238:18, 244:8, $382: 5$
206:8, 206:17,	workers [1]-464:24	282:22, 283:13,	460:19
251:13, 314:1, 356:8,	works [6] - 230:11,	283:16, 283:23,	York [4] - 242:24
389:4, 402:20, 415:8,	237:2, 316:4, 342:25,	283:25, 284:1,	316:15, 316:23,
431:18, 444:23,	406:10, 432:20	284:13, 284:17,	317:18
449:8, 449:16	World [11] - 205:19,	286:14, 288:15,	young [9]-233:2,
Wildlife [55]-202:4,	209:4, 389:2, $44499: 22$, $444: 13$	290:20, 299:13,	233:4, 269:12, 272:5,
202:5, 202:6, 202:14,	444:9, 444:13,	317:21, 320:21,	272:12, 312:18,
$\begin{aligned} & \text { 202:18, 202:19, } \\ & \text { 202:22, 202:24, } \end{aligned}$	$444: 21,449: 7,4$ $452: 2,462: 25$	$327: 23,329: 14$, $341: 16,341: 19$,	384:20, 386:17 younger [2]-416:13,
205:6, 205:9, 205:14,	WORLD [5] - 203:1,	341:20, 347:9,	461:22
205:19, 205:23,	206:8, 206:17, 389:4,	347:15, 347:16,	yourself [2]-391:15,
206:1, 206:9, 206:11,	444:23	347:22, 348:5, 348:9,	424:24
$\begin{aligned} & 209: 5,296: 9,302: 11, \\ & 326: 22,327: 17 \end{aligned}$	world [20]-213:25, 218:20, 251:20,	$\begin{aligned} & 350: 12,350: 18, \\ & 350: 21,351: 2 . \end{aligned}$	yous [1] - 465:10 youth [1] - 307:1
346:25, $356: 6,389: 2$,	264:5, 282:12,	$360: 14,363: 1$	youth []-307
402:16, 408:9,	282:13, 286:16,	363:19, 364:19,	Z
408:13, 409:6,	297:13, 298:25,	377:9, 378:6, 378:16,	
409:16, 410:9,	302:19, 374:18,	382:24, 383:9,	zero [1] - 207:9
410:16, 410:19,	374:20, 386:9,	383:15, 383:20,	zeroing [1] - 259:3
411:15, 412:2,	386:15, 386:20,	390:14, 395:14,	Zolatel [3]-265:19,
413:19, 415:18,	407:22, 407:23,	397:12, 397:16,	310:12, 396:22
424:4, 429:20, $429: 22.439: 22$,	408:1, 441:25, 460:9	397:18, 399:16,	zone [3]-227:24,
$\begin{aligned} & \text { 429:22, 439:22, } \\ & 440: 6,441: 13, \end{aligned}$	world's [2]-214:5,	$400: 21,403: 18$, $405: 19,406: 6,420: 5$	228:1, 275:22
442:18, 442:23,	worldwide [2]	$424: 2,425: 2,425: 5$	$371: 18$
444:5, 444:9, 444:14,	214:1, 374:16	435:11, 435:13,	zoos [8] - 364:2,
444:21, 447:15,	worn []]-255:12,	435:17, 436:3, 436:4,	364:6, 364:16,
449:7, 450:4, 450:24,	256:11, 256:12	440:14, 440:17,	364:23, 365:3, 365:4,
$\begin{aligned} & \text { 452:2, } 452: 9,455: 7 \\ & \text { wildlife [25] - 282:7, } \end{aligned}$	worried [2] - 278:25,	$\begin{aligned} & \text { 443:1, 443:9, 455:17, } \\ & 464: 11.464: 12 \end{aligned}$	407:25, 408:1
299:1, 305:2, 311:18,	worry [4] - 227:2	yearlings [1] -	
360:13, 361:2,	251:9, 267:2, 361:16	350:25	
$363: 10,363: 11$, $364: 5,392: 17$	worse [2]-230:6	years [99]-212:7,	
$364: 5,392: 17$, $406: 17,425: 13$,	worth [1]-212:17	219:2, 219:14,	
406:17, 425:13,	Wrestling [1] -	223:11, 223:23,	

